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Abstract
Tao (2018) showed that in order to prove the Lonely Runner Conjecture (LRC) up to 𝑛 + 1 runners it suffices to
consider positive integer velocities in the order of 𝑛𝑂 (𝑛2) . Using the zonotopal reinterpretation of the conjecture
due to the first and third authors (2017) we here drastically improve this result, showing that velocities up to(𝑛+1

2
)𝑛−1 ≤ 𝑛2𝑛 are enough.

We prove the same finite-checking result, with the same bound, for the more general shifted Lonely Runner
Conjecture (sLRC), except in this case our result depends on the solution of a question, that we dub the Lonely
Vector Problem (LVP), about sumsets of n rational vectors in dimension two. We also prove the same finite-checking
bound for a further generalization of sLRC that concerns cosimple zonotopes with n generators, a class of lattice
zonotopes that we introduce.

In the last sections we look at dimensions two and three. In dimension two we prove our generalized version of
sLRC (hence we reprove the sLRC for four runners), and in dimension three we show that to prove sLRC for five
runners it suffices to look at velocities adding up to 195.
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1. Introduction and statement of results

1.1. The Lonely Runner Conjectures

Let ‖𝑥‖ = min{𝑥 − �𝑥�, �𝑥� − 𝑥} denote the distance from a real number 𝑥 ∈ R to a nearest integer.
Dirichlet’s approximation theorem states that for every 𝑡 ∈ R and 𝑛 ∈ N, there is some 𝑣 ∈ {1, 2, . . . , 𝑛}
such that ‖𝑣𝑡‖ ≤ 1

𝑛+1 . A natural question is whether the set {1, 2, . . . , 𝑛} can be replaced by any other set
of n distinct natural numbers, such that we obtain a better bound than 1

𝑛+1 . The claim that this question
has a negative answer is the content of the following famous problem:

Conjecture A (Lonely Runner Conjecture). Let 𝑣1, . . . , 𝑣𝑛 be nonzero real numbers. Then, there is
some 𝑡 ∈ R such that ‖𝑣𝑖𝑡‖ ≥ 1

𝑛+1 for every i with 1 ≤ 𝑖 ≤ 𝑛.

This was initially formulated by Wills in ’68 [26], and then an equivalent formulation as a geometric
view-obstruction problem was given by Cusick in ’73 [13]. The name of the conjecture was given by
Goddyn [9], who reinterpreted the problem in the following fashion: Suppose that 𝑛 + 1 runners are
running indefinitely on a circular track of length 1 with constant, pairwise distinct, velocities and a
common starting point; then the conjecture that each runner becomes ‘lonely’ at some point in time,
meaning that their distance to every other runner is at least 1

𝑛+1 , is equivalent to Conjecture A, by letting
𝑣1, . . . , 𝑣𝑛 be the velocities of the other n runners relative to the one we are looking at.

For a recent and comprehensive survey on the Lonely Runner Conjecture, we refer the reader to [22].
Following this survey and other sources on the problem, we refer to Conjecture A as ‘LRC for 𝑛 + 1
runners’, since in Goddyn’s interpretation there is an extra runner, which can be assumed to have velocity
zero with no loss of generality. LRC has been proven to hold for up to 7 runners [4].

Weaker versions of LRC have also been considered, where 1
𝑛+1 is replaced by a smaller fraction; the

problem is trivially true if we use 1
2𝑛 , but it is still open if 1

𝑛+1 is replaced by 𝑐
𝑛 , for any 𝑐 > 1

2 . The best
effort in this direction is by Tao in ’18 [25], who showed that there is a time t such that

‖𝑣𝑖𝑡‖ ≥ 1
2𝑛

+ 𝑐 log 𝑛

𝑛2 (log log 𝑛)2 , for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑛,

for some explicit absolute constant 𝑐 > 0.
Usually the LRC is stated for distinct velocities; this is no loss of generality, in the sense that if

a counter-example to Conjecture A has a repeated velocity, then removing such a velocity provides a
counter-example for smaller n. Distinctness of the velocities becomes crucial in certain variants of the
conjecture, as we shall see further below. We may also assume that all velocities 𝑣𝑖 are positive integers.
This reduction appeared first in German language as a combination of the arguments in the proofs of
Wills [26, Lemma 5] and Betke & Wills [8, Lemma 1)]. Alternative proofs were given in [10] and [19].

Excitingly, a much stronger reduction than to integer velocities was achieved by Tao [25]. In order
to confirm the veracity of the LRC for up to ≤ 𝑛 runners for a fixed integer 𝑛 ∈ N, it suffices to check
finitely many velocity vectors (𝑣1, . . . , 𝑣𝑛) ∈ Z𝑛>0.
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Theorem 1.1 [25, Theorem 1.4]. There exists an absolute and explicitly computable constant 𝐶 > 0,
such that the following assertions are equivalent for every natural number 𝑛 ≥ 1:
(i) The Lonely Runner Conjecture A holds for every number 𝑚 ≤ 𝑛 of velocities.

(ii) The statement in the Lonely Runner Conjecture A holds for all velocities 𝑣1, . . . , 𝑣𝑚 ∈ Z>0 with
𝑚 ≤ 𝑛 and 𝑣𝑖 ≤ 𝑚𝐶𝑚2 , for every 1 ≤ 𝑖 ≤ 𝑚.

Our first main result is an improvement of this bound from Tao’s 𝑛𝑂 (𝑛2) to roughly 𝑛2𝑛. To state our
bound, for each subset 𝑆 ⊆ [𝑛] := {1, . . . , 𝑛} let us denote 𝑣𝑆 := gcd(𝑣𝑖 : 𝑖 ∈ 𝑆).
Theorem A. Suppose that LRC is true for n runners. Then, LRC is true for 𝑛 + 1 runners with integral
positive velocities 0, 𝑣1, . . . , 𝑣𝑛 satisfying gcd(𝑣1, . . . , 𝑣𝑛) = 1 and∑

𝑆⊆[𝑛]
𝑣𝑆 >

(
𝑛 + 1

2

)𝑛−1
.

We note that, independently of our paper, a similar result has been proved by Giri & Kravitz [16]
with a bound of the order of 𝑂 (𝑛 5

2 𝑛). The condition gcd(𝑣1, . . . , 𝑣𝑛) = 1 in Theorem A is needed for
our proof but is not relevant in practice: every minimal (with respect, e.g., to the sum of velocities)
counter-example to LRC must automatically satisfy it, because simultaneously scaling a given set of
velocities does not change the problem instance.

We are also interested in the shifted variant of the Lonely Runner Conjecture, which allows each
runner to have an individual starting point [5].
Conjecture B (Shifted Lonely Runner Conjecture). Let 𝑣1, . . . , 𝑣𝑛 be distinct nonzero real numbers.
Then, for every 𝑠1, . . . , 𝑠𝑛 ∈ R there is some 𝑡 ∈ R such that for every i with 1 ≤ 𝑖 ≤ 𝑛 it holds
‖𝑣𝑖𝑡 + 𝑠𝑖 ‖ ≥ 1

𝑛+1 .
This has been proved up to 𝑛 = 3 in [12] and again in [15, Section 4.2]. As happened with

Conjecture A, Conjecture B has also been reduced to the case where the velocities are positive integers
(see [12, Section 4.1]). However, in this conjecture one has to insist that all velocities be distinct because
otherwise n runners with the same velocity v and with equally spaced starting points (that is, 𝑠𝑖 = 𝑖/𝑛
for each i) would provide a counter-example: at every time t there is a runner i with ‖𝑣𝑡 + 𝑖/𝑛‖ ≤ 1

2𝑛 .
That the bound 1

2𝑛 is optimal for sLRC when equal velocities are allowed was proven by Schoenberg in
an interpretation of the problem as billiard ball motions inside the unit cube [23] (see [5, Theorem 4]
for an alternative proof).

In our attempt to prove a result similar to Theorem A for sLRC we encountered an obstruc-
tion in the form of a two-dimensional problem, which we dub the ‘Lonely Vector Problem’. Let
P = {p1, . . . , p𝑛} ⊆ R2 be a collection of n nonzero vectors, not all parallel and no two being equal or
opposite to one another. Let 𝑆P be the following associated multiset of cardinality 𝑛2:

𝑆P = P ∪
{
p𝑖 + p 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}
∪

{
p𝑖 − p 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}
.

Definition 1.2. We say that a set P as above satisfies the Lonely Vector Property (LVP) if the multiset
𝑆P contains a vector that is not parallel to any other vector in 𝑆P. We say that the Lonely Vector Property
holds for a certain 𝑛 ∈ N if every such set of n rational vectors, not all parallel and no two of them equal
or opposite to one another, satisfies the Lonely Vector Property.

With this language our version of Theorem A for the sLRC is as follows:
Theorem B. Suppose that sLRC is true for n runners and that the LVP holds for every natural number
≤ 𝑛. Then, sLRC is true for 𝑛+1 runners with integral positive distinct velocities 0, 𝑣1, . . . , 𝑣𝑛 satisfying
gcd(𝑣1, . . . , 𝑣𝑛) = 1 and ∑

𝑆⊆[𝑛]
𝑣𝑆 >

(
𝑛 + 1

2

)𝑛−1
.
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Remark 1.3. Consider the set P consisting of vertices of a regular m-gon centred at the origin (taking
only one from each pair of opposite vertices if 𝑚 = 2𝑛 is even). These vectors are not all parallel and no
two equal or opposite, so we can ask ourselves whether they satisfy the LVP. It turns out that they do
not, unless the polygon is a triangle, square, or hexagon. The fact that these three regular polygons are
precisely the ones that can be linearly transformed to have rational coordinates shows the importance
of rationality in the LVP, and illustrates the difficulty of proving it; see Section 4 for details.

In Section 4, we prove the LVP for up to 𝑛 = 4 points. With this, Theorem B implies that the sLRC
holds for 𝑛 = 4 if it holds for all integer velocities with 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 < 1000. But we also improve
this bound to 195 (see Theorem E below).

1.2. Zonotopal restatements of LRC and sLRC

We here recall the reformulation of Conjectures A and B in terms of zonotopes, developed in [19].
We start with the following definition:

Definition 1.4. Let 𝑍 =
∑𝑛

𝑖=1 [0, u𝑖] ⊆ R𝑛−1 be a lattice zonotope in R𝑛−1 with n generators. If the
generators {u𝑖 : 1 ≤ 𝑖 ≤ 𝑛} are in linear general position, that is, every 𝑛 − 1 of them are linearly
independent, we say that Z is a Lonely Runner Zonotope (LRZ).

Conjecture A’ (Equivalent to Conjecture A). For every Lonely Runner Zonotope 𝑍 =
∑𝑛

𝑖=1 [0, u𝑖] of
dimension 𝑛 − 1 we have

𝑛 − 1
𝑛 + 1

(𝑍 − x) ∩ (x + Z𝑛−1) ≠ ∅, (1.1)

where x = 1
2 (u1 + · · · + u𝑛) is the centre of Z.

Let us describe in short how this equivalence works. As mentioned in the previous section, there is
no loss of generality in assuming that the velocities 𝑣1, . . . , 𝑣𝑛 are integers and that gcd(𝑣1, . . . , 𝑣𝑛) = 1.
We associate with such velocities a set of vectors

u1, . . . , u𝑛 ∈ Z𝑛−1,

that span Z𝑛−1 as a lattice and satisfy


��
| . . . |

u1 . . . u𝑛

| . . . |


��

�����
𝑣1
𝑣2
...

𝑣𝑛


�����
= 0. (1.2)

We will denote by

𝑍v :=
𝑛∑
𝑖=1

[0, u𝑖] ⊆ R𝑛−1

the lonely runner zonotope associated in this way with the velocity vector

v = (𝑣1, . . . , 𝑣𝑛) ∈ Z𝑛>0.

𝑍v is unique modulo unimodular equivalence. One way to construct it is to start with u′
𝑖 = −𝑣𝑛e𝑖 for

𝑖 = 1, . . . , 𝑛−1 and u′
𝑛 = (𝑣1, . . . , 𝑣𝑛−1), and then let u𝑖 = 𝑇 (u′

𝑖) where 𝑇 : R𝑛−1 → R𝑛−1 is an arbitrary
linear transformation sending a lattice basis of Zu′

1 + . . . + Zu′
𝑛 to the standard basis.
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Conversely, starting with a zonotope 𝑍 =
∑𝑛

𝑖=1 [0, u𝑖] with vectors u1, . . . , u𝑛 ∈ Z𝑛−1 in linear
general position that generate the lattice Z𝑛−1, let 𝑣1, . . . , 𝑣𝑛 be the coefficients of the unique linear
dependence among them, suitably scaled so that the 𝑣𝑖’s are integers and have no trivial common factor.
These coefficients satisfy (1.2) and are nonzero by general position of the u𝑖’s. In fact, they are the
minors of size 𝑛 − 1 of the matrix

(
u1 . . . u𝑛

)
; this implies that

vol(𝑍v) = 𝑣1 + . . . + 𝑣𝑛. (1.3)

For this reason we call v the volume vector of 𝑍v. See Section 2.1 for more details.
The equivalence of Conjectures A and A’ follows then from the following more precise statement:

Proposition 1.5 [19]. For each v = (𝑣1, . . . , 𝑣𝑛) ∈ Z𝑛>0 with gcd(𝑣1, . . . , 𝑣𝑛) = 1, a time t as required
in Conjecture A exists for v if and only if 𝑍v satisfies (1.1).
Sketch of proof. For a given velocity vector v, Conjecture A holds if and only if the line Rv spanned
by v in R𝑛 intersects the lattice arrangement of cubes Z𝑛 + [ 1

𝑛+1 , 𝑛
𝑛+1 ]

𝑛 or, equivalently, if the cube
[ 1
𝑛+1 , 𝑛

𝑛+1 ]
𝑛 intersects the lattice arrangement of lines Z𝑛 + Rv. Projecting orthogonally onto 𝐻 = v⊥,

the lattice arrangement Z𝑛 + Rv collapses into a lattice Γ, whereas the cube [ 1
𝑛+1 , 𝑛

𝑛+1 ]
𝑛 becomes a

zonotope, generated by n vectors of H in linear general position. Then, there exists a linear isomorphism
between H and R𝑛−1, which transforms said zonotope to 𝑍v and Γ to Z𝑛−1. Hence, if Conjecture A holds
for v, then 𝑍v satisfies (1.1).

It is not hard to show the converse as well. Suppose that 𝑍v satisfies (1.1); 𝑍v is paved by n
parallelepipeds whose volumes are exactly the coordinates of v. This fact implies that there is a linear
isomorphism between R𝑛−1 and the hyperplane 𝐻 = v⊥ in R𝑛, such that the above arguments may be
reversed. See more details in [19].

