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DOMAINS OF PARACOMPACTNESS AND REGULARITY 

S. M A C D O N A L D AND S. WILLARD 

Given a class 38 of topological spaces and a class Ĵ ~ of maps of topological 
spaces, our interest is in characterization of the class 3%&(38) of topological 
spaces whose every J^-image lies in 38. The class 3%p(38) is referred to as the 
^-resolvent of 38, and is the largest class of spaces smaller than 38 closed 
under J^-images (provided Ĵ ~ is closed under composition and includes 
identity maps). 

In the present paper, 38 will be either the class of paracompact spaces or 
the class of regular spaces, and the conditions determining 3£~ will always 
include separation axioms on the range, some of which can be dispensed with 
now by agreeing that all spaces are Hausdorff. 

In what follows, the set of non-isolated points of a space X will frequently 
be singled out for attention; this set will be called the accumulation set of X 
or, more often, accX. 

1. Domains of regularity: continuous maps. Our purpose in this section 
is to discover conditions under which every Hausdorff continuous image of X 
will be regular. We need a few preliminary results. 

LEMMA 1.1. If every continuous Hausdorff image of X is regular, X is normal 
and countably compact. 

Proof. Normality is clearly necessary, for if A and B are closed sets in X 
which cannot be separated, the quotient of X obtained by identifying the 
points of A will be Hausdorff (since X must be regular) but not regular. 

Now if X is not countably compact, let (xn) be a sequence in X having no 
cluster point. If infinitely many of the points oCfi are isolated in X, then X 
contains a closed copy D of the integers, and then the disjoint union of X — D 
with any denumerable non-regular Hausdorff space will be a one-one con­
tinuous non-regular image of X. 

Hence we assume each xn is an accumulation point of X. Let C = { 
and pick x0 (? C. Let r* be the topology on X in which basic neighbourhoods 
of x ^ xo are unchanged, while basic neighbourhoods of x0 have the form 
V KJ (0 — C) where V is an old-style neighbourhood of x0 and 0 is any 
old-style open set containing all but finitely many points of C. In this 
(Hausdorff) topology on X, C is closed but cannot be separated from x0. 
Since (X, r*) is a (one-one) continuous image of X, we are done. 
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LEMMA 1.2 (Katëtov [5]). Every nowhere dense closed subset of X is compact 
if and only if accX is compact. 

For use in the proof of the following result, recall that a space X is meta-
compact if and only if every open cover has an open point-finite refinement. 
Arens and Dugundji [2] have shown that X is compact if and only if it is 
countably compact and metacompact. 

With this we can prove the main result of the present section, characterizing 
the J^-resolvant of the class of regular spaces when &~ is the class of continuous 
maps with Hausdorff range. 

THEOREM 1.3. X is compact if and only if every continuous Hausdorff image 
of X is regular. 

Proof. Necessity is immediate. 
Conversely, by Lemma 1.1 we may assume that X is normal and countably 

compact. Suppose first that accX is not compact. Then by Lemma 1.2, X 
contains a non-compact nowhere dense closed set A. Let fiX be the Stone-
Cech compactification of X and set B = C l ^ A Now B — A ^ 0 since A 
is non-compact, so we may choose p G B — A. Let °tt be the neighbourhood 
system of p in (3X and let 

y = {(xr\ u) - A\U e <%}. 
Each U G % meets X and moreover, since X C\ U is open in X and A has 
empty interior, each (X C\ U) — A must be non-empty. It is then clear 
that i^ is an open filter base on X. Now choose any q £ X — A and define 
a new topology on X by leaving neighbourhoods of points r ^ q unchanged 
and letting the basic neighbourhoods of q be sets of the form 5 U V where 5 
is an old-style neighbourhood of q and V £ "f. Call X with this new topology 
X*. Then X* is a one-one continuous Hausdorff image of X, but is not regular 
since (routinely) A can no longer be separated from q by open sets. 

Thus if every continuous Hausdorff image of X is regular, then SLCCX must 
be compact. But then X is metacompact, whence by the Arens-Dugundji 
result referred to above, X must be compact. 

