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Uniform Distribution of Fractional Parts
Related to Pseudoprimes

William D. Banks, Moubariz Z. Garaev, Florian Luca, and
Igor E. Shparlinski

Abstract. We estimate exponential sums with the Fermat-like quotients

fg (n) =
gn−1 − 1

n
and hg(n) =

gn−1 − 1

P(n)
,

where g and n are positive integers, n is composite, and P(n) is the largest prime factor of n. Clearly,

both fg (n) and hg(n) are integers if n is a Fermat pseudoprime to base g, and if n is a Carmichael

number, this is true for all g coprime to n. Nevertheless, our bounds imply that the fractional parts

{ fg(n)} and {hg(n)} are uniformly distributed, on average over g for fg(n), and individually for hg(n).

We also obtain similar results with the functions efg (n) = g fg (n) and ehg(n) = ghg (n).

1 Introduction

Throughout the paper, we use P(n) to denote the largest prime divisor of the integer
n ≥ 2, and we put P(1) = 1.

For every integer g ≥ 1, let fg( · ) and hg( · ) be the arithmetic functions defined
by

fg(n) =
gn−1 − 1

n
and hg(n) =

gn−1 − 1

P(n)
(n ≥ 1).

Clearly, fg(n) and hg(n) are integers if n is a prime number and n ∤ g. On the other

hand, if n takes only composite values, the problem of understanding the distribution
of the fractional parts of fg(n) and hg(n) is rather involved. To approach this problem,

we consider exponential sums of the form:

Sg(a; N) =

N∑

n=1
n composite

e(ahg(n)),

W (a; N) =

N∑

n=1
n composite

∣∣∣∣∣

n∑

g=1
gcd(g,n)=1

e(a fg(n))

∣∣∣∣∣ ,
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where the additive character e(·) is defined (as usual) by e(x) = exp(2πix) for all
x ∈ R, and a 6= 0 is an integer.

We also consider the arithmetic functions

f̃g(n) =
gn − g

n
and h̃g(n) =

gn − g

P(n)
(n ≥ 1)

and the corresponding exponential sums

S̃g(a; N) =

N∑

n=1
n composite

e(ah̃g(n)),

W̃ (a; N) =

N∑

n=1
n composite

∣∣∣∣∣

n∑

g=1
gcd(g,n)=1

e(a f̃g(n))

∣∣∣∣∣ .

Clearly, S̃g(a; N) = Sg(ag; N); the sums W̃ (a; N), however, require an indepen-

dent treatment.

Our results imply that the fractional parts { fg(n)}, { f̃g(n)}, {hg(n)}, and {h̃g(n)}
are uniformly distributed over the interval [0, 1), on average over g ∈ (Z/nZ)∗ for

fg(n) and f̃g(n), and individually (that is, with g > 1 fixed) for hg(n) and h̃g(n). Of

course, one can either include or exclude the prime numbers in the preceding state-

ment since their contribution cannot change the property of uniform distribution.
We remark that if n is a Fermat pseudoprime to base g, then both fg(n) and hg(n)

are integers. If n is a Carmichael number, then it is a Fermat pseudoprime to base g

for every g coprime to n, hence fg(n) and hg(n) are integers for all such g. Since it is

expected that there are

C(N) = N1−(1+o(1)) log log log N/ log log N

Carmichael numbers n ≤ N (see [1,16]), their contribution to the sums Sg(a; N) and

W (a; N) is substantial; therefore, one cannot expect to obtain very strong bounds
for those sums. In particular, it is unlikely that one can obtain upper bounds for

Sg(a; N) and W (a; N) of the form O(Nθ) and O(N1+θ), respectively, for any fixed

constant θ < 1. Indeed, using the Erdős-Turán inequality, which relates exponen-
tial sums to uniformity of distribution, we show that the lower bound Sg(a; N) ≫
N log log N/ log N holds for at least one integer a in the range 1 ≤ a ≤ log N; thus,

our upper bound for Sg(a; N) (cf. Theorem 3.1) is rather tight. The same comments

certainly apply to S̃g(a; N) and W̃ (a; N) as well.

Problems of a similar flavor concerning the integrality and the distribution of
fractional parts of ratios formed with various number theoretic functions have been

treated previously in [2, 4, 29, 31, 37, 38]. In part, our motivation also stems from the
results of [17, 18] on bounds for exponential sums with Fermat quotients.

It is perhaps surprising that, in order to establish our upper bounds for Sg(a; N)

and W (a; N), we need to apply tools from very different and seemingly unrelated
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areas of number theory, including several recent results. For instance, we not only
apply an asymptotic formula for the number of solutions to a symmetric equation

with an exponential function, which dates historically back to 1962 (see the corollary
to [35, Lemma 1, Chapter 15]), but we also use very recent results on “individual”

bounds of short exponential sums from [5, 6], together with bounds “on average”

from [13] (see also [15]). In the course of our proofs, we also establish several new
auxiliary results which may be of independent interest; see, for example, Lemmas 2.3

and 2.10.

In what follows, we use the Landau symbols O and o, as well as the Vinogradov
symbols ≪ and ≫, with their usual meanings. Any implied constants may depend,

where obvious, on the parameter g but are absolute otherwise, as for example Sec-
tions 4 and 5. We recall that the notations A ≪ B, B ≫ A, and A = O(B) are

all equivalent, and A = o(B) means that A/B tends to zero. Throughout, we use

the letters p and q exclusively to denote prime numbers, while m and n always de-
note positive integers. For a positive real number x we write log x for the maximum

between the natural logarithm of x and 1.