The sum
∑

𝑆⊆[𝑛] 𝑣𝑆 in our Theorems A and B is nothing but the number of lattice points in the lattice
zonotope 𝑍v (see Corollary 2.3).1 Hence, Theorem A is equivalent to the following:
Theorem A’. Let 𝑛 ∈ N. If Conjecture A’ holds for 𝑛 − 1, then no counter-example to Conjecture A’ for
n can contain more than

(𝑛+1
2

)𝑛−1 lattice points.
Remark 1.6. Our arguments in Section 3 leading to Theorem A’ are not dependent on the precise value
𝑛−1
𝑛+1 in Conjecture A’. In fact,

(1 − 2𝜂) (𝑍 − x) ∩ (x + Z𝑛−1) ≠ ∅ (1.4)

holds for every Lonely Runner Zonotope 𝑍 =
∑𝑛

𝑖=1 [0, u𝑖] of dimension 𝑛 − 1 for some 𝜂 > 0, if and
only if the version of Conjecture A for n where the bound 1

𝑛+1 is replaced by 𝜂 holds. Hence, assuming
Conjecture A’ to hold in dimension 𝑛 − 1 with a constant 𝑛−1

𝑛+1 + 𝜀, for some small 𝜀 > 0, results in a
finite checking result (depending on 𝜀) for a weakened version of the LRC in dimension n.

We now look at the sLRC. Since it assumes different velocities, it involves the following class of
zonotopes:
Definition 1.7. Let 𝑍v ⊆ R𝑛−1 be an LRZ associated with the velocity vector v = (𝑣1, . . . , 𝑣𝑛) ∈ Z𝑛>0.
When the entries of v are pairwise distinct we say that 𝑍v is a Strong Lonely Runner Zonotope (sLRZ).

Recall that the covering radius 𝜇(𝑀) of a convex body 𝑀 ⊆ R𝑑 , is the smallest dilation factor 𝜌 > 0,
such that 𝜌𝑀 +Z𝑑 =

⋃
z∈Z𝑑 (𝜌𝑀 + z) covers the entire space R𝑑 (see more details about it in Section 2).

The reformulation of sLRC is as follows:

1Observe that for 𝑛 ≥ 2
|𝑍v ∩ Z𝑛−1 | =

∑
𝑆⊆[𝑛]

𝑣𝑆 ≥ 𝑣1 + · · · + 𝑣𝑛 + 2𝑛 − 𝑛 − 1 > 𝑣1 + · · · + 𝑣𝑛 .

In view of (1.3), this implies that in Theorems A’ and B’ one can replace ‘lattice points’ by ‘volume’, although this gives weaker
statements.
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Conjecture B’ (Equivalent to Conjecture B). Every Strong Lonely Runner Zonotope 𝑍v of dimension
𝑛 − 1 satisfies

𝜇(𝑍v) ≤
𝑛 − 1
𝑛 + 1

. (1.5)

Again the equivalence follows from the following more precise statement:

Proposition 1.8 [19]. Fix v = (𝑣1, . . . , 𝑣𝑛) ∈ Z𝑛>0 with pairwise distinct entries and gcd(𝑣1, . . . , 𝑣𝑛) = 1.
A time t as required in Conjecture B exists for every choice of (𝑠1, . . . , 𝑠𝑛) if and only if 𝜇(𝑍v) ≤ 𝑛−1

𝑛+1 .

For the sake of comparison, we note that for each LRZ 𝑍 ⊆ R𝑛−1 with centre x, Equation (1.1) is
equivalent to

2𝑛

𝑛 + 1
x ∈ 𝑛 − 1

𝑛 + 1
𝑍 + Z𝑛−1,

while Equation (1.5) is equivalent to the obviously stronger assertion

R𝑛−1 ⊆ 𝑛 − 1
𝑛 + 1

𝑍 + Z𝑛−1.

In view of Proposition 1.8, the following is equivalent to Theorem B.

Theorem B’. Let 𝑛 ∈ N. If Conjecture B’ holds for 𝑛− 1 and the LVP holds for every natural number at
most n, then no counter-example to Conjecture B’ for n can contain more than

(𝑛+1
2

)𝑛−1 lattice points.

The reason why we need the Lonely Vector Property to prove Theorem B’ can be traced down to
the fact that the projection of an sLRZ is, in general, not an sLRZ. To circumvent this we introduce the
following definition.

Definition 1.9. A finite collection of lattice vectors spanning R𝑑 is called cosimple, if there is a linear
dependence involving them and having coefficients that are all nonzero and with pairwise different
absolute values. A lattice zonotope that is generated by a cosimple collection of vectors is called a
cosimple zonotope.

In this definition, and in what follows, we switch to represent dimension by d (instead of 𝑛 − 1) in
order to reserve n for the number of generators of our zonotopes. Since every sLRZ with n generators
is a cosimple (𝑛 − 1)-zonotope, the following conjecture that we introduce in this paper generalizes the
sLRC:

Conjecture C. Every cosimple zonotope with generators in Z𝑑 has covering radius upper bounded by
𝑑/(𝑑 + 2).

The advantage of this generalization is that, using that every projection of a cosimple zonotope is
cosimple, in this generalized setting we can prove a finite checking result that does not need the LVP. In
fact, the proof of the following statement is much simpler than that of Theorems A’ and B’:

Theorem C. If Conjecture C holds in dimension 𝑑 − 1 for all cosimple zonotopes, then no counter-
example to Conjecture C in dimension d can contain more than

(𝑑+2
2

)𝑑 lattice points.

Since Conjecture C is stronger than Conjectures A’ and B’, this implies the following:

Corollary 1.10. If Conjecture C holds in dimension 𝑑 − 1 for all cosimple zonotopes, then no counter-
example to Conjectures B’ or A’ in dimension d can have more than

(𝑑+2
2

)𝑑 lattice points.

Theorems A’ (hence Theorem A), Theorem B’ (hence Theorem B), and Theorem C are proved,
respectively, in Sections 3, 4 and 5, after introducing in Section 2 some concepts and results from
zonotope theory and from the geometry of numbers that we need for the proofs.
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In Section 4 we additionally prove the LVP for 𝑛 ≤ 4, and in Section 5 we give some properties of
cosimple zonotopes. For instance, we show that every cosimple zonotope has lattice-width at least three
and that the converse almost holds (Corollary 5.6). Here, the lattice-width of a convex body 𝐶 ⊆ R𝑑 is
the minimum length of a segment of the form 𝑓 (𝐶), the minimum being taken over all integer linear
functionals f, that is, linear functionals 𝑓 : R𝑑 → R with 𝑓 (Z𝑑) ⊆ Z (see Section 2 for more details).

Small dimension

In the final two Sections 6 and 7 we look at Conjectures B’ and C in low dimension, proving them for
𝑑 = 2 and providing a volume bound for 𝑑 = 3. In fact, both results are proved for lattice zonotopes of
lattice-width at least three, a setting more general than that of sLR or even cosimple zonotopes.

Theorem D (See more precise Theorem 6.3). Every lattice 2-zonotope Z of lattice-width at least three
has 𝜇(𝑍) ≤ 1

2 , except for a certain parallelogram 𝑃2,5 of area 5 and with 𝜇(𝑃2,5) = 3
5 .

Theorem E (See more precise Theorem 7.1). Every lattice 3-zonotope Z of lattice-width at least three
and volume at least 196 has 𝜇(𝑍) < 3

5 , except for parallelepipeds projecting onto 𝑃2,5.

In both statements the proof starts by using known bounds relating the lattice-width, volume and
covering radius of convex bodies in dimensions two and three (Lemmas 2.10 and 2.11). In dimension
two the general bound reduces our problem to zonotopes of lattice-width at most two or volume at
most eight, which are relatively easy to classify. In dimension three the general bound easily proves
Theorem E for zonotopes of lattice-width at least four (Section 7.1), but some additional work and a
careful case-study are required for those of lattice-width three (Section 7.2).

We believe these low-dimensional results are interesting for several reasons:
On the one hand, even if Conjecture B’ is already known for dimension two [12], our much more

detailed Theorem D allows us to prove part (2) of the following statement in arbitrary dimension.

Theorem F. Suppose that sLRC holds for 𝑛− 1. Then it also holds for velocity vectors (𝑣1, . . . , 𝑣𝑛) with
gcd(𝑣1, . . . , 𝑣𝑛) = 1 that satisfy one of the following conditions:

1. All but one of them have a nontrivial common factor (Proposition 2.9).
2. All but two of them have a common factor other than perhaps two or four. Moreover, if 𝑛 ≥ 7 then

gcd = 4 cannot occur either (Corollary 6.6).

On the other hand, Theorem E shows that all potential counter-examples to Conjecture C for 𝑑 = 3,
hence also those to Conjecture B for 𝑛 = 4, have volume at most 195:

Corollary 1.11. sLRC holds for 𝑛 = 4 for all velocity vectors (𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ Z4
>0 satisfying∑

𝑖

𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 ≥ 196.

This result opens the door for a computational proof of the sLRC for five runners.

Remark 1.12. After a preprint of this manuscript appeared, such a computational proof was carried out
successfully in [1], so that we now know that sLRC holds for 𝑛 = 4. Certifying that the covering radius
of the 2 133 561 relevant sLR 3-zonotopes is bounded by 3

5 required the authors of [1] to devise a new
(and compared with [12], more efficient) algorithm for bounding covering radii of rational polytopes in
general.

As a by-product of their computations, [1] also shows that there are only three velocity vectors
(𝑣1, 𝑣2, 𝑣3, 𝑣4) that are tight for the sLRC, meaning that for them no bound larger than 1

5 works in
Conjecture B (equivalently, their associated sLR zonotopes have covering radius exactly 3

5 ). These are
the vectors (1, 2, 3, 4), (1, 3, 4, 7), and (1, 3, 4, 6). The first two were known to be tight for the original
LRC (which obviously implies tightness for sLRC) but (1, 3, 4, 6) is tight only for sLRC.
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2. Preliminaries

2.1. Volume and lattice points in lattice zonotopes

We here recall some known facts about zonotopes in general and lonely runner zonotopes in particular.
Let 𝑍 =

∑𝑛
𝑖=1 [0, u𝑖] ⊆ R𝑑 be a zonotope of dimension d with n generators. For each subset 𝑆 ⊆ [𝑛]

let us denote 𝑍𝑆 :=
∑

𝑖∈𝑆 [0, u𝑖]. If |𝑆 | = 𝑑, then 𝑍𝑆 is a parallelepiped of volume |det(u𝑖 : 𝑖 ∈ 𝑆) |
(degenerating to volume zero if {u𝑖 : 𝑖 ∈ 𝑆} is linearly dependent). It is well-known (see, e.g.,
[24, Eq. (57)]) that

vol(𝑍) =
∑

𝑆⊆[𝑛], |𝑆 |=𝑑
vol(𝑍𝑆). (2.1)

Suppose now that u𝑖 ∈ Z𝑑 for every i. Then it still makes sense to define vol(𝑍𝑆) for a subset
𝑆 ⊆ [𝑛] of size other than d, as the relative |𝑆 |-dimensional volume of 𝑍𝑆 , normalized to the lattice
Z𝑑 ∩ (

∑
𝑖∈𝑆 Ru𝑖). Observe that we insist on vol(𝑍𝑆) to denote an |𝑆 |-dimensional volume, so again

vol(𝑍𝑆) = 0 if {u𝑖 : 𝑖 ∈ 𝑆} is linearly dependent; for example, if |𝑆 | > 𝑑. With this convention, vol(𝑍𝑆)
coincides with the gcd of all the (|𝑆 | × |𝑆 |)-minors of the 𝑑 × |𝑆 | matrix with columns {u𝑖 : 𝑖 ∈ 𝑆}.
It turns out that the sum of all these volumes for parallelepipeds of dimensions from 0 to d equals the
number of lattice points in Z.

Theorem 2.1 (see [6, Corollary 9.3 & Theorem 9.9]). Let 𝑍 =
∑𝑛

𝑖=1 [0, u𝑖] ⊆ R𝑑 be a lattice zonotope.
Then

|𝑍 ∩ Z𝑑 | =
∑

𝑆⊆[𝑛]
vol(𝑍𝑆). (2.2)

Comparing (2.1) and (2.2) one observes that every lattice zonotope contains more lattice points than
its volume.

We now specialize to lonely runner zonotopes; that is, we assume 𝑑 = 𝑛 − 1. Then, (vol(𝑍𝑆))|𝑆 |=𝑛−1
equals the volume vector (𝑣1, . . . , 𝑣𝑛) of Z, and Equation (2.1) specializes to (1.3). The assumption
gcd(𝑣1, . . . , 𝑣𝑛) = 1 is equivalent to the lattice Z𝑛−1 being generated by the vectors u1, . . . , u𝑛.

We can also give a zonotopal interpretation of the greatest common divisor of subsets of the velocities.
As we did in the Introduction, for a subset 𝑆 ⊆ [𝑛] we denote 𝑣𝑆 := gcd(𝑣𝑖 : 𝑖 ∈ 𝑆).

Lemma 2.2. Let (𝑣1, . . . , 𝑣𝑛) with gcd(𝑣1, . . . , 𝑣𝑛) = 1 be the volume vector of an LRZ. Then, for each
𝑆 ⊆ [𝑛], we have

𝑣 [𝑛]\𝑆 = vol(𝑍𝑆).

Note the special case 𝑣∅ = vol(𝑍 [𝑛] ) = 0 of this equality.

Proof. One direction is easy: the volume of 𝑍𝑆 divides the volume of all the full-dimensional paral-
lelepipeds of which 𝑍𝑆 is a face, and those are precisely the ones of volumes 𝑣𝑖 , 𝑖 ∉ 𝑆. Thus, vol(𝑍𝑆)
divides 𝑣 [𝑛]\𝑆 = gcd(𝑣𝑖 : 𝑖 ∉ 𝑆).

For the other direction, suppose that we do not have equality. That is, there is a nontrivial factor
𝑟 ≥ 2 such that gcd(𝑣𝑖 : 𝑖 ∉ 𝑆) = 𝑟 vol(𝑍𝑆). Let 𝑘 = |𝑆 |. Without loss of generality suppose that
the generators of 𝑍𝑆 are u1, . . . , u𝑘 and that they span the linear subspace of the first k coordinates
(the latter is no loss of generality since it can be achieved by a unimodular transformation). That is,
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writing u𝑖 = (x𝑖 , y𝑖) with x𝑖 ∈ Z𝑘 and y𝑖 ∈ Z𝑛−𝑘 , the matrix of the vectors u𝑖 has the following block
structure:

U := 
��
| . . . |

u1 . . . u𝑛

| . . . |


�� =

(
x1 . . . x𝑘 | x𝑘+1 . . . x𝑛
0 . . . 0 | y𝑘+1 . . . y𝑛

)
=

(
S | X
0 | Y

)
,

where S is a square 𝑘 × 𝑘 matrix of determinant vol(𝑍𝑆) and Y is an (𝑛 − 𝑘) × (𝑛 − 𝑘) matrix whose
maximal minors are all divisible by r. The contradiction is that then all the maximal minors of U are
divisible by r. For those obtained by removing one of the last 𝑛 − 𝑘 columns this is obvious (in fact,
those minors are the 𝑣𝑖 , for 𝑖 ∉ 𝑆); for those obtained by removing one of the first k columns it follows
by Laplace multirow expansion along the first k rows. �

Corollary 2.3. Let 𝑍 ⊆ R𝑛−1 be an LRZ with volume vector (𝑣1, . . . , 𝑣𝑛) and for each 𝑆 ⊆ [𝑛] let
𝑣𝑆 := gcd(𝑣𝑖 ∈ 𝑆). Then,

|𝑍 ∩ Z𝑛−1 | =
∑

𝑆⊆[𝑛]
𝑣𝑆 .