2. Domains of regularity: quotient maps. We turn now to the problem 
of characterizing the J^-resolvent for the class of regular spaces when ^ is 
the collection of quotient maps (with Hausdorff range). So far, only partial 
results are available; their depth can be judged by the fact that we cannot 
yet say whether the real line has non-regular Hausdorff quotients. 

In [7], an A-space is defined to be a metrizable space X such that accX is 
compact. We find it convenient now to define an Ar-space to be a Hausdorff 
space X such that accX is compact. 

It is easily proved that every A '-space is regular and that the quotient of 
an A '-space is again an A '-space. These facts lead to an easy sufficient con­
dition for every quotient of X to be regular: 
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THEOREM 2.1. Every Hausdorff quotient of an Ar-space is regular. 

The attractive conjecture that only A '-spaces have this property remains 
unproved. We have only the following result. 

THEOREM 2.2. If X is first countable and every Hausdorff quotient of X is 
regular, then accX is locally countably compact. 

Proof. If accX is not locally countably compact then there exists a point 
p in accX having no countably compact neighbourhood, and acc(X — \p)) 
contains a sequence a\, a2, . . . having no cluster point. By the regularity of X 
there is a neighbourhood W of p that misses some open set containing 
{at\i G N}. Now by first countability, for each i G N there is a sequence 
Xa, xi2j . . . in X — W that is disjoint from all such sequences {xjn} for j < i 
and such that {xin} —>at. Let °tt = {Ui, £/2, . . .} be a countable neighbour­
hood base at p, with Ui = W and Un D Un+\. Then U\ contains a sequence 
3>n, 3̂ i2, . . . having no cluster point. Having found for any k G N a sequence 
yjci, yk2, . . • which has no cluster point and which is contained in the neigh­
bourhood 

UJC - {yin\i = 1, • • • , k - 1; n e N} 

of p, we see that 
Uk+i - {yin\i = 1, . . . , *; n G N} 

is a neighbourhood of p and must contain a sequence yk+i,i, 3^+1,2, . . . having 
no cluster point. Thus, by induction, we find in each neighbourhood Um of p 
a sequence ymi, ymi, • • • having no cluster point and disjoint from the closed 
set 

{at\i e N} \J {xin\i = 1, . . . ,m;n G N} U {yin\i = 1, . . . , m - 1; n G TV}. 

Now the quotient obtained by identifying ykn with xkn for all k, n G N is 
Hausdorff but not regular, since the point p and the closed set {at\i G N} 
cannot be separated by open sets. 

The following example shows, however, that the conditions of the last 
theorem are far from sufficient, even for first countable spaces. 

Example 2.3. For m = 4, 5, 6, . . . . Let 

with the usual topology as a subspace of the real line. Let X be the disjoint 
union of the spaces Wm, m = 4, 5, . . . and the intervals [1/w, 1], n = 1 , 2 , . . . . 
Then X is locally compact, o--compact and without isolated points. But the 
quotient topology obtained by projecting X onto [0, 1] is non-regular (and 
Hausdorff), since the set {l/n\n G N\ is closed in this topology but cannot 
be separated from the origin by open sets. 
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The question of open maps seems difficult. Local compactness of X is 
certainly sufficient for regularity of every Hausdorff open quotient of X, but, 
since there are non-locally compact A '-spaces, this condition cannot be 
necessary (cf. Theorem 2.1). On the other hand, local compactness of accX 
is not sufficient, as is shown by the following example, which is a modification 
of Example 2 of [1, p. 70]. 

, ;w = 2,3, . . .( 

n = 1, 2, . . .; m = 2, 3, . . . } » 

both considered as subspaces of the plane. Let X = X± KJ X2. Now since 
the only non-isolated points of X are (0, 0) and the points (1, l/n) for 
n = 1,2, . . . , accX is clearly a locally compact subspace of X. However, the 
open quotient map obtained by identifying the points (0, l/n + l/nm) and 
(1, l/n + l/nm) for n = 1, 2, . . . , and m = 2, 3, . . . has a non-regular 
Hausdorff image, since the closed set {(1, l/n)\n = 1, 2, . . .} cannot be 
separated from the point (0, 0) by open sets. 