2 Preliminary Results

2.1 Arithmetic Estimates

Recall that a positive integer n is said to be y-smooth if P(n) ≤ y. For real numbers

x ≥ y ≥ 2, let
Ψ(x, y) = #{n ≤ x : P(n) ≤ y}.

Lemma 2.1 Let u = (log x)/(log y), where x ≥ y ≥ 2. If u → ∞ as x → ∞ and

u ≤ y1/2, then the following estimate holds: Ψ(x, y) = xu−u+o(u).

For a proof of the Lemma 2.1, we refer the reader to [39, Section III.5.4]; we

remark that the condition u ≤ y1/2 can be relaxed slightly, but the statement of
Lemma 2.1 is sufficient for our purposes.

For every positive integer n, let ρ(n) denote the largest squarefree divisor r of n for

which gcd(r, n/r) = 1; then s = n/ρ(n) is the largest powerful divisor of n (recall that
a positive integer m is said to be powerful if p2 | m for every prime p that divides m).

We need the following statement, which is [8, Lemma 7].

Lemma 2.2 Uniformly for x ≥ y ≥ 1, the bound ρ(n) > n/y holds for all n ≤ x

with at most O(x/y1/2) exceptions.

For every positive integer n, let

γ(n) =

∏

p | n

gcd(n − 1, p − 1).

We note that this function also gives the cardinality of the set of the so-called false

witnesses modulo n, that is, of the set

{u ∈ Z/nZ : un−1 ≡ 1 (mod n)},
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and has been studied in the literature (see [11] and the references therein). The aver-
age value, the normal order, and the number of prime factors of γ(n) are estimated

in [11]; however, these bounds do not seem to be enough for our purposes.
Our next result shows for almost all composite integers n, the value of γ(n) is very

small. Although several bounds on the number of composite integers n ≤ x such that

γ(n) > z can be extracted from [11], our estimate appears to be new. More precisely,
[11, Theorem 2.2] implies such a bound for large values of z, and [11, Theorem 6.5]

treats the case of small values of z. In our applications, however, we need a bound

in the medium range. For our application, it is convenient to formulate this result in
the following two-parametric form.

Lemma 2.3 Uniformly for x ≥ y ≥ 1 and log log log x = o(log k), the number of

composite integers n ≤ x such that γ(n) > yk is at most

O
( x log log x

y
+

x

exp((1 + o(1))k log k)

)
.

Proof Let ω(m) be the number of distinct prime factors of the m, and put E1 =

{n ≤ x : ω(n) ≥ k}. If n ∈ E1, there exists a divisor m | n with ω(m) = k. For

fixed m, there are at most x/m integers n ∈ E1 such that m | n. Therefore, by unique
factorization and the Stirling formula for k!, we see that

#E1 ≤ x
∑

m≤x
ω(m)=k

1

m
≤ x

k!

( ∑

pα≤x

1

pα

) k

=
x

k!
(log log x + O(1))k

≤ x
( e log log x + O(1)

k

) k

= x exp
(
−(1 + o(1))k log k)

)
,

(2.1)

where the last estimate above uses the fact that log log log x = o(log k).

Let ϕ( · ) denote the Euler function. We recall the estimate

(2.2)
∑

p≤t
p≡1 (mod d)

1

p
≪ log log t

ϕ(d)
,

which holds uniformly for 1 ≤ d ≤ t (see [3, Lemma 1] or [9, Bound (3.1)]). We
also note that the bound

(2.3)
∑

d>t

1

dϕ(d)
≪ 1

t

follows by partial summation from the asymptotic formula of Landau [27]:

∑

d≤t

1

ϕ(d)
=

ζ(2)ζ(3)

ζ(6)

(
log t + γ −

∑

p

log p

p2 − p + 1

)
+ O

(
log t

t

)
,

where ζ(s) is the Riemann zeta-function, and γ is the Euler-Mascheroni constant (a

more recent reference is [32]).
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Now let E2 be the set of composite n ≤ x for which there exists p | n with d =

gcd(n − 1, p − 1) > y. Write n = pm. Since n ≡ p ≡ 1 (mod d), it follows that

m ≡ 1 (mod d); moreover, m > 1 since n is not prime. For each p and d, we have
1 < m ≤ x/p and also m ≡ 1 (mod d), hence the number of such m is at most

x/pd. Summing first over primes p ≡ 1 (mod d), then over all d > y, we derive

from (2.2) and (2.3) that

(2.4) #E2 ≤
∑

d>y

∑

p≤x
p≡1 (mod d)

x

pd
≪ x

∑

d>y

log log x

dϕ(d)
≪ x log log x

y
.

The result now follows from the estimates (2.1) and (2.4) by observing that

γ(n) =

∏

p | n

gcd(n − 1, p − 1) ≤ yω(n) ≤ yk

if n ≤ x is composite and not in the set E1 ∪ E2.

By optimizing the choice of y and k for each given z, one can reformulate

Lemma 2.3 as the following more concise (albeit weaker) statement.