Proof. Combining Theorem 2.1 and Lemma 2.2 we have:

|𝑍 ∩ Z𝑛−1 | =
∑

𝑆⊆[𝑛]
vol(𝑍𝑆) =

∑
𝑆⊆[𝑛]

𝑣𝑆 . �

2.2. Concepts from the Geometry of Numbers

The geometric ideas in our proofs rest on some fundamental principles in the Geometry of Numbers
describing how the volume of a convex body 𝐶 ⊆ R𝑑 relates to whether C contains lattice points, that
is, points from Z𝑑 , or whether it can be translated to avoid containing them. Specific variants of such
principles can be conveniently formulated by three well-studied parameters that we now introduce.

The first parameter is the first successive minimum and concerns 0-symmetric convex bodies C, that
is, those that satisfy 𝐶 = −𝐶. It is defined as

𝜆1(𝐶) := min
{
𝜆 > 0 : 𝜆𝐶 ∩ Z𝑑 ≠ {0}

}
,

and the lattice points in Z𝑑 ∩ 𝜆1(𝐶)𝐶) \ {0} are said to attain the first successive minimum of C. This
parameter was introduced in the seminal works of Minkowski, whose first fundamental theorem says:

Theorem 2.4 (See [17, Section 22]). Let 𝐶 ⊆ R𝑑 be a 0-symmetric convex body. If C does not contain
a nonzero point of Z𝑑 in its interior, then vol(𝐶) ≤ 2𝑑 .

Equivalently, for every convex body C one has

𝜆1(𝐶)𝑑 vol(𝐶) ≤ 2𝑑 .

The following related result is a version of [7, Theorem 2.1]. Observe that we no longer assume C to
be 0-symmetric, but 𝐶 −𝐶 always is. The parameter 𝜆1(𝐶 −𝐶)−1 equals the greatest lattice length of a
segment contained in C:

Lemma 2.5. Let 𝐶 ⊆ R𝑑 be a convex body and ℓ ∈ N. If |𝐶 ∩ Z𝑑 | > ℓ𝑑 , then

𝜆1(𝐶 − 𝐶) ≤ 1
ℓ

.

Proof. By the pigeon-hole principle. |𝐶 ∩ Z𝑑 | > ℓ𝑑 implies that there are two distinct lattice points
x, y ∈ 𝐶∩Z𝑑 in the same class modulo ℓZ𝑑 . Then, 1

ℓ (x−y) ∈ Z𝑑∩ 1
ℓ (𝐶−𝐶) implies 𝜆1(𝐶−𝐶) ≤ 1/ℓ. �
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Remark 2.6. Suppose that C itself is centrally symmetric, that is, 𝐶 − x = x − 𝐶, for some point x, not
necessarily the origin. Then, vol(𝐶 − 𝐶) = 2𝑑 vol(𝐶), so Minkowski’s theorem (Theorem 2.4) gives

𝜆1(𝐶 − 𝐶) ≤ 1/ 𝑑
√

vol(𝐶).

Since ‘number of lattice points’ can be considered a discrete analogue of ‘volume’, Lemma 2.5, restricted
to centrally symmetric bodies, is a discrete version of Theorem 2.4. In fact, in the case of interest to us,
C will be a lattice zonotope so, as noted right after Theorem 2.1, its number of lattice points is larger
than its volume.

The second parameter important for us is the covering radius of a convex body 𝐶 ⊆ R𝑑 , which
appeared already in the zonotopal reformulation of the sLRC (Conjecture B’). For convenience, we
define it with respect to an arbitrary lattice Λ ⊆ R𝑑 as

𝜇(𝐶,Λ) := min
{
𝜇 > 0 : 𝜇𝐶 + Λ = R𝑑

}
.

That is, the covering radius is the minimal positive dilation factor 𝜇 such that every point in R𝑑 is
contained in some lattice translation of 𝜇𝐶. When Λ = Z𝑑 and then we write 𝜇(𝐶) instead of 𝜇(𝐶,Z𝑑)
for brevity.

It is easy to prove (cf. [18, Chapter 2, §13]) that 𝜇(𝐶,Λ) coincides with the maximum dilation factor
𝜌 > 0 such that 𝜌𝐶 has a hollow translate, where we say that a convex body 𝐶 ′ is hollow if its interior
contains no lattice points. For example, 𝜇(𝐶,Λ) ≥ 1 is equivalent to C admitting a hollow translate.

The following result is fundamental in our proofs, since it allows us to induct on the dimension when
𝜆1 is sufficiently small (which will be guaranteed by Lemma 2.5).

Proposition 2.7. Let 𝐶 ⊆ R𝑑 be a convex body containing the origin, and let 𝜋 : R𝑑 → R𝑑−1 be the
projection along a direction that attains the first successive minimum of 𝐶 − 𝐶. Then,

𝜇(𝐶) ≤ 𝜆1(𝐶 − 𝐶) + 𝜇
(
𝜋(𝐶), 𝜋(Z𝑑)

)
.

Proof. This is a special case of [11, Lemma 2.1], which reads as follows: Let 𝜋 : R𝑑 → R𝑙 be a rational
linear projection, so that 𝜋(Z𝑑) is a lattice. Let 𝑄 = 𝐶∩𝜋−1 (0) and let 𝐿 = 𝜋−1 (0) be the linear subspace
spanned by Q. Then,

𝜇(𝐶) ≤ 𝜇(𝑄,Z𝑑 ∩ 𝐿) + 𝜇(𝜋(𝐶), 𝜋(Z𝑑)).

Now, specializing the dimension to 𝑙 = 𝑑 − 1, and the direction of the projection 𝜋 to be along some
w ∈ 𝜆1(𝐶−𝐶) (𝐶−𝐶) ∩Z𝑑 \ {0}, we find that 𝑄 = [x, y], for some x, y ∈ 𝐶, and w = 𝜆1(𝐶−𝐶) (x−y).
Since we further have Z𝑑 ∩ 𝜋−1(0) = Zw, this implies

𝜆1(𝐶 − 𝐶) = 𝜇
(
𝜆1(𝐶 − 𝐶)−1 [0, w],Zw

)
= 𝜇(𝑄,Z𝑑 ∩ 𝜋−1 (0)),

and the statement follows. �

The second bound for 𝜇 that we need is apparently new and formulates as follows:

Proposition 2.8. Let 𝐶 ⊆ R𝑑 be a convex body and let 𝜋 : R𝑑 → R𝑑−𝑠 be a rational linear projection.
Then,

𝜇(𝐶) ≤ max
{
𝜇(𝜋(𝐶), 𝜋(Z𝑑)), max

y∈𝜋 (𝐶)
𝜇(𝐶 ∩ 𝜋−1(y))

}
,

where 𝜇(𝐶 ∩ 𝜋−1 (y)) is considered with respect to the lattice Z𝑑 ∩ 𝜋−1 (0) translated to the affine
subspace 𝜋−1 (y).
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Proof. For the sake of brevity we write

𝜇y = 𝜇(𝐶 ∩ 𝜋−1(y)) and 𝜇𝜋 = 𝜇(𝜋(𝐶), 𝜋(Z𝑑)).

Let 𝐿 = 𝜋−1 (0), so that 𝑠 = dim 𝐿. After we dilate C by the factor 𝜇𝜋 , every s-dimensional affine plane
H parallel to L intersects some integer translation of 𝜇𝜋𝐶. Hence, H contains an integer translation of
𝜇𝜋𝐶 ∩ 𝜋−1(y) for some y ∈ 𝜋(𝐶).

If 𝜇𝜋 ≥ 𝜇y, then, by R𝑑 = 𝐿 + 𝜋(R𝑑), we get 𝜇(𝐶) ≤ 𝜇𝜋 . So, now we assume that 𝜇𝜋 < 𝜇y. The
argument above implies that adding to 𝜇𝜋𝐶 a dilation of C by a factor 𝜇y− 𝜇𝜋 will guarantee a complete
covering of H. This implies that 𝜇(𝐶) ≤ 𝜇𝜋 + maxy{𝜇y − 𝜇𝜋} = maxy 𝜇y, finishing the proof. �

Proposition 2.9. Let 𝑛 ≥ 3 and suppose that Conjecture B’ (hence Conjecture B) holds for 𝑛 − 1
velocities. Then, it holds for n velocities that satisfy gcd(𝑣1, . . . , 𝑣𝑛) = 1 if 𝑛− 1 of them have a common
nontrivial factor. Equivalently, if the corresponding sLRC zonotope has a nonprimitive generator.
Proof. That a generator being not primitive is equivalent to all but one of the 𝑣𝑖’s having a common
factor is the special case of Lemma 2.2, where the set S consists just of a single element.

So, let 𝑍 =
∑𝑛

𝑖=1 [0, u𝑖] ⊆ R𝑛−1 be an sLRZ and suppose that one generator is not primitive, say
u𝑛 = 𝑘e𝑑 , for some 𝑘 ∈ Z≥2. Let 𝜋 : R𝑛−1 → R𝑛−2 be the projection along u𝑛. Then, Proposition 2.8
combined with the inductive hypothesis gives

𝜇(𝑍) ≤ max{𝜇(𝜋(𝑍)), 𝜇([0, u𝑛])} ≤ max
{

𝑛 − 2
𝑛

,
1
𝑘

}
<

𝑛 − 1
𝑛 + 1

,

since 𝑘 ≥ 2 and 𝑛 ≥ 3. �

For our study of the low-dimensional cases of Conjecture C in Sections 6 and 7, we need some results
relating 𝜇(𝐶) with a third parameter, the lattice-width of a convex body C, defined as follows. For each
z ∈ R𝑑 define

𝑤(𝐶, z) = max
x∈𝐶

zᵀx − min
x∈𝐶

zᵀx,

and

𝑤(𝐶) = min
z∈Z𝑑\{0}

𝑤(𝐶, z).

That is, 𝑤(𝐶) is the minimal width of C in a lattice direction, where width in each direction z ∈ Z𝑑
is normalized to the distance between lattice hyperplanes orthogonal to z. An observation that we
frequently use below is that if C is a lattice polytope, that is, C is the convex hull of finitely many points
of Z𝑑 , then the lattice-width 𝑤(𝐶) is an integer.

The following results bound the volume of wide hollow bodies. Equivalently, they bound the volume
of an arbitrary convex body C in terms of the product 𝑤(𝐶)𝜇(𝐶) (see Corollary 6.1 for the latter
perspective). The versions we need, for dimensions two and three, are due to Averkov & Wagner [3] and
to Iglesias & Santos [20], respectively.
Lemma 2.10 [3, Theorem 2.2]. Let 𝑤 > 1 and let 𝐶 ⊆ R2 be a hollow convex body of lattice-width at
least w. Then, vol(𝐶) ≤ 𝑤2

2(𝑤−1) .

Lemma 2.11 [20, Theorem 2.1]. Let 𝐶 ⊆ R3 be a hollow convex body of lattice-width 𝑤 ≥ 2 + 2/
√

3.
Then, vol(𝐶) is bounded from above by

8𝑤3

(𝑤 − 1)3 , if 𝑤 ≥ 2
√

3
(
√

5 − 1) + 1 ≈ 2.427, and

3𝑤3

4(𝑤 − (1 + 2/
√

3))
, otherwise.
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3. Projections of Lonely Runner Zonotopes, and a finite checking result for LRC

In this section, we prove Theorem A’ (and thus Theorem A). First, we prove an independent result that
will allow us to apply induction on the dimension.

3.1. Projections of Lonely Runner Zonotopes

Let 𝑍v ⊆ R𝑛−1 be an LRZ, with generators u1, . . . , u𝑛 and centre xv := 1
2
∑𝑛

𝑖=1 u𝑖 . Consider a linear
projection

𝑇 : R𝑛−1 → R𝑛−2

u𝑖 ↦→ y𝑖

satisfying 𝑇 (Z𝑛−1) = Z𝑛−2. Let 𝑍 = 𝑇 (𝑍v), which is itself a lattice zonotope,

𝑍 =
𝑛∑
𝑖=1

[0, y𝑖],

with its centre given by yv := 𝑇 (xv) = 1
2 (y1 + . . . + y𝑛).

What we want to show is that
Theorem 3.1. The zonotope Z contains a lattice translation of a lonely runner zonotope 𝑍 ′ ⊆ R𝑛−2

with centre z ≡ yv mod Z𝑛−2.
For the proof, let w be a primitive vector in the kernel of T, which means that its coordinates have

no nontrivial common factor. We need to know how the volumes of parallelepipeds spanned by 𝑛 − 2
vectors among y1, . . . , y𝑛 compare to those spanned by 𝑛 − 2 vectors among w, u1, . . . , u𝑛. To this end,
let u′

1, . . . , u′
𝑛 denote a relabelling of the n vectors u1, . . . , u𝑛 and let y′

1, . . . , y′
𝑛 be the corresponding

relabelling of y1, . . . , y𝑛.
Lemma 3.2.

vol

(
[0, w] +

𝑛−2∑
𝑖=1

[0, u′
𝑖]
)
=

��det(w, u′
1, . . . , u′

𝑛−2)
�� = ��det(y′

1, . . . , y′
𝑛−2)

��. (3.1)

Proof. By a unimodular transformation sending the primitive vector w to the last coordinate vector e𝑛−1,
there is no loss of generality in assuming the w = e𝑛−1. In this case the equality of the determinants is
clear. �

Since Z is a zonotope with n generators y1, . . . , y𝑛 and dimension 𝑛 − 2, there are the following 𝑛2

natural choices of zonotopes 𝑍 ′ in Theorem 3.1. First, we consider the n zonotopes generated by all but
one of the generators of Z. That is, taking 𝑍 ′ to be

y′
𝑛 +

𝑛−1∑
𝑖=1

[0, y′
𝑖] . (3.2)

The other 𝑛(𝑛 − 1) options for 𝑍 ′ correspond to combining two of the generators of Z into a single one,
and taking the rest of the generators individually, that is, taking 𝑍 ′ to be of the form

𝑛−2∑
𝑖=1

[0, y′
𝑖] + [0, y′

𝑛−1 + y′
𝑛] (3.3)

or

y′
𝑛 +

𝑛−2∑
𝑖=1

[0, y′
𝑖] + [0, y′

𝑛−1 − y′
𝑛] . (3.4)
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Each of these 𝑛2 zonotopes has 𝑛 − 1 generators and is contained in Z. The only missing property in
order for one of them to be an LRZ (respectively, an sLRZ, which we need in Section 4) is that the
corresponding volume vector contains no zero entry (respectively, contains no zero entry and no two
equal or opposite entries).