3. Domains of paracompactness : continuous maps. The question now 
considered is: for which spaces X is every continuous regular image of X 
paracompact? The reason for imposing the condition of regularity on the range 
is evident, the question otherwise degenerating into the question of Section 1. 

We will need the following lemma about paracompact spaces, of some 
independent interest. 

LEMMA 3.1. If X is paracompact, the following conditions on X are equivalent: 
(a) X is Lindelôf, 
(b) every open cover of X has a countable subcollection whose closures cover, 
(c) every open cover of X has a countable subcollection whose union is dense 

in X, 
(d) every uncountable subset of X has an accumulation point. 

Proof, (a) => (b) =» (c) is obvious. 
(a) => (d). If X contains an uncountable set A having no accumulation 

point, then for each point x ^ I there is some open set Ux containing only 
finitely many points of A. Now {Uz\x Ç X] is an open cover of X having 
no countable subcover, whence X cannot be Lindelôf. 

(c) => (a). If % is any open cover of X, let 7^ be a locally finite open cover 
such that the closure of each V Ç ^ is contained in some U G &'. Then 7^ 
has a countable subcollection { Vi, V2, . . .} whose union is dense in X and 

Example 2.4. Let 

Xi={(0,0)}u{(o,± + ^ 

and let 

n = 1,2, . . 

X2 = - ' » / 
n = 1, : A \ n n / 
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each Vi is contained in some Ut £ %. Then, by local finiteness of "f 
X = U Vi = U Vt C U Ui} so °ll has a countable subcover. 

(d) =» (a). Suppose X is not Lindelôf. Let ^ be an open cover with no 
countable subcover and let 7^ be a locally finite refinement of °tt. Then i^ 
is an uncountable cover and if we pick xv € tft, for each U G ^ , the set 
{xu\U £ ^ } can have no accumulation point s i n c e ^ is locally finite. 

Recall now that T is an absolute retract if and only if whenever X is normal 
a n d / : A —» 2" is continuous on a closed subset A of X, t h e n / has an extension 
F to all of X. It is a standard fact [3, p. 151] that R*1 is an absolute retract. 
This will be used in the proof of the following theorem, which does the job 
of characterizing the ^"-résolvant of the class of paracompact spaces, when 
Ĵ ~ is the class of continuous maps with regular range. 

THEOREM 3.2. X is regular Lindelôf if and only if every continuous regular 
image of X is paracompact. 

Proof. Necessity is immediate. 
For sufficiency, note that X must be paracompact, and hence normal. If 

X is not Lindelôf, then, by Lemma 3.1 there is some uncountable set A in X 
having no accumulation point. Now A is a closed and relatively discrete 
subspace of X. But iVKl is a closed non-normal subspace of R*1 (A. H. Stone [6]) 
and any m a p / of A onto iVKl will be continuous. Then, RHl being an absolute 
re t ract , / has an extension to a continuous map F:X —>R*K Because f(A) is 
a closed non-paracompact subspace of F{X), F(X) is not paracompact. 

4. Domains of paracompactness : quotient maps. Once again, partial 
results are available which point to an attractive but as yet unproved con­
jecture. 

THEOREM 4.1. If X is regular and accX is Lindelôf, then every regular quotient 
of X is paracompact. 

Proof. L e t / be a quotient map of X onto a regular space Y. Then/(accX) 
is Lindelôf and, for y Ç f{X) —/(accX), f~~l{y) is open, so y is isolated. 
Thus acc/(X) C/ (accX) and acc/(X) is Lindelôf. Thus if °il is an open 
cover of F, there is a countable subcollection W covering /(accX). Hence 

1W {{y}\y e F - Z ( a c c X ) } 

is an open (r-locally finite refinement of ^ . 

The necessity of the condition of the last theorem remains unproved in 
general, although we can prove it for a large class of spaces assuming the 
continuum hypothesis. We make use of the space ^ as described in [4, p. 79], 
which can be constructed as follows. Let N be the discrete space of positive 
integers, SP an infinite collection of infinite subsets of N, maximal with respect 
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to the property that if Pi, P2 G & and Px J* P2, then Px P P2 is finite. For 
each P f ^ , adjoin a point xp to iV whose neighbourhoods are {xp\ U F, 
where P is a cofinite subset of P. The space ^ is locally compact, separable, 
pseudocompact, but not paracompact. 