Corollary 2.4 Uniformly for x ≥ z ≥ 1 and log log log x = o(log log z), the number

of composite integers n ≤ x such that γ(n) > z does not exceed

x exp
(
−
√

(0.5 + o(1)) log z log log z
)

.

Proof Choose k as the largest integer with k2 log k ≤ log z, and put y = z1/k. Then,

using our hypotheses on x and z, we see that the conditions of Lemma 2.3 are met,

and the corollary follows immediately.

For a fixed base g ≥ 2 and any prime p ∤ g, let tp denote the multiplicative order of
g modulo p. As usual, we use τ(n) to denote the number of positive integer divisors

of n.

Let Q be the set of primes p satisfying the conditions

(2.5) τ(p − 1) ≤ (log p)2 and tp > p1/2(log p)−10,

and let

(2.6) R = {p prime : p 6∈ Q}.

Lemma 2.5 Uniformly for x ≥ 2, the following bound holds:

#{p ≤ x : p ∈ R} ≪ x

(log x)2
.
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Proof Since all primes with tp ≤ x1/2(log x)−10 are divisors of

U =

∏

t≤x1/2(log x)−10

(gt − 1) = exp
(
O(x(log x)−20)

)
,

there are no more than logU = O(x(log x)−20) such primes. (See also [10, 12, 19]

for several more results in this direction which apply to even larger values of tp but

which unfortunately give very large exceptional sets that are of no use for us.) The
result now follows immediately from the Titchmarsh bound:

∑
p≤x τ(p − 1) ≪ x,

(see [36, Theorem 7.1, Chapter 5]).

Finally, we need the following estimate:

Lemma 2.6 There exists a positive constant c such that for x ≥ y ≥ 2 and ∆ > 0,

the following bound holds:

#{n ≤ x : y < P(n) ≤ y(1 + ∆)} ≪ x log(1 + ∆)

log y
+ x exp

(
−c(log y)3/5

)
.

Proof We apply the following precise version of the Mertens formula, which is given
in [40]:

(2.7)
∑

p≤t

1

p
= log log t + a + O

(
exp
(
−c(log t)3/5

))

for some constants a and c > 0. Applying (2.7) with t = y and t = y(1 + ∆), and

observing that for each prime p in the interval
(

y, y(1 + ∆)
]

, the number of integers
n ≤ x with P(n) = p does not exceed x/p, we obtain that

1

x
· #{n ≤ x : y < P(m) ≤ y(1 + ∆)} ≤

∑

y<p≤y(1+∆)

1

p

= log
(

log y + log(1 + ∆)
)
− log log y + O

(
exp
(
−c(log y)3/5

))

= log
(

1 +
log(1 + ∆)

log y

)
+ O
(

exp
(
−c(log y)3/5

))
,

and the result follows.

2.2 Estimates for Exponential Sums

We begin with some well known and elementary results.

The following result, based on the Chinese Remainder Theorem, allows one to re-
duce exponential sums with polynomials and with arbitrary denominators to expo-

nential sums with prime power denominators; this has been discussed, for example,

in [41, Problem 12.d, Chapter 3].
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Lemma 2.7 Let n = n1n2, where n1, n2 ≥ 2 are coprime, and suppose that the

integers r1, r2 satisfy:

r1n2 ≡ 1 (mod n1) and r2n1 ≡ 1 (mod n2).

Then, for any polynomial F(X) ∈ Z[X] with integer coefficients, we have

n−1∑

g=0
gcd(g,n)=1

e
(
F(g)/n

)
=

n1−1∑

g1=0
gcd(g1,n1)=1

e
(
r1F(g1)/n1

) n2−1∑

g2=0
gcd(g2,n2)=1

e
(
r2F(g2)/n2

)
.

Lemma 2.8 For integers a, n, k with n, k ≥ 1, we have

∣∣∣
n−1∑

g=0
gcd(g,n)=1

e
(
agk/n

)∣∣∣ ≤ nd1/2γ(n)ρ(n)−1/2,

where d = gcd(a, n).

Proof The proof is similar to that of [8, Lemma 4]. We recall the Weil bound, which

asserts that for every integer b and prime p ∤ b, the inequality

∣∣∣
p−1∑

g=1

e
(
bgk/p

)∣∣∣ ≤ gcd(k, p − 1)p1/2

holds (see, for example, [28, Theorem 5.41]).

Let ρ(n) = p1 · · · pν be the factorization of ρ(n) as a product of (distinct) primes,
and put s = n/ρ(n). Then, by Lemma 2.7, we have

n−1∑

g=0
gcd(g,n)=1

e
(
agk/n

)
=

ν∏

j=1

( p j−1∑

g j=1

ep j

(
ab jg

k
j /p j

))( s−1∑

h=0
gcd(h,s)=1

e
(
achk/s

))

for some integers b1, . . . , bν and c such that gcd(b j, p j) = 1 for j = 1, . . . , ν and

gcd(c, s) = 1. For each j such that p j | a, the sum over g j is equal to p j − 1. We

estimate the sum over h trivially as s. Therefore,

∣∣∣
n−1∑

g=0
gcd(g,n)=1

e
(
agk/n

)∣∣∣ ≤ s

ν∏

j=1
p j ∤ a

(
gcd
(
k, (p j − 1)

)
p

1/2
j

) ν∏

j=1
p j | a

p j ,

and the result follows.