Some zonotope of type (3.2) is an LRZ if and only if the volumes of the parallelepipeds spanned by
w and some 𝑛 − 2 vectors among the u′

𝑖 are nonzero; if, in addition, such volumes are all distinct, then
it is even an sLRZ. From now on, we will express w ∈ Z𝑛−1 in terms of the u𝑖 , namely,

w =
𝑛∑
𝑖=1

𝜌𝑖u𝑖 , (3.5)

where 𝜌𝑖 ∈ Q, 1 ≤ 𝑖 ≤ 𝑛. Observe that the vector (𝜌1, . . . , 𝜌𝑛) is not unique, but any choice will work
in what follows. Below, the numbers 𝜌′

𝑖 and 𝑣′𝑗 correspond to the induced relabelling of the coefficients
𝜌𝑖 in (3.5) and the velocities 𝑣 𝑗 in (1.2).

Proposition 3.3. Suppose 𝑃 =
∑𝑛−1

𝑖=1 [0, u′
𝑖], that is, P is the parallelepiped whose projection is (3.2)

(translated by a lattice vector). Then, the volume of the parallelepiped spanned by w and all the vectors
u′
𝑖 except from u′

𝑗 equals the absolute value of����𝜌′
𝑗 𝜌′

𝑛

𝑣′𝑗 𝑣′𝑛

����, 1 ≤ 𝑗 ≤ 𝑛 − 1.

Proof. Using (1.2) and (3.5), the volume spanned by w and all u′
𝑖 except from u′

𝑗 , is���det(w, u′
1, . . . , u′

𝑗−1, u′
𝑗+1, . . . , u′

𝑛−1)
���

=

�����det(w − 𝜌′𝑛
𝑣′𝑛

𝑛∑
𝑖=1

𝑣′𝑖u′
𝑖 , u′

1, . . . , u′
𝑗−1, u′

𝑗+1, . . . , u′
𝑛−1)

�����
=

���det((𝜌′
𝑗 −

𝜌′𝑛
𝑣′𝑛

𝑣′𝑗 )u′
𝑗 , u′

1, . . . , u′
𝑗−1, u′

𝑗+1, . . . , u′
𝑛−1)

���
=

���𝜌′
𝑗𝑣

′
𝑛 − 𝜌′

𝑛𝑣′𝑗

���,
as claimed. �

Proposition 3.4. Suppose 𝑃 =
∑𝑛−2

𝑖=1 [0, u′
𝑖] + [0, u′

𝑛−1 ± u′
𝑛], that is, P is the parallelepiped whose

projection is (3.3) or (3.4) (translated by a lattice vector). Then, the volume of the parallelepiped
spanned by w and 𝑛 − 2 vectors among the generators of P equals the absolute value of����𝜌′

𝑗 𝜌′
𝑛−1 ∓ 𝜌′

𝑛

𝑣′𝑗 𝑣′𝑛−1 ∓ 𝑣′𝑛

����, 1 ≤ 𝑗 ≤ 𝑛 − 1.

Proof. Using (1.2) and (3.5), the volume spanned by w and all generators except from u′
𝑗 , 1 ≤ 𝑗 ≤ 𝑛−2,

is given by���det(w, u′
1, . . . , u′

𝑗−1, u′
𝑗+1, . . . , u′

𝑛−2, u′
𝑛−1 ± u′

𝑛)
���

=

�����det(w −
𝜌′𝑗
𝑣′𝑗

𝑛∑
𝑖=1

𝑣′𝑖u′
𝑖 , u′

1, . . . , u′
𝑗−1, u′

𝑗+1, . . . , u′
𝑛−2, u′

𝑛−1 ± u′
𝑛)

�����
=

���det((𝜌′
𝑛−1 −

𝜌′𝑗
𝑣′𝑗

𝑣′𝑛−1)u
′
𝑛−1 + (𝜌′

𝑛 −
𝜌′𝑗
𝑣′𝑗

𝑣′𝑛)u′
𝑛, u′

1, . . . , u′
𝑗−1, u′

𝑗+1, . . . , u′
𝑛−2, u′

𝑛−1 ± u′
𝑛)

���
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=

������
������𝜌

′
𝑛−1 −

𝜌′𝑗
𝑣′𝑗

𝑣′𝑛−1 1

𝜌′
𝑛 −

𝜌′𝑗
𝑣′𝑗

𝑣′𝑛 ±1

������ det(u′
1, . . . , u′

𝑗−1, u′
𝑗+1, . . . , u′

𝑛)

������
=

��������𝜌′
𝑛−1𝑣′𝑗 − 𝜌′

𝑗𝑣
′
𝑛−1 1

𝜌′
𝑛𝑣′𝑗 − 𝜌′

𝑗𝑣
′
𝑛 ±1

��������
=

��������𝜌′
𝑗 𝜌′

𝑛−1 ∓ 𝜌′
𝑛

𝑣′𝑗 𝑣′𝑛−1 ∓ 𝑣′𝑛

��������.
The volume spanned by w and u′

1, . . . , u′
𝑛−2 is, by Proposition 3.3,

��det(w, u′
1, . . . , u′

𝑛−2)
�� = ��������𝜌′

𝑛−1 𝜌′
𝑛

𝑣′𝑛−1 𝑣′𝑛

�������� = ��������𝜌′
𝑛−1 𝜌′

𝑛−1 ∓ 𝜌′
𝑛

𝑣′𝑛−1 𝑣′𝑛−1 ∓ 𝑣′𝑛

��������. �

Remark 3.5. Calling p𝑖 = (𝜌𝑖 , 𝑣𝑖) and e1 = (1, 0) we have that the configurations

{u1, . . . , u𝑛, w} ⊆ R𝑛−1 and {p1, . . . , p𝑛,−e1} ⊆ R2

are Gale dual to one another. Indeed, as explained in Remark 5.4, this amounts to saying that the row-

spaces of
(
u1 . . . u𝑛 w

)
and

(
𝜌1 . . . 𝜌𝑛 −1
𝑣1 . . . 𝑣𝑛 0

)
are orthogonal complements of one another. That they

are orthogonal follows from Eqs. (1.2) and (3.5), and complementarity from adding up the ranks of the
matrices, 𝑛 − 1 and 2 respectively.

Now, Gale duality implies that each maximal minor in one of the matrices equals the complementary
minor in the other (modulo a multiplicative constant, the same for all minors, and a sign depending on
the indices of columns used in each minor). This provides an alternative proof of Proposition 3.3: the
minor obtained in the first matrix forgetting u𝑖 and u 𝑗 equals (modulo sign; the constant happens to be
±1 for our particular ‘choice of Gale transform’) the determinant of p𝑖 and p 𝑗 .

Proof of Theorem 3.1. It suffices to show that a zonotope of type (3.3) or (3.4) is a lonely runner
zonotope. The centre z of such a zonotope obviously satisfies the desired condition. Consider now the
vectors p𝑖 = (𝜌𝑖 , 𝑣𝑖) ∈ Q × Z, 1 ≤ 𝑖 ≤ 𝑛. By Proposition 3.4 and Eq. (3.1), it suffices to show that there
are two of them, say p𝑖 and p 𝑗 , such that p𝑖 ± p 𝑗 , with an appropriate choice of sign, is not parallel to
any vector p𝑘 , 1 ≤ 𝑘 ≤ 𝑛.

Without loss of generality, assume that

𝜌𝑛−1
𝑣𝑛−1

= max
{

𝜌𝑖

𝑣𝑖
: 1 ≤ 𝑖 ≤ 𝑛

}
and

𝜌𝑛

𝑣𝑛
= min

{
𝜌𝑖

𝑣𝑖
: 1 ≤ 𝑖 ≤ 𝑛

}
.

We note that not all p𝑘 are parallel, otherwise w would be the zero vector. Hence, the inequality
𝜌𝑛−1
𝑣𝑛−1

> 𝜌𝑛
𝑣𝑛

is indeed strict.
If 𝑣𝑛−1 = 𝑣𝑛, then p𝑛−1 − p𝑛 = (𝜌𝑛−1 − 𝜌𝑛, 0) is obviously not parallel to any of the p𝑖 , as their

y-coordinates are nonzero. If 𝑣𝑛−1 > 𝑣𝑛, then p𝑛−1 − p𝑛 is on the upper half plane, as all p𝑖 are, and it
holds

𝜌𝑛−1 − 𝜌𝑛

𝑣𝑛−1 − 𝑣𝑛
>

𝜌𝑛−1
𝑣𝑛−1

,

whence by definition of p𝑛−1 it follows that p𝑛−1 − p𝑛 is not parallel to any p𝑘 , 1 ≤ 𝑘 ≤ 𝑛. A similar
argument with p𝑛 − p𝑛−1 applies if 𝑣𝑛−1 < 𝑣𝑛. �
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3.2. Proof of Theorem A’

To have a more symmetric description, from a given LRZ 𝑍v ⊆ R𝑛−1 with centre xv, we define the
0-symmetric scaled-down zonotope

𝐾v =
𝑛 − 1
𝑛 + 1

(𝑍v − xv).

Conjecture A’ is then equivalent to the statement that

𝐾v ∩ (xv + Z𝑛−1) ≠ ∅. (3.6)

Observe that, by Lemma 2.5 plus the hypothesis that 𝑍v has more than
(𝑛+1

2
)𝑛−1 lattice points, we have

that

𝜆1(𝐾v) = 2𝜆1 (𝐾v − 𝐾v) =
2(𝑛 + 1)

𝑛 − 1
𝜆1(𝑍v − 𝑍v) ≤

4
(𝑛 − 1)𝑛 . (3.7)

Now, let w ∈ Z𝑛−1 be a vector attaining the first successive minimum of 𝐾v, that is,

w ∈ 𝜆1(𝐾v)𝐾v ∩ (Z𝑛−1 \ {0}).

The vector w is necessarily primitive; hence, if we consider a projection 𝑇 : R𝑛−1 → R𝑛−2 with
𝑇 (Z𝑛−1) = Z𝑛−2 and with 𝑇 (w) = 0, Theorem 3.1 tells us that the image 𝑍 = 𝑇 (𝑍v) contains an LRZ
with the same centre as Z.

We keep the notation y𝑖 := 𝑇 (u𝑖), so that

𝑍 =
𝑛∑
𝑖=1

[0, y𝑖]

and the centre of Z is given by yv := 𝑇 (xv) = 1
2 (y1 + . . . + y𝑛). Then, the assumption that Conjecture A’

holds in dimension 𝑛 − 2 and that Z contains an LRZ imply that

𝑛 − 2
𝑛

(𝑍 − yv) ∩ (yv + Z𝑛−2) ≠ ∅.

Let b be a vector in the above intersection, and let a ∈ 𝑛−2
𝑛 (𝑍v − xv) be such that 𝑇 (a) = b. Since

b− yv ∈ Z𝑛−2 = 𝑇 (Z𝑛−1), we have that a− xv ∈ 𝑇−1 (Z𝑛−2). That, is, the line a +Rw = 𝑇−1 (b) contains
infinitely many points of xv + Z𝑛−1, forming an affine one-dimensional lattice. Every segment between
two consecutive lattice points on this line has lattice length equal to 1. Hence, in order to ensure that the
intersection 𝐾v ∩ (xv + Z𝑛−1) is nonempty, it suffices to show:

Lemma 3.6. The lattice length of the segment 𝐾v ∩ (a + Rw) is at least 1.

Proof. We abbreviate 𝜆1(𝐾v) as 𝜆1. If a ∈ Rw, then 𝐾v ∩ (a+Rw) = 𝐾v ∩Rw, which has lattice length
2/𝜆1. Equation (3.7) shows that this is at least 𝑛(𝑛 − 1)/2 ≥ 1, since 𝑛 ≥ 2.

If, on the contrary, a ∉ Rw, then w and a generate a two-dimensional linear subspace. Consider the
point

a′ :=
(𝑛 − 1)𝑛

(𝑛 − 2) (𝑛 + 1) a ∈ 𝑛 − 1
𝑛 + 1

(𝑍v − xv) = 𝐾v.

The triangle S with vertices a′, 1
𝜆1

w, and − 1
𝜆1

w is contained in 𝐾v, so we have

ℓ(𝐾v ∩ (a + Rw)) ≥ ℓ(𝑆 ∩ (a + Rw)).

https://doi.org/10.1017/fms.2025.10107 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10107


16 R. D. Malikiosis, F. Santos and M. Schymura

Now, (
(𝑛 − 2) (𝑛 + 1)

(𝑛 − 1)𝑛

)
+

(
2

(𝑛 − 1)𝑛

)
= 1,

and (
(𝑛 − 2) (𝑛 + 1)

(𝑛 − 1)𝑛

)
a′ ±

(
2

(𝑛 − 1)𝑛

)
1
𝜆1

w = a ± 2
(𝑛 − 1)𝑛𝜆1

w,

imply that this intersection 𝑆 ∩ (a + Rw) is precisely the segment[
a − 2

(𝑛 − 1)𝑛𝜆1
w, a + 2

(𝑛 − 1)𝑛𝜆1
w
]
,

whose lattice length is precisely

4
(𝑛 − 1)𝑛𝜆1

.

This is at least 1 by Eq. (3.7). �

4. The Lonely Vector Problem, and a finite checking result for sLRC

4.1. Proof of Theorem B’

In this section, we prove Theorem B’ (and thus Theorem B). We keep the notation from the previous
section and, in particular, we consider the set of vectors

P = {p𝑖 = (𝜌𝑖 , 𝑣𝑖) : 1 ≤ 𝑖 ≤ 𝑛} ⊆ Q × Z

from the proof of Theorem 3.1. They are not all parallel to each other since that would imply the vectors
(𝑣1, . . . , 𝑣𝑛) and (𝜌1, . . . , 𝜌𝑛) to be parallel, which cannot happen because

𝑛∑
𝑖=1

𝑣𝑖u𝑖 = 0,
𝑛∑
𝑖=1

𝜌𝑖u𝑖 = w ≠ 0.

Since we deal with Conjecture B, or its equivalent geometric formulation, Conjecture B’, we may further
assume that the 𝑣𝑖 are positive and pairwise distinct. In particular, no two vectors from P are equal or
opposite.

Our goal is to prove that the zonotope 𝑍v contains an sLRZ of type (3.2), (3.3) or (3.4), but we are
only able to do this assuming that P has the Lonely Vector Property (LVP) introduced in Definition 1.2.