To prove the theorem we are after (4.3), we require the following result. 

LEMMA 4.2. Letf be a quotient mapping of a normal space X onto a Hausdorff 
space Z such that, for some closed sub space D of X 

(i) f(D) is regular, and 
(ii) f~lf{a) = a, for each a Q D. 
Then Z is regular. 

Proof. Let A be closed in Z and c (? A. Note that E = f(D) is regular and 
closed in Z. There are two cases. 

Case 1. c (L E. Then / _ 1 ( c ) a n d / - ( . 4 ) U D are disjoint closed subsets of X. 
If U is an open subset of X such that f~l(c) C U and Û does not meet 

f~1(A) \J D, then /(£/) is open, since f~lf{U) = U, and contains c, and 
/ ( [ / ) does not meet 4̂ (since /(E7) (Zf(Û), the latter being closed since 
f~lf(Û) = Û). This dispenses with Case 1. 

Case 2. c G E. Pick sets [/ and V open in £ such that c Ç [/, i H £ C ^ 
and £7 Pi F = 0. (Since E is closed in Z, we need not concern ourselves with 
which space we are taking closure in here.) 

Then f~l{V) and f~1(V) are disjoint neighbourhoods of f~1(c) and 
f~l{A) P D in Z> and are closed in X. Thus, by normality we can find dis­
joint open sets 5 and T in X such that 

f-i(û) es, f-i(v)Kjf-i(A) cr . 
Now, define 5* and T* by 

5* =f~1(U) U ( 5 - Z>), 

r* = / - i ( F ) yj T - D). 

Then it is easily verified that 5* and T* are open in X and that 
f~lf(S*) = 5*, f-'fiT*) = T*. It follows tha t / (5* ) and / ( r * ) are disjoint 
open sets in Z containing c and A, respectively. 

Hence Z is regular. 

THEOREM 4.3. With the continuum hypothesis, if X is paracompact and accX 
contains a dense first countable sub space, then every regular quotient of X is 
paracompact if and only if accX is Lindelôf. 

Proof. Sufficiency follows from Theorem 4.1. 
Conversely, suppose that X is paracompact and that accX contains a 

dense first countable subspace, but that accX is not Lindelôf. Then by 
Lemma 3.1, accX has an uncountable locally finite open cover °tt with no 
countable subcollection whose union is dense. 
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Pick U\ 6 °tt and, since accX has a dense first countable subspace, find a 
converging sequence X\n —-> Xi of dist inct points contained in Ui. Suppose 
t ha t for each a < fi (<W\) we have chosen Ua £ % and a converging 
sequence xan —•> xa of distinct points contained in J7« — [Uy<aUy]~. Then 

U~ï/« ^ accX 

and hence we may pick Up G ^ so tha t £/# — [U«</3£4]_ is a non-empty 
open set and find x$n —» x^ in t/p — [Ua</3^7a]~. 

Let Aa = {xan|w = 1, 2, . . .} U {xa} and let A = U a ^ i ^ L . Then A is 
closed in accX, and hence in X, by local finiteness of °U. 

On the cont inuum hypothesis, there is a one-one map h of some subset of 
{xa\a < Wi} onto {xP G ^\P G ^ } . We assume, without loss, t h a t the domain 
of h is all of {xa\a < Wi}. Now Â can be extended to all of A by mapping the 
sequence (xan) which converges to xa one-one onto the sequence P which 
converges in ^ to xP. T h e resulting map g will not be one-one, although it is 
one-one when restricted to each Aa, bu t it does exhibit ^ as a quot ient of A. 

Now define an equivalence relation R on X by xRy if x = y or g(x) = g(y), 
let t ing the resulting quotient space be denoted Z. If f:X —» Z is the quot ient 
map, then clearly f(A) is a closed subspace of Z which is homeomorphic 
to ^ . Since ^ is not paracompact , neither is Z. But by Lemma 4.2, with A 
here taking the place of D there, Z is regular. 

This completes the proof of 4.3. 

COROLLARY 4.4. If X is a metrizable space, then every regular quotient of X 
is paracompact if and only if accX is separable. 
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