The next result appears in [5]; it can also be deduced from [6, Theorem 5] in an

even more explicit form.
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Lemma 2.9 For every δ > 0, there exists η > 0, such that if pδ ≤ M ≤ tp, then for

every integer a not divisible by p, the following bound holds:

∣∣∣
∑

m≤M

e(agm/p)
∣∣∣ ≤ M p−η .

The following bound on short exponential sums with an exponential function

appears to be new and may be of independent interest. To prove this bound, we use
the well known method of estimating double exponential sums via the number to

solutions of certain symmetric systems of equations, which can be found in [14, 20–

22,24–26] and in many other places (for example, [23]). In fact, although the result is
conveniently summarized in [23, Lemma 4], no proof is given there. Here, we supply

a proof for the sake of completeness.

Lemma 2.10 For a real number V ≥ 2 and positive integers M, k, ℓ satisfying the

inequalities

2kk! π(V ) ≤ Mk+1 and 2ℓℓ! π(V ) ≤ M(ℓ+1)/2,

the following bound holds:

∑

p≤V
p ∤ ag

max
L≤M

∣∣∣
L∑

m=1

e(agm/p)
∣∣∣ ≪ π(V )M

(
V 1/2M3/4

π(V )

)1/kℓ

,

where the implied constant depends only on g.

Proof For each prime p ≤ V such that p ∤ ag, let Lp denote the smallest positive

integer such that

max
L≤M

∣∣∣
L∑

m=1

e(agm/p)
∣∣∣ =

∣∣∣
Lp∑

m=1

e(agm/p)
∣∣∣ .

Put H =
⌊

M1/2
⌋

; then,

(2.8)
∑

p≤V
p ∤ ag

∣∣∣
Lp∑

m=1

e(agm/p)
∣∣∣ =

W

H
+ O(π(V )H),

where

W =

∑

p≤V
p ∤ ag

H∑

h=1

∣∣∣
Lp∑

m=1

e(agm+h/p)
∣∣∣ .

https://doi.org/10.4153/CJM-2009-025-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-025-2


Uniform Distribution of Fractional Parts Related to Pseudoprimes 489

By the Hölder inequality, it follows that

W k ≤ π(V )k−1Hk−1
∑

p≤V
p ∤ ag

H∑

h=1

∣∣∣
Lp∑

m=1

e(agm+h/p)
∣∣∣

k

= π(V )k−1Hk−1
∑

p≤V
p ∤ ag

H∑

h=1

ϑp,h

( Lp∑

m=1

e(agm+h/p)
) k

for some complex numbers ϑp,h of absolute value 1.

Now, let Rp,s(K, λ) denote the number of solutions of the congruence

s∑

i=1

gri ≡ λ (mod p) (1 ≤ r1, . . . , rs ≤ K).

Then
( Lp∑

m=1

e(agm+h/p)
) k

=

p−1∑

λ=0

Rp,k(Lp, λ) e(aλgh/p).

Therefore, after changing the order of summation, we derive that

W k ≤ π(V )k−1Hk−1
∑

p≤V
p ∤ ag

p−1∑

λ=0

Rp,k(Lp, λ)

H∑

h=1

ϑp,h e(aλgh/p).

Writing

Rp,k(Lp, λ) =
(
Rp,k(Lp, λ)2

)1/2ℓ
Rp,k(Lp, λ)(ℓ−1)/ℓ

and using the Hölder inequality for a sum of products of three terms, we have

W 2kℓ ≤ π(V )2ℓ(k−1)H2ℓ(k−1)
∑

p≤V
p ∤ ag

p−1∑

λ=0

Rp,k(Lp, λ)2

×
(
∑

p≤V
p ∤ ag

p−1∑

λ=0

Rp,k(Lp, λ)

) 2ℓ−2

×
∑

p≤V
p ∤ ag

p−1∑

λ=0

∣∣∣
H∑

h=1

ϑp,h e(aλgh/p)
∣∣∣

2ℓ

.

Clearly,
p−1∑

λ=0

Rp,k(Lp, λ) = Lk
p ≤ Mk,
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and
p−1∑

λ=0

Rp,k(Lp, λ)2
= Tp,k(Lp),

where Tp,s(K) denotes the number of solutions of the congruence

2s∑

i=1

(−1)igri ≡ 0 (mod p) (1 ≤ r1, . . . , rs ≤ K).

Thus,

W 2kℓ ≤ π(V )2ℓ(k−1)+2ℓ−2H2ℓ(k−1)M2k(ℓ−1)
∑

p≤V
p ∤ ag

Tp,k(Lp)

×
∑

p≤V
p ∤ ag

p−1∑

λ=0

∣∣∣
H∑

h=1

ϑp,h e(aλgh/p)
∣∣∣

2ℓ

.

Furthermore,

p−1∑

λ=0

∣∣∣
H∑

h=1

ϑp,h e(aλgh/p)
∣∣∣

2ℓ

=

H∑

h1 ,...,h2ℓ=1

2ℓ∏

i=1

ϑp,hi

p−1∑

λ=0

e
( λ

p

2ℓ∑

i=1

(−1)ighi

)

≤
H∑

h1 ,...,h2ℓ=1

∣∣∣
p−1∑

λ=0

e
( λ

p

2ℓ∑

i=1

(−1)ighi

)∣∣∣ = p Tp,ℓ(H).