Proposition 4.1. Suppose that

1. 𝑍 =
∑𝑛

𝑖=1 [0, u𝑖] ⊆ R𝑛−1 is an sLRZ, and that
2. the set of vectors P = {p𝑖 = (𝜌𝑖 , 𝑣𝑖) : 1 ≤ 𝑖 ≤ 𝑛} satisfies the Lonely Vector Property, where

(𝑣1, . . . , 𝑣𝑛) is the volume vector of Z and w =
∑𝑛

𝑖=1 𝜌𝑖u𝑖 ∈ Z𝑛−1 is a lattice vector attaining the first
successive minimum of 𝑍 − 𝑍 .

Then, 𝑇 (𝑍) contains an sLRZ of type (3.2), (3.3) or (3.4).

Proof. We distinguish two cases: assume first that one of the vectors, without loss of generality p𝑛, is
not parallel to any nonzero vector of the form p𝑘 ± pℓ , where (𝑘, ℓ) ≠ (𝑛, 𝑛). Then, the zonotope

𝑍 ′ =
𝑛−1∑
𝑖=1

[0, y𝑖],
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where 𝑇 (u𝑖) = y𝑖 is an sLRZ. Indeed, if two volumes of parallelepipeds of 𝑍 ′ were equal, then by
Lemma 3.2 and Proposition 3.3 we would have����𝜌𝑖 𝜌𝑛

𝑣𝑖 𝑣𝑛

���� = ±
����𝜌 𝑗 𝜌𝑛

𝑣 𝑗 𝑣𝑛

����,
for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑛−1, or equivalently, p𝑛 would be parallel to p𝑖±p 𝑗 , contradicting the assumption
on p𝑛. If one volume were zero, then p𝑛 would be parallel to some p𝑖 , 1 ≤ 𝑖 ≤ 𝑛−1, again a contradiction.

For the second case, we assume that p𝑛−1 ± p𝑛 is not parallel to any nonzero vector of the form
p𝑘 ± pℓ , where (𝑘, ℓ) ≠ (𝑛 − 1, 𝑛). Then, the zonotope

𝑍 ′ =
𝑛−2∑
𝑖=1

[0, y𝑖] + [0, y𝑛−1 ∓ y𝑛],

is an sLRZ. Indeed, if two volumes of parallelepipeds of 𝑍 ′ were equal, then by Lemma 3.2 and
Proposition 3.4 we would have ����𝜌𝑖 𝜌𝑛−1 ± 𝜌𝑛

𝑣𝑖 𝑣𝑛−1 ± 𝑣𝑛

���� = ±
����𝜌 𝑗 𝜌𝑛−1 ± 𝜌𝑛

𝑣 𝑗 𝑣𝑛−1 ± 𝑣𝑛

����,
for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1, or equivalently, p𝑛−1 ± p𝑛 would be parallel to p𝑖 ± p 𝑗 , contradicting the
assumption on p𝑛. If one volume were zero, then p𝑛−1 ± p𝑛 would be parallel to some p𝑖 , 1 ≤ 𝑖 ≤ 𝑛− 1,
again a contradiction, completing the proof. �

Proof of Theorem B’. We suppose that Conjecture B’ holds for 𝑛 − 1, so in particular it holds for the
sLRZ 𝑍 ′ ⊆ 𝑇 (𝑍), which exists by Proposition 4.1. On the other hand, by Lemma 2.5, 𝜆1 (𝑍−𝑍) ≤ 2

𝑛(𝑛+1) .
Thus, Proposition 2.7 gives

𝜇(𝑍) ≤ 𝜆1(𝑍 − 𝑍) + 𝜇(𝑇 (𝑍),Z𝑛−2)
≤ 𝜆1(𝑍 − 𝑍) + 𝜇(𝑍 ′,Z𝑛−2)

≤ 2
𝑛(𝑛 + 1) +

𝑛 − 2
𝑛

=
𝑛 − 1
𝑛 + 1

. �

4.2. Small cases of the LVP

We now tackle a couple of special cases for which the LVP holds. To this end, recall from the introduction
that for a point set P = {p1, . . . , p𝑛} ⊆ R2 we associate the multiset

𝑆P = P ∪
{
p𝑖 + p 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}
∪

{
p𝑖 − p 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}
.

In the first case, we do not require the vectors to be rational.

Proposition 4.2. Suppose that P = {p1, . . . , p𝑛} linearly spans R2, contains no two equal or opposite
elements and p3, . . . , p𝑛 are parallel. Then, P has the LVP.

Proof. If all but one vector were parallel, say p2 is also parallel to p3, . . . , p𝑛, then all vectors of the
form p 𝑗 ± p𝑘 are parallel to p2 as well, for 2 ≤ 𝑗 , 𝑘 ≤ 𝑛. Then, obviously each vector p1 ± p 𝑗 is not
parallel to any other vector in 𝑆P, for 2 ≤ 𝑗 ≤ 𝑛.

If p1 and p2 were parallel, then we write every vector in 𝑆P as a linear combination of p1 and p3.
We may further assume that p2 = 𝜆2p1, with 𝜆2 > 𝜆1 = 1, and p 𝑗 = 𝜇 𝑗p3 for 4 ≤ 𝑗 ≤ 𝑛, with
1 = 𝜇3 < 𝜇4 < 𝜇5 < · · · < 𝜇𝑛. Then, it is clear that p2 + p3 = 𝜆2p1 + p3 is not parallel to any other
vector of 𝑆P; indeed, if there were such a vector in 𝑆P, it should have both coordinates positive, with
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respect to p1 and p3, so, it would be of the form p𝑖 + p 𝑗 = 𝜆𝑖p1 + 𝜇 𝑗p3, with 1 ≤ 𝑖 ≤ 2, 3 ≤ 𝑗 ≤ 𝑛.
However, if (𝑖, 𝑗) ≠ (2, 3), then these vectors cannot be parallel, as 𝜆𝑖 − 𝜇 𝑗𝜆2 < 0.

So, we reduce to the case where p1, p2 and p3 are pairwise not parallel. We first note that changing
a p𝑖 to its opposite or applying a linear transformation to P does not affect the LVP. So, without loss of
generality, we may assume that all p 𝑗 with 3 ≤ 𝑗 ≤ 𝑛 lie on the positive y-axis, and p1, p2 in the first
quadrant, such that p1 has smaller slope than p2; We also assume that

𝑣3 < 𝑣4 < · · · < 𝑣𝑛.

With this convention, the slopes of the vectors p2 + p 𝑗 , 3 ≤ 𝑗 ≤ 𝑛, form a strictly increasing sequence
of numbers strictly between the slope of p2 and the slope of p3, while those of p1 − p 𝑗 , 3 ≤ 𝑗 ≤ 𝑛,
form a strictly decreasing sequence of numbers strictly between the slope of p1 and the slope of −p3.
Therefore, these 2(𝑛 − 2) vectors along with p1, p1 + p2, p2, define 2𝑛 − 1 distinct lines through the
origin, none of them the y-axis. There are a total of (𝑛 − 2)2 vectors of 𝑆P lying on the y-axis, so failure
of the LVP and the pigeonhole principle would imply them to lie in at most 2𝑛− 2 lines, completing the
proof that P indeed satisfies the LVP. �

Corollary 4.3. Any set of three vectors spanning R2, with no two equal or opposite, has the LVP.

We now deal with the case of four vectors, for which we need them to be rational.

Proposition 4.4. Let P = {p1, p2, p3, p4} ⊆ Q2, with not all parallel and no two equal or opposite.
Then, P has the LVP.

Proof. If two of the vectors are parallel then P has the LVP, by Proposition 4.2. So, we may assume that
no two of them are parallel.

Since the LVP is invariant under linear transformation and under changing one or more vectors to
their opposites, we can also assume that

p1 = (1, 0), p2 = (𝑥2, 𝑦2), p3 = (𝑥3, 𝑦3), p4 = (0, 1),

with 𝑥2, 𝑥3, 𝑦2, 𝑦3 > 0 and the slope of p2 smaller than that of p3. Indeed, first perform a rational linear
transformation sending p4 to (0, 1); then assume without loss of generality that p1, p2, p3 have positive
x-coordinate (changing them to their opposite if needed) and are ordered according to slope (relabelling
them if needed); finally, send p1 to (1, 0) with a second rational linear transformation that fixes p4.

The vectors p𝑖 (𝑖 = 1, 2, 3, 4), p𝑖 + p𝑖+1 (𝑖 = 1, 2, 3) and p4 − p1 define eight distinct lines through the
origin; the first seven have non-negative distinct slopes (including 0 and ∞) since

0 ≤ 𝑥𝑖
𝑦𝑖

<
𝑥𝑖 + 𝑥𝑖+1
𝑦𝑖 + 𝑦𝑖+1

<
𝑥𝑖+1
𝑦𝑖+1

≤ ∞, 1 ≤ 𝑖 ≤ 3,

and the last one has negative slope, equal to −1.
Since 𝑆P has 16 elements, the only possibility for P not to satisfy the LVP would be if each of these

eight lines contains exactly two of the vectors; below we show that this possibility leads to a contradiction.
If one of 𝑥𝑖 (𝑖 ∈ {2, 3}) is smaller than 1 then p𝑖 − p1 has negative slope, hence it must have the

slope of p4 − p1, which gives a contradiction since then the three vectors p4 − p𝑖 , p4 − p1 and p𝑖 − p1
are parallel. So, 𝑥2, 𝑥3 ≥ 1. The same argument with p4 − p𝑖 instead of p𝑖 − p1 implies 𝑦2, 𝑦3 ≥ 1. This
now implies that

◦ The only vector of 𝑆P that can have negative slope (in particular, the only one that can be parallel to
p4 − p1) is p3 − p2; hence we assume 𝑥2 + 𝑥3 = 𝑦2 + 𝑦3.

◦ The only vector that can be parallel to p1 is p4 − p2; hence 𝑦2 = 1.
◦ The only one that can be parallel to p4 is p3 − p1; hence 𝑥3 = 1.
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So, we have that

p2 = (𝜆, 1), p3 = (1, 𝜆), (4.1)

for some rational 𝜆 > 1 (𝜆 = 1 would give p2 = p3).
So far we have four pairs of parallel vectors: the three pairs mentioned above (with slopes 0, ∞

and −1), plus p1 + p4 = (1, 1) and p2 + p3 = (1 + 𝜆, 1 + 𝜆) (with slope 1). The eight unpaired vectors
are the following:

p1 + p2, p2, p3, p3 + p4,
p1 + p3, p2 + p4, p2 − p1, p4 − p3.

The first four have different (and increasing) slopes, so we would need to pair the last four to them.
The vector p1 + p3 = (2, 𝜆) has slope strictly between those of p1 and p3. Hence, it must be parallel

either to p2 = (𝜆, 1) or to p1 +p2 = (𝜆 + 1, 1). The first case yields 𝜆 =
√

2, a contradiction, since 𝜆 ∈ Q.
The second case yields 𝜆2 + 𝜆 − 2 = 0, a contradiction, since the two solutions are 𝜆 ∈ {1,−2} and we
had 𝜆 > 1. Thus, we establish a contradiction if we assume that P does not have the LVP, concluding
the proof. �

Remark 4.5. As we said in the introduction, if we remove the restriction that the given vectors are
rational then the vertices of any regular n-gon other than the triangle, hexagon, and square provide a
counter-example to the LVP. In fact, our proof of the LVP for four vectors shows that the only sets of
four vectors, no two parallel or opposite, failing to have the LVP are those of the form expressed in (4.1)
with 𝜆 =

√
2, which are (linearly isomorphic) to four consecutive vertices of the regular octagon.

5. Cosimple configurations and a generalization of sLRC, with a finite checking result

Recall Definition 1.9: A lattice zonotope spanning R𝑑 is called cosimple if there is a linear dependence
among its generators having coefficients that are all nonzero and with pairwise different absolute values.
In particular, a cosimple zonotope inR𝑑 with 𝑑+1 generators has its generators in linear general position,
so that the class of cosimple zonotopes with 𝑑 + 1 generators coincides with the class of sLRZs.

5.1. Proof of Theorem C

The advantage of allowing for more than 𝑑 + 1 generators is that now any projection of a cosimple
zonotope is cosimple. Observe that the projection along one of the generators will make that generator
be zero. We can still consider it part of the vector set although this is irrelevant both for the definition
of cosimplicity (we can give the zero vector an arbitrary coefficient in a linear dependence) and for
Conjecture C (the zero vector as a generator does not affect the covering radius).

Invariance under projection makes the analogue of Theorems A’ and B’ much easier to prove and
allows us to remove the ‘Lonely Vector Problem’ from the latter:

Proof of Theorem C. Let Z be our cosimple zonotope with more than
(𝑑+2

2
)𝑑 lattice points. By

Lemma 2.5 we have 𝜆1(𝑍 − 𝑍) ≤ 1/
(𝑑+2

2
)

and by Proposition 2.7 and the induction hypothesis (using
that the projection of a cosimple zonotope is cosimple)

𝜇(𝑍) ≤ 𝜆1(𝑍 − 𝑍) + 𝜇
(
𝜋(𝑍), 𝜋(Z𝑑)

)
≤ 1(𝑑+2

2
) + 𝑑 − 1

𝑑 + 1
=

𝑑

𝑑 + 2
. �

5.2. Remarks on cosimple zonotopes

We first show that in Conjecture C there is no loss of generality in assuming the generators to be
primitive, generalizing Proposition 2.9:
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Lemma 5.1. Let 𝑑 ≥ 2. If Conjecture C holds in dimension 𝑑−1 for every cosimple zonotope with 𝑛−1
generators, then it holds in dimension d for all cosimple zonotopes with n generators one of which is not
primitive or two of which agree or are opposite to one another.

Proof. If two generators agree or are opposite to one another, then we can substitute their sum for the
two of them, so we are in the case of a nonprimitive generator.

Hence, let Z be a cosimple d-zonotope with n generators u1, . . . , u𝑛 ∈ Z𝑑 and suppose without loss
of generality that u𝑛 = 𝑘e𝑑 , for some 𝑘 ∈ Z≥2. Let 𝜋 : R𝑑 → R𝑑−1 be the projection that forgets the last
coordinate. Then 𝑍 = 𝑍1 + 𝑍2, where 𝑍1 is the segment of length k in the last coordinate direction and
𝜋(𝑍2) is a cosimple (𝑑 − 1)-zonotope with 𝑛 − 1 generators. Hence, Proposition 2.8 plus the inductive
hypothesis gives

𝜇(𝑍) ≤ max{𝜇(𝑍1), 𝜇(𝜋(𝑍2))} ≤ max
{

1
𝑘

,
𝑑 − 1
𝑑 + 1

}
≤ 𝑑

𝑑 + 2
,

since 𝑑 ≥ 2. �

Corollary 5.2. Let 𝑑 ≥ 2. If Conjecture C holds in dimension 𝑑 − 1 for every cosimple zonotope with
𝑛− 1 generators, then it holds in dimension d for all cosimple zonotopes with n generators one of which
is not primitive or two of which agree or are opposite to one another.

We now characterize cosimple configurations:

Lemma 5.3. Let A be a finite collection of vectors spanning R𝑑 . Then, A is cosimple if and only if
neither of the following conditions hold:

(i) There is a hyperplane H containing all but one of the elements of A.
(ii) There is a hyperplane H containing all but two of the elements of A, and the two elements are at

the same distance from H.

Proof. The ‘only if’ is easy: if (i) happens then the element in question has coefficient zero in every
linear dependence. If (ii) happens then the coefficients of the two elements in question have the same
absolute value in every linear dependence.

For the converse, suppose that none of (i) and (ii) happens. Let 𝐿 ⊆ RA be the linear space of linear
dependence vectors in A. The fact that (i) and (ii) do not hold means that L is not contained in any of
the hyperplanes where a coordinate is zero or where two coordinates have the same absolute value (this
arrangement of hyperplanes happens to be the Coxeter arrangement of type 𝐵𝑛, although we do not
need this). Then, a generic vector 𝜆 from L does not belong to any of those hyperplanes, and certifies
that A is cosimple. �

Remark 5.4. Let us call a vector configuration simple if no element is zero or equal or opposite to
another one.2 The characterization in Lemma 5.3 then says that A is cosimple if and only if its Gale
transform is simple, which explains the name.

To understand this connection, let us briefly review Gale duality; see, for example, [14, Section 4.1]
for more details. If A = {u1, . . . , u𝑛} is a finite set of n vectors in R𝑑 , we call linear evaluations and
linear dependences of A the following two linear subspaces of R𝑛 � RA:

eval(A) :=
{
( 𝑓 (u1), . . . , 𝑓 (u𝑛)) : 𝑓 ∈ (R𝑑)∗

}
,

dep(A) := {(𝜆1, . . . , 𝜆𝑛) ∈ R𝑛 : 𝜆1u1 + · · · + 𝜆𝑛u𝑛 = 0}.

2This is close, but not the same, as what simple means in matroid theory. Since a matroid forgets the lengths of vectors and
remembers only their (in)dependence, in matroid theory the word ‘simple’ excludes also proportional vectors, not only those that
are equal or opposite.
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These two subspaces are orthogonal complements of one another, and have ranks equal to k and 𝑛 − 𝑘 ,
where k is the rank of A. (In what follows we assume 𝑘 = 𝑑). A subset B ⊆ R𝑛−𝑑 of size n is called a
Gale transform or a Gale dual of A if it has the following two equivalent properties3:

eval(A) = dep(B), eval(B) = dep(A).

In this language, Lemma 5.3 says that A is cosimple if and only if none of e𝑖 or e𝑖 ± e 𝑗 lie in eval(A),
where e𝑖 denotes the i-th standard basis vector. The same conditions for dep(B) are equivalent to B
being simple.
Corollary 5.5. Any set of integer vectors in linear general position with at least two more vectors than
its dimension is cosimple.
Proof. Assuming, for contradiction, that the vectors are not cosimple, the obstructions in Lemma 5.3
imply that all but (at most) two of them lie in a hyperplane, hence they are not in linear general
position. �

Corollary 5.6. Every cosimple zonotope has lattice-width three or more. Conversely, if Z is a lattice
d-zonotope of width three or more, not a parallelepiped, and its generators span the lattice, then Z is
cosimple.
Proof. For the first part we argue by contradiction. If f is an integer linear functional giving width
𝑤 ∈ {1, 2} to a lattice zonotope Z there are two possibilities: either f is zero in all but one of the
generators, or it has value ±1 in two of them and is zero in the rest. Both cases imply Z not to be
cosimple, by Lemma 5.3.

For the second part, suppose that Z is not cosimple and that the generators of Z integrally span Z𝑑 .
By Lemma 5.3 one of the following happens:
1. All but one of the generators lie in a hyperplane. Then the condition that the generators span the

lattice implies that Z has width one with respect to that hyperplane.
2. All but two generators lie in a hyperplane, and the functional f vanishing on that hyperplane has the

same value on the other two generators. Again, the condition that generators span the lattice implies
that f has value ±1 on those two generators, hence Z has width two. �

Lemma 5.3 implies that being cosimple is closed under extending the set. Since the covering radius
is nonincreasing with respect to inclusion, minimal counter-examples to Conjecture C must be also
minimal cosimple configurations; that is, cosimple configurations with the property that removing an
element produces a noncosimple one. To this end, in the following result we characterize minimal
cosimple configurations, except that the characterization is easier to express in terms of Gale duality:
Corollary 5.7. Let A be a cosimple configuration and let B be its Gale transform. Then, A is minimal
cosimple if and only if in B every element is parallel to either another element or to the sum or difference
of some other two elements.
Proof. Via Gale duality, deleting an element u in a configuration A is equivalent to contracting the
corresponding element v in its Gale dual B, which geometrically amounts to projecting B along the
direction of v (see [14, Section 4.2]). Hence, we want to characterize the simple configurations B with
the property that the projection of B \ v along the direction of v fails to be simple for every v ∈ B.

The failure may happen in two ways: either B has two parallel elements, so that projecting along
one of them makes the other one zero, or B has two elements with sum or difference parallel to a third
element, so that projecting along the latter makes the first two equal or opposite. �

3Although this is not relevant in this paper, the definition of Gale duality includes an implicit bijection between the elements
of A and B. That is to say, A and B are considered labelled and Gale duality takes the labelling into account. Also, the Gale dual
of a set of vectors may have repeated vectors, hence being a multiset. These two aspects, labelling and the possibility of repeated
elements, can simultaneously be taken into account regarding A and B not as sets of vectors but rather as matrices of sizes 𝑑 ×𝑚
and (𝑚− 𝑑) ×𝑚, whose columns are the ‘vector configurations’ we are interested in. This is the point of view taken in [14]; see,
for example, Sections 2.1 and 2.5 in that book.
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This characterization of minimal cosimple configurations shows that the zonotopes of type (3.2),
(3.3) and (3.4) are the natural ones to consider in Sections 3 and 4.

6. Dimension two: proof of sLRC and its cosimple generalization

That Conjecture B’ holds in dimension two (equivalently, that the shifted LRC holds for four runners)
has been proved in [12]. Here, we give a proof of the stronger Conjecture C in dimension two and for
an arbitrary number n of generators. The idea is to show that we only need to look at zonotopes of very
small volume. For this, we use two immediate consequences of Lemma 2.10:

Corollary 6.1.

(i) Let 𝐶 ⊆ R2 be a convex body of lattice-width at least w and covering radius greater than 𝜇, with
𝜇𝑤 > 1. Then,

vol(𝐶) <
𝑤2

2𝜇𝑤 − 2
.

(ii) Let Z be a lattice 2-zonotope of lattice-width 𝑤 ≥ 3 and covering radius 𝜇 > 1/2. Then,

𝑤 = 3 , 𝜇 ≤ 2
3

and vol(𝑍) ≤ 8.

Proof. (i): This is basically a rephrasing of Lemma 2.10. Let 𝜇′ > 𝜇 be the covering radius of C and let
𝐶 ′ = 𝜇′𝐶, which has a hollow translate and lattice-width at least 𝜇′𝑤 > 1. Then, Lemma 2.10 gives

vol(𝐶) = vol(𝐶 ′)
𝜇′2 ≤ 𝜇′2𝑤2

𝜇′22(𝜇′𝑤 − 1)
=

𝑤2

2𝜇′𝑤 − 2
<

𝑤2

2𝜇𝑤 − 2
.

(ii): As before, the zonotope 𝑍 ′ = 𝜇𝑍 has a hollow translate, and by the assumptions, its lattice-width
equals 𝜇𝑤 and is strictly greater than 3/2. Moreover, we also have 𝜇𝑤 ≤ 2 by the two-dimensional
‘flatness theorem’ for 0-symmetric convex bodies due to [3, Corollary 2.7]. In combination, the in-
equalities 3/2 < 𝜇𝑤 ≤ 2 and 𝜇 > 1/2 give 𝑤 = 3 and 𝜇 ≤ 2/3, because the lattice-width of any lattice
zonotope is an integer.

Regarding the volume, Lemma 2.10 together with 1/𝜇 < 2 gives

vol(𝑍) = vol(𝑍 ′)
𝜇2 <

4(𝜇𝑤)2

2(𝜇𝑤 − 1) ≤ 9.

The last inequality holds, since the function 𝑥 ↦→ 𝑥2

𝑥−1 has maximum value equal to 9/2 in the interval
𝑥 ∈ [ 3

2 , 2]. Finally, the volume of any lattice zonotope is an integer, so that vol(𝑍) ≤ 8 as claimed. �

For the proof of our main two-dimensional result we need the following classification of lattice
parallelograms with primitive generators. The classification is up to affine transformations that do
not change the lattice Z𝑑 . More precisely, two lattice polytopes 𝑃, 𝑄 ⊆ R𝑑 are called unimodularly
equivalent if there is a unimodular matrix 𝑈 ∈ Z𝑑×𝑑 , that is, | det(𝑈) | = 1, and a translation vector
t ∈ Z𝑑 such that 𝑃 = 𝑈𝑄 + t; in symbols 𝑃 � 𝑄.

Lemma 6.2. Let P be a lattice parallelogram of area q with primitive generators. Then, P is unimodularly
equivalent to

𝑃𝑝,𝑞 := [0, e1] + [0, (𝑝, 𝑞)],

for some 𝑝 ∈ Z with gcd(𝑝, 𝑞) = 1. Moreover, 𝑃𝑝,𝑞 and 𝑃𝑝′,𝑞 are unimodularly equivalent if
𝑝′ = ±𝑝±1 mod 𝑞.

Hence, if 𝑞 ≤ 8, then P is equivalent to either 𝑃1,𝑞 or to one of 𝑃2,5, 𝑃2,7, 𝑃3,8.
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Proof. Since our generators are primitive, there is no loss of generality in assuming that the first one
is e1, which already implies that our parallelogram is a lattice translation of 𝑃𝑝,𝑞 for some p. The
condition gcd(𝑝, 𝑞) is neccessary (and sufficient) for the generator (𝑝, 𝑞) to be primitive.

The unimodular transformation
(1 1
0 1

)
shows that 𝑃𝑝,𝑞 � 𝑃𝑝+𝑞,𝑞; hence p is only important modulo q.

That 𝑃𝑝,𝑞 � 𝑃−𝑝,𝑞 follows by reflection on the y-axis (followed by the translation by the vector e1) and
that 𝑃𝑝,𝑞 � 𝑃𝑝′,𝑞 when 𝑝′ = 𝑝−1 mod 𝑞 follows from the fact that if 𝑝′𝑝 = 1 + 𝑎𝑞 for some integer a,
then the unimodular transformation

(𝑝′ −𝑎
𝑞 −𝑝

)
sends {e1, (𝑝, 𝑞)} to {(𝑝′, 𝑞), e1}. �

Theorem 6.3. All lattice 2-zonotopes of covering radius greater than 1/2 are unimodularly equivalent
to one of the following:

1. Parallelograms of lattice-width one, generated by {(1, 0), (0, 𝑘)} for some 𝑘 ≥ 1.
2. Parallelograms 𝑃1,𝑘 of lattice-width two and area k, 𝑘 ≥ 2.
3. Hexagons of lattice-width two, with volume vector (1, 1, 𝑘) for some 𝑘 ≥ 1.
4. The parallelogram 𝑃2,5 of lattice-width three and volume 5.

In particular, Conjecture C holds in dimension two for any number of generators.

Proof. Let Z be a lattice 2-zonotope. We argue depending on the lattice-width of Z. Lattice-width one
implies that Z is (up to unimodular equivalence) a parallelogram of the type in part (1).

Parallelograms of lattice-width two must attain their width either with respect to a diagonal direction
or with respect to an edge e. The former are the parallelograms in part (2), and the latter have 𝜇(𝑍) = 1/2
unless the edge e is primitive, in which case they have area two and are either in part (1) or part (2),
with 𝑘 = 2.

The nonparallelograms of lattice-width two necessarily have three generators which can be assumed
to be (𝑎, 0), (𝑏, 1), (𝑐, 1), as we may apply a unimodular transformation so that the lattice-width is
attained in the direction of the second coordinate. Such a hexagon contains the parallelogram with
generators (𝑎, 0) and (𝑏 + 𝑐, 2), whose covering radius is max{ 1

2 , 1
𝑎 }, so 𝜇(𝑍) > 1/2 implies 𝑎 = 1 and

the volume vector is (1, 1, 𝑘), with 𝑘 = |𝑏 − 𝑐 |.
Hence, for the rest of the proof we assume that Z has lattice-width at least three and covering radius

𝜇 = 𝜇(𝑍) > 1/2, which implies by Corollary 6.1 (ii) that vol(𝑍) ≤ 8.
We now argue depending on the number of generators in Z. This number must be less than five, since

the volume of a lattice zonotope with n generators (in linear general position) is at least
(𝑛
2
)
, and

(5
2
)

> 8.
So, we have three cases:

◦ Suppose that Z has two generators, that is, it is a parallelogram. If one of the generators is not
primitive, then the fact that this edge has length at least two and that the width of Z with respect to
the functional constant on this edge is more than two implies 𝜇(𝑍) ≤ 1/2. (This is a particular case
of Proposition 2.8, where we project Z along the functional f ).

If Z is a parallelogram with both edges primitive, Lemma 6.2 implies that Z is either in part (2) or
it is equivalent to one of 𝑃2,5, 𝑃2,7, 𝑃3,8. Since 𝑃2,5 is in part (4), we only need to check that 𝑃2,7 and
𝑃3,8 have 𝜇 ≤ 1/2. For this:
– 𝑃2,7 contains the parallelogram 𝑃′ generated by u1 = (2, 6) and u2 = (1, 1); u1 is not primitive

and 𝑃′ has lattice-width two with respect to the functional 𝑓 (𝑥, 𝑦) = 3𝑥 − 𝑦 vanishing on it, so
𝜇(𝑃2,7) ≤ 𝜇(𝑃′) ≤ 1/2.

– 𝑃3,8 is equivalent to 𝑃5,8, which contains the parallelogram 𝑃′ generated by (2, 2) and (4, 6); since
none of them is primitive, 𝜇(𝑃5,8) ≤ 𝜇(𝑃′) ≤ 1/2.

◦ Suppose that Z has three generators. The volume vector cannot be (2, 2, 2) or of the form (𝑎, 𝑎, 𝑏) with
gcd(𝑎, 𝑏) = 1 since that implies lattice-width two. Indeed, without loss of generality assume that the
generator separating the two a’s (with 𝑎 = 𝑏 = 2 in the first case) is of the form (𝑝, 0). Then the other
two generators are (𝑞, ℎ) and (𝑟, ℎ) with 𝑎 = 𝑝ℎ, so that 𝑏 = (𝑞 − 𝑟)ℎ. Then, gcd(𝑎, 𝑏) = 1 implies
ℎ = 1, hence width two. The case 𝑎 = 𝑏 = 2, using 𝑏 = (𝑞−𝑟)ℎ leads to either ℎ = 1 (hence width two)
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Figure 1. The five hexagons in the proof of Theorem 6.3, with their volume vectors. In each of them a
parallelepiped with base and height equal to 2 is shown, to illustrate that the hexagons have 𝜇 ≤ 1

2 .