Hence,

W 2kℓ ≤ π(V )2kℓ−2H2ℓ(k−1)M2k(ℓ−1)
∑

p≤V
p ∤ ag

Tp,k(Lp)
∑

p≤V
p ∤ ag

p Tp,ℓ(H).

We remark that ∑

p≤V
p ∤ ag

Tp,k(Lp) ≤
∑

p≤V

Tp,k(M)

is equal to the number of primes p ≤ V which divide all possible expressions of the

form
2k∑

i=1

(−1)igmi (1 ≤ m1, . . . , m2k ≤ M).

Clearly, any nonzero sum above has at most log(2kgM)/ log 2 prime divisors. Also,

by the corollary to [35, Lemma 1, Chapter 15], there are at most 2kk!Mk such sums

which vanish (see also [7] for a survey of recent results in this direction). For these
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ones, we estimate the number of prime divisors trivially as π(V ). Thus, using the
inequality 2kk! π(V ) ≤ Mk+1, we deduce that

∑

p≤V

Tp,k(M) ≪ M2k log(2kgM) + 2kk!Mkπ(V )

≪ M2k log k + M2k+1 + 2kk!Mkπ(V ) ≪ M2k+1.

Similarly, ∑

p≤V
p ∤ ag

pTp,ℓ(H) ≤ V
∑

p≤V

Tp,ℓ(H) ≪ V H2ℓ+1.

Consequently,

W 2kℓ ≪ π(V )2kℓ−2V H2kℓ+1M2kℓ+1.

Substituting this estimate into (2.8), we obtain that

∑

p≤V
p ∤ ag

∣∣∣
Lp∑

m=1

e(agm/p)
∣∣∣ ≪ π(V )1−1/kℓV 1/2kℓM1+3/4kℓ + π(V )M1/2.

It now remains only to observe that, since 2kk! π(V ) ≤ Mk+1, the last term never

dominates.

It is important to remark that the implied constant in the bound of Lemma 2.10

depends on g but not on the parameters k, ℓ (nor on a, M,V ). In particular, in our
applications we can choose k and ℓ to be growing functions of M and V . Of course,

we use Lemma 2.10 only to deal with the case that M is suitably small with respect to
V , and in the remaining range, we apply Lemma 2.9.

We also need the following bound, which is a special case of the more general

results of [13].

Lemma 2.11 For any positive real number U , any positive integer M, and any subset

M ⊆ {1, . . . , M} of cardinality #M = T, we have the uniform bound:

∑

p∈Q

U≤p≤2U

max
(a,p)=1

∣∣∣
∑

m∈M

e
(
agm/p

)∣∣∣
2

≪ U T(MU−0.04 + U )(logU )2,

where Q is the set defined by (2.5).

Proof Indeed, if we enumerate the elements of M as s1 < s2 < . . . < sT and ap-

ply [13, Theorem 1] with

X = 2U , ∆ = U 1/2(log U )−10, L = U 2/77

and take into account that T ≤ sT ≤ M, then we obtain

∑

p∈L

1

τ(p − 1)
max

(a,p)=1

∣∣∣
∑

m∈M

e
(
agm/p

)∣∣∣
2

≪ U T(MU−1/22(logU )5 + U ),
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where L is the set of prime numbers p ≤ 2U with tp > U 1/2(log U )−10. Since

{p : p ∈ Q, U ≤ p ≤ 2U} ⊆ L

and τ(p − 1) ≪ (log U )2 for any p ∈ Q, U ≤ p ≤ 2U , the result follows.

3 Single Exponential Sums with hg(n)

Theorem 3.1 Fix g > 1 and ε > 0. Then for every integer a such that log |a| ≤
exp
(
(log N)1−ε

)
, the inequality

Sg(a; N) ≪ N√
log N

holds, where the implied constant depends only on g and ε.

Proof We may assume that ε < 1/2. Put Q = exp
(
2(log N)1−ε

)
, and let E1 de-

note the set of Q-smooth integers n ≤ N. Then, applying Lemma 2.1 with u =

0.5(log N)ε, we obtain the bound

#E1 = Ψ(N, Q) = Nu−u+o(u)

= N exp
(
− (0.5 ε + o(1)) (log N)ε log log N

)
.

(3.1)

Next, let E2 be the set of the integers n ≤ N, n 6∈ E1, such that P(n) | ag. We have

(3.2) #E2 ≤
∑

p>Q
p | ag

N

p
≪ N

Q

∑

p | ag

1 ≪ N

Q
log |a| ≤ N exp

(
−(log N)1−ε

)
.

Let E3 be the set of the positive integers n ≤ N not in E1 such that P(n) ∈ R where

the set R is defined by (2.6). We have

(3.3) #E3 ≤
∑

Q<p≤N
p∈R

∑

n≤N
P(n)=p

1 ≤ N
∑

Q<p≤N
p∈R

1

p
.

By Lemma 2.5 and partial summation, we obtain that

#E3 ≪ N

log Q
≤ N√

log N
.

Let us now denote

X = N1/2(log N)−5, Y = N3/4 and Z = N exp
(
−
√

log N
)

.
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Let E4 be the set of the positive integers n ≤ N such that either X < P(n) ≤ N1/2,
or Z < P(n) ≤ N. By Lemma 2.6, it follows that

(3.4) E4 ≪
N√
log N

.