Figure 2. The octagon in the proof of Theorem 6.3, with an inscribed square implying 𝜇 ≤ 1
2 .

or 𝑞 − 𝑟 = 1, implying that one of q or r is even and the corresponding generator is not primitive.This
leaves only the following possible volume vectors (𝑣1, 𝑣2, 𝑣3) satisfying 𝑣1 + 𝑣2 + 𝑣3 ≤ 8:

(𝑣1, 𝑣2, 𝑣3) ∈ {(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (2, 2, 4)}.

That these five zonotopes have 𝜇 ≤ 1
2 is illustrated in Figure 1, where they are shown to contain a

parallelepiped with horizontal base of length two and height two. That parallelepiped has 𝜇 = 1
2 ,

so a polygon containing it has 𝜇 bounded by that. (For (1, 2, 3) we show that such a parallelpiped
is contained in 𝑍1 ∪ 𝑍2 where 𝑍1 and 𝑍2 are translated to one another by the vector (2, 2) ∈ 2Z2,
which is enough for the implication.) In fact, their exact covering radii are 1

2 , 3
7 , 3

7 , 3
7 , and 1

2 (see [12,
Table 2] for the first four).

◦ If Z has four pairwise nonproportional generators, then the volume of Z equals the sum of the six
volumes of the parallelograms generated by the 2-element subsets of the generators (cf. [24, Eq. (57)]).
The only possibilities for the volume 6-tuples adding up to eight or less are

{(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 2), (1, 1, 1, 1, 1, 3), (1, 1, 1, 1, 2, 2)}.

These numbers, modulo sign and reordering, are the six 2 × 2 minors (𝑝𝑖 𝑗 )1≤𝑖< 𝑗≤4 of a 2 × 4 matrix,
hence they have to satisfy the following Plücker relation (see, e.g., [21, Section 4.2]):

𝑝14 𝑝23 − 𝑝13 𝑝24 + 𝑝12 𝑝34 = 0.

The only one where this is possible is (1, 1, 1, 1, 1, 2), corresponding uniquely (modulo unimodular
transformation) to the zonotope generated by (1, 0), (0, 1), (1, 1), and (1,−1). This has covering
radius exactly 1/2 (see Figure 2). �

Remark 6.4. The covering radii of the zonotopes in Theorem 6.3 can be computed to be as follows:

1. 𝜇 = 1;
2. 𝜇 = 1/2 + 1/𝑘 , if k is even, and 𝜇 = 1/2 + 1/(2𝑘), if k is odd;
3. 𝜇 = 1/2 + 1/(2𝑘 + 2), if k is even, and 𝜇 = 1/2 + 1/(4𝑘 + 2), if k is odd;
4. 𝜇 = 3/5.

In our calculations below (proof of Proposition 7.4) we need the last one of them, so let us prove it.
Using Lemma 6.2 it is easy to see that 𝑃2,5 is isomorphic to the parallelogram Q generated by (2,−1)
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Figure 3. The covering radius of the parallelogram 𝑄 � 𝑃2,5 equals 3/5: The left picture shows that Q
contains a translation of the square [0, 5/3]2; hence 𝜇(𝑃2,5) ≤ 3/5. For the equality, consider the right
picture, where we scale down Q by 3/5 about its centre, so that the axes-parallel square in it becomes
a lattice unit square with its vertices in the boundary of (3/5)𝑄. Since any smaller dilation will fail to
contain points from Z2, we have that 𝜇 · 𝑃2,5 + Z2 does not cover R2 for any 𝜇 < 3/5.

and (1, 2), depicted in the left picture of Figure 3. The caption of the figure explains why, indeed,
𝜇(𝑃2,5) = 𝜇(𝑄) = 3/5.

Proposition 6.5. Let 𝑛 ≥ 4. Suppose that Conjecture B holds for 𝑛 − 1 velocities and that we have an
instance with n velocities satisfying gcd(𝑣1, . . . , 𝑣𝑛) = 1. If 𝛿 = gcd(𝑣3, . . . , 𝑣𝑛) satisfies

𝛿 ≥ 2 + 8
𝑛 − 3

and 𝛿 is even, or

𝛿 ≥ 1 + 4
𝑛 − 3

and 𝛿 is odd,

then Conjecture B holds for 𝑣1, . . . , 𝑣𝑛.

Proof. In the light of Lemma 2.2, the condition 𝛿 = gcd(𝑣3, . . . , 𝑣𝑛) is equivalent to saying that the
parallelogram 𝑍{1,2} spanned by u1 and u2 has area 𝛿.

If 𝜇(𝑍{1,2}) ≤ 𝑛−1
𝑛+1 then sLRZ holds for (𝑣1, . . . , 𝑣𝑛) by Proposition 2.8 applied to the projection

along the plane lin({u1, u2}). Indeed, every fibre of the projection contains a translated copy of 𝑍{1,2},
and the image of the projection is an sLRZ with two less generators.

Hence, we have to consider only the parallelograms with 𝜇(𝑍{1,2}) > 𝑛−1
𝑛+1 ≥ 3

5 , listed in Theorem 6.3
and whose covering radii are given in Remark 6.4. Those of part (1) are discarded by Lemma 5.1, since
they have a nonprimitive generator amd the one in part (3) has covering radius 3

5 ≤ 𝑛−1
𝑛+1 , so only those

in part (2) need to be considered. These have covering radius 1/2 + 1/𝛿 if their area 𝛿 is even, and
1/2 + 1/2𝛿, if it is odd. The inequalities

1
2
+ 1

𝛿
≤ 𝑛 − 1

𝑛 + 1
and

1
2
+ 1

2𝛿
≤ 𝑛 − 1

𝑛 + 1

are, respectively, equivalent to the ones in the statement. �

The values of 𝛿 not covered by Proposition 6.5 quickly decrease with n. In fact, since Conjecture B
holds for 𝑛 ≤ 4 (see Remark 1.12), the proposition implies the following:

Corollary 6.6. Suppose that Conjecture B holds for 𝑛 − 1 velocities but fails for some vector with n
velocities and satisfying gcd(𝑣1, . . . , 𝑣𝑛) = 1. Then either:

1. 𝑛 ∈ {5, 6} and gcd(𝑣3, . . . , 𝑣𝑛) ∈ {1, 2, 4}, or
2. 𝑛 ≥ 7 and gcd(𝑣3, . . . , 𝑣𝑛) ∈ {1, 2}.

7. Dimension three: volume bound for potential counterexamples

We here prove that any potential counter-example to Conjecture C for dimension 3 (and hence any
potential counterexample to Conjectures B and B’ for 𝑛 = 4) has volume bounded by 195. Independently
of the zonotope to be cosimple, we show the following stronger result:
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Theorem 7.1. Let Z be a lattice 3-zonotope with 𝜇(𝑍) ≥ 3/5 and let w be its lattice-width. Then, 𝑤 ≤ 6
and if 𝑤 ≥ 3, then either:

1. 𝑤 = 3 and either vol(𝑍) ≤ 120 or Z is a parallelepiped projecting to the parallelogram 𝑃2,5 of
Theorem 6.3. If Z is an sLRZ then vol(𝑍) ≤ 80.

2. 𝑤 = 4 and vol(𝑍) ≤ 195.
3. 𝑤 = 5 and vol(𝑍) ≤ 125.
4. 𝑤 = 6 and vol(𝑍) ≤ 98.

That all cosimple zonotopes (hence all sLRZ) have lattice-width at least three follows from
Corollary 5.6. In what follows, we treat separately the cases of lattice-width at least four and equal
to three.

7.1. Zonotopes of lattice-width at least four

To deal with zonotopes of lattice-width at least four, we argue similarly as we did in Corollary 6.1
and make use of Lemma 2.11, which is the corresponding three-dimensional volume bound for hollow
convex bodies.

Corollary 7.2. Let Z be a lattice 3-zonotope of lattice-width 𝑤 ≥ 4 and covering radius 𝜇 ≥ 3/5. Then,
𝑤 ≤ 6 and the volume of Z is upper bounded by

(i) 195 if 𝑤 = 4,
(ii) 125 if 𝑤 = 5,

(iii) 98 if 𝑤 = 6.

Proof. It is proven in [2, Theorem 5.2] that a hollow convex 3-body has lattice-width bounded by 3.972.
Hence, for a convex body of covering radius 𝜇 ≥ 3/5 we have

𝑤 ≤ 3.972𝜇−1 ≤ 3.972 · 5
3
= 6.62.

This shows 𝑤 ≤ 6, since the lattice-width of the lattice zonotope Z is an integer.
For the volume, let 𝑍 ′ = 𝜇𝑍 , which has a hollow translate and lattice-width 𝜇𝑤. For 𝑤 ≥ 5, we have

𝜇𝑤 ≥ 3 so we can apply the first bound in Lemma 2.11, which gives

vol(𝑍) = 𝜇−3 vol(𝑍 ′) ≤ 8𝜇−3 𝜇3𝑤3

(𝜇𝑤 − 1)3 =

(
2𝑤

𝜇𝑤 − 1

)3
≤

(
10𝑤

3𝑤 − 5

)3
.

Plugging in 𝑤 = 5 and 𝑤 = 6 gives bounds of (50/10)3 = 125 and (60/13)3 = 98.32, respectively. The
observation that vol(𝑍) is an integer gives the bound for cases (ii) and (iii).

For 𝑤 = 4, we may need to use the first bound of Lemma 2.11 or the second one, depending on 𝜇,
since for 𝜇 ≈ 3/5 we have that 𝜇𝑤 ≈ 12/5 = 2.4. Thus, we use the maximum of the two bounds. Using
𝜇 ≥ 3/5, the first bound gives

vol(𝑍) = 𝜇−3 vol(𝑍 ′) ≤ 𝜇−3 8𝜇3𝑤3

(𝜇𝑤 − 1)3 =
8 · 43

(4𝜇 − 1)3 ≤ 403

73 = 186.59,

and the second one gives

vol(𝑍) = 𝜇−3 vol(𝑍 ′) ≤ 3𝑤3

4(𝜇𝑤 − (1 + 2/
√

3))
≤ 48

12/5 − (1 + 2/
√

3)
= 195.68,

finishing the proof. �
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Remark 7.3. The same ideas from the proof of [20, Theorem 2.1], but assuming C to be 0-symmetric,
imply that the first bound in Lemma 2.11 applies for 𝑤 ≥

√
5 ≈ 2.236. Using this extended bound in the

proof of Corollary 7.2 would reduce the volume bound for lattice-width 𝑤 = 4 to 186, instead of 195.

7.2. Zonotopes of lattice-width three

For the rest of the section, let Z be a lattice 3-zonotope of lattice-width three. We first treat the case
where the lattice-width is attained with respect to (at least) two different integer linear functionals, and
then we see how the case of a single one splits into two subcases.

7.2.1. Zonotopes of lattice-width three for two different functionals
We here assume that Z is a lattice 3-zonotope of lattice-width three with respect to two (linearly
independent) functionals 𝑓1, 𝑓2. Let us first see that there is no loss of generality in assuming that these
are the first two coordinates. Think of 𝑓1 and 𝑓2 as elements of the dual lattice (Z3)∗. Since

𝑤(𝑍, 𝜆1 𝑓1 + 𝜆2 𝑓2) ≤ 𝜆1𝑤(𝑍, 𝑓1) + 𝜆2𝑤(𝑍, 𝑓2),

there is no loss of generality in assuming that the triangle formed by 𝑓1, 𝑓2 and the origin contains
no other lattice points. Equivalently, this triangle is unimodular, hence part of a lattice basis (see, for
instance, [18, Chapter 1]). Then, a change of basis sends 𝑓1 and 𝑓2 to the first two coordinates.

Then, if we let 𝜋 : R3 → R2 be the projection forgetting the third coordinate, we have that 𝑍 ′ := 𝜋(𝑍)
is a two-dimensional lattice zonotope of lattice-width three that fits in the square [0, 3]2.
Proposition 7.4. Let Z be a lattice 3-zonotope of width three attaining its width w.r.t. two linearly
independent functionals, and with 𝜇(𝑍) ≥ 3

5 . Assume that the projection 𝑍 ′ = 𝜋(𝑍) is contained in the
square [0, 3]2 but is different from the parallelogram 𝑃2,5 of Theorem 6.3.

Then

vol(𝑍) ≤ 5 vol(𝑍 ′)
3 − 5𝜇(𝑍 ′) ≤ 10 vol(𝑍 ′).

Proof. The width of 𝑍 ′ is also at least three, since a functional giving a certain width to 𝑍 ′ lifts to a
functional with the same width on Z. Hence, the fact that 𝑍 ′ does not equal 𝑃2,5 implies, by Theorem 6.3,
that 𝜇(𝑍 ′) ≤ 1/2.

Let h denote the maximum length among the fibres {𝜋−1(x) ∩ 𝑍 : x ∈ 𝑍 ′}, and let x ∈ 𝑍 ′ be a point
attaining this maximum h. Then, for each 𝑘 ∈ (0, 1], we find that the zonotope 𝑍 ′

𝑘 := x+ 𝑘 (𝑍 ′ −x) ⊆ 𝑍 ′

has 𝜇(𝑍 ′
𝑘 ) = 𝜇(𝑍 ′)/𝑘 and for every y ∈ 𝑍 ′

𝑘 the length of 𝜋−1(y) is at least (1 − 𝑘)ℎ.
Taking 𝑘 = 5𝜇(𝑍 ′)/3 ≤ 5/6, we have that 𝜇(𝑍 ′

𝑘 ) = 3/5 and that every fibre over a point y ∈ 𝑍 ′
𝑘 has

length at least 3−5𝜇 (𝑍 ′)
3 ℎ. By Proposition 2.8, 𝜇(𝑍) ≥ 3/5 and 𝜇(𝑍 ′) < 3/5 implies that some y ∈ 𝑍 ′

𝑘
must have length bounded by 5/3, that is,

3 − 5𝜇(𝑍 ′)
3

ℎ ≤ 5/3 ⇒ ℎ ≤ 5
3 − 5𝜇(𝑍 ′) ≤ 10 ,

also using 𝜇(𝑍 ′) ≤ 1/2. Since, obviously, vol(𝑍) ≤ ℎ vol(𝑍 ′), the result follows. �

Corollary 7.5. Let Z be a lattice 3-zonotope that has lattice-width three w.r.t. two linearly independent
functionals. If 𝜇(𝑍) ≥ 3

5 , then vol(𝑍) ≤ 80, unless Z is a parallelepiped projecting to 𝑃2,5.
Proof. If Z projects to 𝑃2,5, the fact that 𝑃2,5 is a parallelogram with primitive generators implies that Z
is a parallelepiped. Since we assume this does not happen, we can apply the bound of Proposition 7.4. Let
𝑍 ′ = 𝜋(𝑍), as in that statement. If 𝑍 ′ = [0, 3]2, then vol(𝑍 ′) = 9 and 𝜇(𝑍 ′) = 1/3, so Proposition 7.4
gives vol(𝑍) ≤ 45

3− 5
3
= 33.75. If 𝑍 ′ ≠ [0, 3]2, then vol(𝑍 ′) ≤ 8 and the same result gives vol(𝑍) ≤

10 vol(𝑍 ′) ≤ 80. �
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7.2.2. Zonotopes of lattice-width three for a unique functional
We first prove some technical lemmas. In the first one, we say that a polytope P is centrally symmetric
if there is a point x ∈ 𝑃 such that 𝑃 − x = x − 𝑃. For example, all zonotopes are centrally symmetric,
but the lemma holds without the zonotopal assumption.