Let N be the set of integers n ≤ N such that n 6∈ E1 ∪ E2 ∪ E3 ∪ E4. Then, from

the estimates (3.1), (3.2), (3.3), and (3.4), we conclude that

Sg(a; N) =

N∑

n=1

e(ahg(n)) + O

(
N

log N

)
=

∑

n∈N

e(ahg(n)) + O

(
N√
log N

)
.

Note that the error term in the middle expression comes from prime values of n ≤ N,

which are not included in the sum Sg(a; N).

Every n ∈ N has a unique representation of the form n = pm, with a prime p ≥ Q

and an integer m ≤ N/p such that P(m) ≤ p. Also, remarking that for p > N1/2 the
condition P(m) ≤ p is automatically satisfied, we see that

∑

n∈N

e(ahg(n)) = W1 + W2 + W3,

where, since g pm ≡ gm (mod p), we have

|W1| =

∣∣∣
∑

Q<p≤X
p∈Q

∑

m≤N/p
P(m)≤p

e(ahg(pm))
∣∣∣ ≤

∑

Q<p≤X
p∈Q

∣∣∣
∑

m≤N/p
P(m)≤p

e(agm−1/p)
∣∣∣ ,

|W2| =

∣∣∣
∑

N1/2<p≤Y
p∈Q

∑

m≤N/p

e(ahg(pm))
∣∣∣ ≤

∑

N1/2<p≤Y
p∈Q

∣∣∣
∑

m≤N/p

e(agm−1/p)
∣∣∣ ,

|W3| =

∣∣∣
∑

Y<p≤Z
p∈Q

∑

m≤N/p

e(ahg(pm))
∣∣∣ ≤

∑

Y<p≤Z
p∈Q

∣∣∣
∑

m≤N/p

e(agm−1/p)
∣∣∣ .

To estimate |W1|, put ∆ = 1/ log N and consider the sequence of real numbers:

U j = min{Q(1 + ∆) j, X} (0 ≤ j ≤ J),

where

(3.5) J =

⌈
log(X/Q)

log(1 + ∆)

⌉
≪ ∆

−1 log N = (log N)2.

We denote the set of primes p ∈ Q in the half-open interval (U j,U j+1] by U j , j =

0, . . . , J − 1.
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From the above, we infer that

(3.6) |W1| ≤
J−1∑

j=0

|σ j |,

where
σ j =

∑

p∈U j

∑

m≤N/p
P(m)≤p

e(agm−1/p) (0 ≤ j ≤ J − 1).

We have

σ j =

∑

p∈U j

( ∑

m≤N/U j

P(m)≤p

e(agm−1/p) + O
(
|N/p − N/U j|

))

=

∑

p∈U j

( ∑

m≤N/U j

P(m)≤p

e(agm−1/p) + O(N∆/p)
)

.

Applying Lemma 2.6 with x = N/U j and y = U j−1 ≥ Q, together with the fact that

log(1 + ∆) ≤ ∆ and

2 log(1 + ∆) ≥ ∆ = (log N)−1 ≥ (log Q)−2 ≥ (log U j)
−2,

(which means that only the first term on the right hand side of the inequality of

Lemma 2.6 matters) we obtain that

σ j =

∑

p∈U j

( ∑

m≤N/U j

P(m)≤U j

e(agm−1/p) + O
(

N∆/p + N∆/(U j log U j)
))

= σ̃ j + O
(

N∆

∑

p∈U j

1/p
)

,

where
σ̃ j =

∑

p∈U j

∑

m≤N/U j

P(m)≤U j

e(agm−1/p) (0 ≤ j ≤ J − 1).

Thus, from (3.6), we have

(3.7) |W1| ≤
J−1∑

j=0

|σ̃ j | + O
(

N∆

∑

p≤N

1/p
)

=

J−1∑

j=0

|σ̃ j | + O
( N log log N

log N

)
.

Using the trivial bound #U j ≤ ∆U j (in fact, the stronger bound

#U j ≪ ∆U j/ logU j ≤ ∆U j/ log Q
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also holds (see [34], for example), but this does not lead to an improvement in the
final bound for Sg(a; N)) and the Cauchy inequality, we derive that

σ̃2
j ≤ ∆U j

∑

p∈U j

∣∣∣
∑

m≤N/U j

P(m)≤U j

e(agm−1/p)
∣∣∣

2

.

Applying Lemma 2.11 and estimating the number of m ≤ N/U j such that P(m) ≤
U j trivially as N/U j , we see that

|σ̃ j |2 ≪ ∆NU j(NU−1.04
j + U j)(logU j)

2

= ∆N2U−0.04
j + ∆NU 2

j (logU j)
2

≤ ∆N2Q−0.04 + ∆NX2(log N)2 ≤ 2N2(log N)−9.

Therefore, from (3.5) and (3.7) it follows that

|W1| ≪
N log log N

log N
.

To estimate W2, we simply apply Lemma 2.9 with δ = 1/6 to each sum over m,

getting ∑

m≤N/p

e(agm−1/p) ≪ N

p
p−η

with some absolute constant η > 0. Here, recall that tp ≥ p1/2(log p)−10 for every

prime p ∈ Q; hence, the above bound follows from Lemma 2.9 regardless of whether
tp ≥ N/p or not. Consequently,

|W2| ≪
∑

N1/2<p≤N

N

p
p−η ≤ N1−η/2

∑

N1/2<p≤N

1

p
≪ N1−η/2 log log N.

To estimate W3, consider the sequence of real numbers:

Vi = max{Y, e−iZ} (0 ≤ i ≤ I),

where I = ⌈log(Z/Y )⌉. We denote the set of primes p ∈ Q in the half-open interval
(Vi+1,Vi] by Vi , i = 0, . . . , I − 1. Then

(3.8) |W3| ≤
I−1∑

i=0

|Σi |,

where

Σi =

∑

p∈Vi

∑

m≤N/p

e(agm−1/p).
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For each i = 0, . . . , I − 1, we apply Lemma 2.10 with the parameter choices

k = ℓ =

⌈
4 log N

i +
√

log N

⌉
, V = Vi+1 and M = ⌈N/Vi⌉ .

In particular,

M ≥ exp
(

i − 1 +
√

log N
)

,

and also
N

log N
≪ π(V )M ≪ N

log N
.

Since, for sufficiently large N, the inequality

M(ℓ+1)/2

2ℓℓ!
≥ Mk/2

2kk!
≥
(M1/2

2k

) k

≥ Mk/3 ≥ e(i+
√

log N )k/4 ≥ N

holds, one easily verifies that the conditions of Lemma 2.10 are satisfied if N is large

enough. Since V > N3/4 and M < N1/4, we have

M3/4V−1/2 log V ≪ N−3/16 log N ≪ N−1/6.

Thus, an application of Lemma 2.10 yields the bound

|Σi | ≪
N

log N

(
N−1/6

) 1/kℓ
=

N

log N
exp
(
− 1

150

(
i +
√

log N
) 2

/ log N
)

≤ N

log N
exp
(
− i2

150 log N

)
.

From (3.8), we now derive that

|W3| ≤
N

log N

∞∑

i=0

e−i2/150 log N ≪ N

log N

∫ ∞

0

e−t2/150 log Ndt ≪ N

(log N)1/2
,

and the proof is complete.

Next, we obtain a lower bound which shows that the upper bound of Theorem 3.1
is quite tight.

Theorem 3.2 Let g > 1 be a fixed integer base. Then the inequality

max
1≤a≤log N

|Sg(a; N)| ≫ N log log N

log N

holds, where the implied constant depends only on g.
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Proof Let T be the set of positive integers n ≤ N which can be expressed in the form
n = mp, where the prime p and integer m satisfy the inequalities

m ≤ log N

6 log g
, N2/3 < p ≤ N/m.

Clearly, for each m there are (1 + o(1))N/(m log N) primes p such that n = mp lies

in T, and the pair (m, p) is uniquely determined by n. Therefore,

#T ≫
∑

m≤(log N)/(6 log g)

N

m log N
≫ N log log N

log N
.

Next, observe that for every n ∈ T,

{hg(n)} =

{ gmp−1 − 1

p

}
=

{ gm−1 − 1

p

}
<

N1/6

N2/3
= N−1/2.

Thus, the numbers {hg(n)} with n ∈ T all lie in the interval [0, N−1/2).
On the other hand, by [33, Theorem 1, Chapter 1] for the number of points A(γ)

in an interval [0, γ) ⊆ [0, 1), we have

max
0≤γ≤1

|A(γ) − γN| ≪ N

H
+

H∑

a=1

( 1

H
+ min

{
γ,

1

a

})∣∣∣Sg(a, N)
∣∣∣

for any integer H ≥ 1. Therefore, applying this inequality with γ = N−1/2, we derive

N log log N

log N
≪ #T ≪ N

H
+
( 1

H
+

1

N1/2

) H∑

a=1

∣∣∣Sg(a, N)
∣∣∣ .

Hence, by taking H = ⌊c log N/(log log N)⌋, with some large but fixed positive num-
ber c > 0 (depending only on g) and assuming that N is large enough, we obtain

N log log N

log N
≪ 1

H

H∑

a=1

∣∣∣Sg(a, N)
∣∣∣ ,

whence the stated result follows even for a smaller range of a.

4 Double Exponential Sums with fg(n)

Theorem 4.1 For any integer a such that log |a| = o
(√

log N log log N
)

, the fol-

lowing inequality holds:

W (a; N) ≤ N2 exp
(
−(0.5 + o(1))

√
log N log log N

)
.
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Proof Let N be sufficiently large, and suppose that k (a positive integer parameter
that depends only on N) is such that log log log N = o(log k). Put y = exp(k log k),

and let E be the set of composite integers n ≤ N such that either ρ(n) ≤ n/y2 or
γ(n) > yk. By Lemmas 2.2 and 2.3, it follows that

W (a; N) ≤
∑

n≤N, n6∈E

n composite

∣∣∣
n∑

g=1
gcd(g,n)=1

e(a fg(n))
∣∣∣ + O

( N2

exp((1 + o(1))k log k)

)
.

If n 6∈ E, then ρ(n) > n/y2 and γ(n) ≤ yk; hence, by Lemma 2.8, we see that

W (a; N) ≪ |a|yk+1N3/2 +
N2

exp
(
(1 + o(1))k log k

)

= |a|N3/2 exp(k(k + 1) log k) +
N2

exp((1 + o(1))k log k)
.

Choosing k such that k(k + 2) log k ∼ 0.5 log N (to balance the two terms above), we
obtain the stated estimate.

5 Double Exponential Sums with f̃g(n)

Theorem 5.1 For any nonzero integer a with |a| < (log log log N)3 the bound

W̃ (a; N) ≪ N2 log log log log N

log log log N

holds as N → ∞.

Proof Let λ( · ) denote the Carmichael function. We recall that if n =
∏s

ν=1 pαν
ν is

the prime factorization of n, then λ(n) = lcm[λ(pα1

1 ), . . . , λ(pαs
s )], where λ(pα) =

pα−1(p−1) for a prime power except when p = 2 and α ≥ 3, in which case λ(2α) =

2α−2.
Put

y = (log log log N)2 and z =
log log N

(log log log N)2
,

and let I be the interval [y, z].

The proof of [30, Lemma 2] shows that if E1 is the set of integers n ≤ N for which

there exists a prime number q ∈ I such that q ∤ λ(n), then

(5.1) #E1 ≪ N

log log N
.

Let E2 be the set of n ≤ N such that q2 | n for some prime q > y. Then

(5.2) #E2 ≤
∑

q≥y

N

q2
≪ N

y
≪ N

(log log log N)2
.
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Let E3 be the set of n ≤ N such that n is not divisible by any prime in I. By the
inclusion-exclusion principle, we have

(5.3) #E3 = N
∏

y≤q≤z

(
1 − 1

q

)
+ O(2z) ≪ N

log y

log z
+ 2z ≪ N log log log log N

log log log N
.

Finally, let N be the set of integers n ≤ N such that n 6∈ E1 ∪ E2 ∪ E3. Thus,

from (5.1), (5.2), and (5.3), we deduce that

(5.4) W̃ (a; N) = σ + O
( N2 log log log log N

log log log N

)
,

where

σ =

∑

n∈N

∣∣∣
n∑

g=1
gcd(g,n)=1

e(a f̃g(n))
∣∣∣ .

To handle this sum, write dn = gcd(n, λ(n)), and put sn = λ(n)/dn. Then

σ =

∑

n∈N

∣∣∣∣∣

n∑

g=1
gcd(g,n)=1

e(a(gn − g)/n)

∣∣∣∣∣

=

∑

n∈N

1

ϕ(n)

∣∣∣∣∣
∑

1≤h≤n
gcd(h,n)=1

n∑

g=1
gcd(g,n)=1

e(a((ghsn )n − ghsn )/n)

∣∣∣∣∣

=

∑

n∈N

1

ϕ(n)

∣∣∣∣∣

n∑

g=1
gcd(g,n)=1

∑

1≤h≤n
gcd(h,n)=1

e(a(gn − ghsn )/n)

∣∣∣∣∣ .

Using first the Cauchy inequality, and then extending the range of summation over

g, we derive that

∣∣∣∣∣

n∑

g=1
gcd(g,n)=1

∑

1≤h≤n
gcd(h,n)=1

e(a(gn − ghsn )/n)

∣∣∣∣∣

2

≤ ϕ(n)

n∑

g=1

∣∣∣∣∣
∑

1≤h≤n
gcd(h,n)=1

e(aghsn/n)

∣∣∣∣∣

2

= ϕ(n) nMa(n, sn),

where

Ma(n, s) = #{(x, y) : axs ≡ ays (mod n), x, y ∈ (Z/nZ)∗}.

Now, clearly Ma(n, s) = ϕ(n)La(n, s), where

La(n, s) = #{x : axs ≡ a (mod n), x ∈ (Z/nZ)∗}.
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Therefore,

(5.5) |σ| ≤
∑

n∈N

√
nLa(n, sn).

Since n ∈ N, there exists a prime q ∈ I such that q | dn but q2 ∤ n. Let α ≥ 1
be the largest power of q dividing λ(n). Then there exists a prime p | n such that

qα | p − 1. It is also clear that qα ∤ sn. This immediately shows that gcd(sn, p − 1) |
(p − 1)/q. Since, by the Chinese Remainder Theorem, La(n, s) is a multiplicative
function with respect to n (and since p > q > y we also have both gcd(n/p, p) = 1

and gcd(a, p) = 1), we derive that

La(n, sn) = La(n/p, sn)La(p, sn) ≤ ϕ(n/p)La(p, sn) = ϕ(n/p)L1(p, sn)

= ϕ(n/p) gcd(sn, p − 1) ≤ ϕ(n/p)(p − 1)/q = ϕ(n)/q ≤ n/y.

Now relation (5.5) immediately shows that σ ≪ N2 y−1/2, which together with (5.4)

concludes the proof.

6 Open Questions

Clearly, the range over a in Theorems 3.1, 4.1, and 5.1 can easily be extended. How-

ever, we do not see how to improve the corresponding bounds, even at the cost of
reducing the range of a. Neither can we see any approaches toward estimating the

single exponential sums

Tg(a; N) =

N∑

n=1
n composite

e(a fg(n)),

T̃g(a; N) =

N∑

n=1
n composite

e(a f̃g(n)),

and we would like to leave these as open problems.
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[10] P. Erdős and R. Murty, On the order of a (mod p). CRM Proc. Lecture Notes 19, American
Mathematical Society, Providence, RI, 1999, 87–97.
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