Lemma 7.6. Let P be a centrally symmetric lattice 3-polytope of lattice-width three with respect to a
unique lattice functional f. We assume 𝑓 (𝑃) = [0, 3] and denote 𝑃𝑘 := 𝑃 ∩ 𝑓 −1(𝑘), for each 𝑘 ∈ [0, 3].
1. 𝜇(𝑃𝑘 ) ≤ 2𝜇(𝑃1), for every 𝑘 ∈ [2/3, 7/3].
2. If 𝑃1 is a lattice polytope, then

𝑤 𝑓 (𝑃) = 𝑤(𝑃1),

where 𝑤 𝑓 (𝑃) denotes the minimum width of P with respect to lattice functionals not proportional to f.
3. Assume that P is a zonotope. Then,

(a) vol(𝑃) ≤ 3 vol(𝑃1), and
(b) if, moreover, P has at most one generator u orthogonal to f, that is, with 𝑓 (u) = 0, then

vol(𝑃) = 2 vol(𝑃1).
Proof. Let us start with part (1):

◦ If 𝑘 ∈ [2/3, 1], then

𝑘𝑃1 ⊆ (1 − 𝑘)𝑃0 + 𝑘𝑃1 ⊆ 𝑃𝑘 ⇒ 𝜇(𝑃𝑘 ) ≤
1
𝑘

𝜇(𝑃1) ≤
3
2

𝜇(𝑃1) < 2𝜇(𝑃1).

◦ If 𝑘 ∈ [1, 3/2], then

(2 − 𝑘)𝑃1 ⊆ (2 − 𝑘)𝑃1 + (𝑘 − 1)𝑃2 ⊆ 𝑃𝑘 ⇒ 𝜇(𝑃𝑘 ) ≤
1

2 − 𝑘
𝜇(𝑃1) ≤ 2𝜇(𝑃1),

where equality can possibly hold only for 𝑘 = 3/2.
◦ If 𝑘 ∈ [3/2, 7/3], then by central symmetry of P around a point x ∈ 𝑃 with 𝑓 (x) = 3/2, we get

𝜇(𝑃𝑘 ) = 𝜇(𝑃3−𝑘 ) ≤ 2𝜇(𝑃1).
Let us now prove part (2). That 𝑤 𝑓 (𝑃) ≥ 𝑤(𝑃1) is clear: every lattice functional 𝑓 ′ not proportional to
f restricts to a nonzero lattice functional on 𝑃1, so the width of 𝑃1 is smaller than or equal to the width
of P with respect to 𝑓 ′.

For the converse, let us assume without loss of generality that f equals the third coordinate, so that
we identify each 𝑃𝑘 ⊆ R2 × {𝑘} with its projection along that coordinate.

Let 𝑔 : R2 → R be a lattice functional attaining the lattice-width of 𝑃1. By central symmetry of P
and the hypothesis on 𝑃1 being a lattice polytope, 𝑔(𝑃1) and 𝑔(𝑃2) are integer segments of the same
length, equal to 𝑤 := 𝑤(𝑃1). Let m be the integer with

𝑔(𝑃2) = 𝑚 + 𝑔(𝑃1)

and consider the functional

𝑓 ′(𝑥1, 𝑥2, 𝑥3) := 𝑔(𝑥1, 𝑥2) − 𝑚𝑥3.

Let S be the segment 𝑆 := 𝑔(𝑃1) −𝑚. By construction, 𝑓 ′(𝑃1) = 𝑓 ′(𝑃2) = 𝑆; and we only need to prove
𝑓 ′(𝑃) ⊆ 𝑆 and get 𝑤 𝑓 (𝑃) ≤ length( 𝑓 ′(𝑃)) ≤ length(𝑆) = 𝑤(𝑃1).
Claim. 𝑓 ′(𝑃1) = 𝑓 ′(𝑃2) = 𝑆 implies 𝑓 ′(𝑃) ⊆ 𝑆.

Consider the 2-dimensional image 𝑄 := 𝐹 (𝑃) under the map

𝐹 : R3 → R2 with p ↦→ ( 𝑓 ′(p), 𝑓 (p)).

https://doi.org/10.1017/fms.2025.10107 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10107


Forum of Mathematics, Sigma 29

Q is a 2-dimensional lattice polytope contained in R × [0, 3] and with 𝑄1 = 𝑄2 = 𝑆, where we define
𝑄𝑘 := 𝑄 ∩ 𝑓 −1(𝑘) analogously to 𝑃𝑘 . This implies 𝑄 ⊆ 𝑆 × [0, 3], that is, 𝑓 ′(𝑃) ⊆ 𝑆, as desired.

To prove part (3) we first claim a similar result in dimension two:

Claim. Let 𝑃′ be a lattice 2-zonotope of lattice-width three with respect to a lattice functional 𝑓 , with
𝑓 (𝑃′) = [0, 3] and denote 𝑃′

𝑘 := 𝑃′ ∩ 𝑓 −1(𝑘). Then, vol(𝑃′) ≤ 3 vol(𝑃′
1), and if, moreover, 𝑃′

0 is a
single point, then vol(𝑃′) = 2 vol(𝑃′

1).

To prove it, consider the parallelogram 𝑃′′ := 𝑃′ ∩ 𝑓 −1([1, 2]). 𝑃′ is contained in the parallelogram
obtained by extending 𝑃′′ along the edges not orthogonal to 𝑓 ′, so vol(𝑃′) ≤ 3 vol(𝑃′′) = 3 vol(𝑃′

1). If
𝑃′

0 (and hence 𝑃′
3) is a single point, then 𝑃′ \ 𝑃′′ is the union of two triangles of area 1

2 vol(𝑃′′), thus
vol(𝑃′) = 2 vol(𝑃′′) = 2 vol(𝑃′

1).
We now use induction on the number m of generators of the zonotope P orthogonal to f, with base

case 𝑚 = 0. Since the (absolute) values of f on generators not orthogonal to f add up to three, 𝑚 = 0
implies that P has only three generators and f takes value 1 in each of them. The volume of P is then the
determinant of the three generators and the area of the triangle 𝑃1 is half the determinant, so statement
(b) holds in this case.

For the induction step, let u be a generator orthogonal to f. Let Q be the (perhaps two-dimensional)
zonotope generated by the remaining generators of P, and let 𝑃′ be the projection of P along the direction
of u. Then,

vol(𝑃) = vol(𝑄) + ℓ(u) vol(𝑃′), (7.1)

where ℓ(u) denotes lattice length (see Section 3.1). Similarly, with the obvious notations,

vol(𝑃1) = vol(𝑄1) + ℓ(u) vol(𝑃′
1). (7.2)

Notice that, if Q is two-dimensional, then vol(𝑄) = vol(𝑄1) = 0. Now, if u is the only generator
orthogonal to f, then 𝑃′

0 is a single point, so that vol(𝑃′) = 2 vol(𝑃′
1) by the claim, and the induc-

tion hypothesis is the case 𝑚 = 0 implying vol(𝑄) = 2 vol(𝑄1). Combining this with the identi-
ties (7.1) and (7.2) proves statement (b). If 𝑚 ≥ 2, we have vol(𝑃′) ≤ 3 vol(𝑃′

1) by the claim and
vol(𝑄) ≤ 3 vol(𝑄1) by induction hypothesis. Again combining this with (7.1) and (7.2) then proves
statement (a). �

Now, let Z be a lattice 3-zonotope of lattice-width three attained by a unique functional f. As before,
we denote 𝑍𝑘 = 𝑍 ∩ 𝑓 −1(𝑘) below, for 𝑘 ∈ R. Since the width of Z for the functional f equals the sum of
the (absolute) values of f on the generators, lattice-width three implies one of the following possibilities
for the generators of Z that are not orthogonal to f :

1. There are three of them, and f takes value 1 on each of the three.
2. There are two of them, and f takes values 1 and 2 on them, respectively.
3. There is a single one, and f takes value 3 on it.

The last case is easy to discard:

Proposition 7.7 (Case (3) for f ). If Z is a lattice 3-zonotope of lattice-width three with respect to a
unique functional f and has exactly one generator not orthogonal to f, then 𝜇(𝑍) < 3/5.

Proof. Assume that the linear functional f is the third coordinate and hence the nonorthogonal generator
is of the form u = (𝑝, 𝑞, 3). By applying the unimodular transformation


��
𝑥1
𝑥2
𝑥3


�� ↦→ 
��
𝑥1 − �𝑝/3�𝑥3
𝑥2 − �𝑞/3�𝑥3

𝑥3


��
there is no loss of generality in assuming that 𝑝, 𝑞 ∈ {0, 1, 2}.
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To seek a contradiction suppose that 𝜇(𝑍) ≥ 3/5. Since 𝑍 = 𝑍0 + [0, u], Proposition 2.8 gives

3
5
≤ 𝜇(𝑍) ≤ max

{
𝜇(𝑍0),

1
3

}
,

implying that 𝜇(𝑍0) > 3/5. Then, Theorem 6.3 implies that 𝑍0 has lattice-width one or two, since
𝑍0 = 𝑃2,5 would imply Z to have width two with respect to two different functionals.

We can assume the lattice-width 𝑤 ≤ 2 of 𝑍0 to be attained with respect to the first coordinate, that
is, 𝑍0 ⊆ [0, 𝑤] ×R× {0}. Then, the lattice-width of Z with respect to the first coordinate is 𝑤 + 𝑝, which
is at most 3 except if 𝑤 = 𝑝 = 2. But in that case Z has width three with respect to 𝑓 ′(x) = 𝑥1 − 𝑥3,
since 𝑓 ′(𝑍0) = [0, 2] and 𝑓 ′(𝑍) = 𝑓 ′(𝑍0 + [0, u]) = [−1, 2]. The contradiction is that in both cases we
have a second functional giving Z width three. �

Case (1) is also easy, since in this case 𝑍1 is a lattice polytope and we can readily apply to Z the three
parts of Lemma 7.6.

Proposition 7.8 (Case (1) for f ). Let Z be a lattice 3-zonotope of lattice-width three with respect to a
single functional f and with 𝜇(𝑍) ≥ 3/5. If Z has three generators not orthogonal to f, then

vol(𝑍1) ≤ 40.

Proof. By Proposition 2.8, 𝜇(𝑍) ≥ 3/5 implies that there is a 𝑘 ∈ [2/3, 7/3] with 𝜇(𝑍𝑘 ) ≥ 3/5. Part
(1) of Lemma 7.6 then gives 𝜇(𝑍1) ≥ 3/10.

Since f is the only functional giving width three to Z and 𝑍1 is a lattice polytope, part (2) of Lemma 7.6
says that 𝑍1 has lattice-width at least four, so Corollary 6.1 with 𝜇𝑤 ≥ 6/5 implies

vol(𝑍1) ≤
16
2/5

= 40,

as claimed. �

Corollary 7.9 (Case (1) for f ). Let Z be a lattice 3-zonotope of lattice-width three attained by a unique
functional f and with 𝜇(𝑍) ≥ 3/5. If Z has three generators not orthogonal to f, then vol(𝑍) ≤ 120. If,
moreover, Z is an sLRZ, then vol(𝑍) ≤ 80.

Proof. The bounds follow from Proposition 7.8 and part (3) of Lemma 7.6. In the second bound we use
that an sLRZ of dimension three has four generators. Since three of them are not orthogonal to f only
one can be orthogonal. �

For Case (2) we have a stronger form of part (1) and a variation of part (2) of Lemma 7.6, since 𝑍1
may not be a lattice polytope.

Lemma 7.10. Let P be a lattice 3-zonotope of lattice-width three with respect to a unique functional f,
and suppose that it has two generators u1 and u2 with 𝑓 (u1) = 1 and 𝑓 (u2) = 2. Assume further that
𝑓 (𝑃) = [0, 3]. Then, with the notations of Lemma 7.6, it holds

1. 𝜇(𝑃𝑘 ) ≤ 3
2 𝜇(𝑃1), for every 𝑘 ∈ [2/3, 7/3], and

2.

𝑤 𝑓 (𝑃) = �𝑤(𝑃1)� ≤ 𝑤(𝑃1) +
1
2

.

Proof. To make things concrete, assume without loss of generality that f equals the third coordinate
and let

u1 = (p, 1), u2 = (q, 2),
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for some p, q ∈ Z2. Calling 𝑇 ⊆ R2 the segment with endpoints p and 1
2 q, we have that

𝑃1 = 𝑃0 + (𝑇 × {1}) and 𝑃2 =
1
2

q + 𝑃1,

where the last equality uses that 𝑃1 is a (perhaps nonlattice) zonotope, hence centrally symmetric. In
fact, for all 𝑘 ∈ [1, 2], we now have that 𝑃𝑘 is a translation of 𝑃1 by the vector 𝑘−1

2 q. This implies that
𝜇(𝑃𝑘 ) = 𝜇(𝑃1) for 𝑘 ∈ [1, 2], and the argument in the proof of Lemma 7.6 gave 𝜇(𝑃𝑘 ) ≤ 3

2 𝜇(𝑃1) for
𝑘 ∈ [2/3, 1) ∪ (2, 7/3]. This proves part (1).

For part (2), as in the proof of part (2) of Lemma 7.6 we have that 𝑤 𝑓 (𝑃) ≥ 𝑤(𝑃1) is obvious, and
for the converse we let 𝑔 : R2 → R be a lattice functional attaining the lattice-width of 𝑃1. If 𝑔(𝑃1)
(hence 𝑔(𝑃2), by central symmetry) are lattice segments then all we said in the proof of Lemma 7.6
remains valid, and we get

𝑤 𝑓 (𝑃) = 𝑤(𝑃1).

So, suppose that 𝑔(𝑃1) is not a lattice segment. Since one endpoint of T is a lattice point and the
other is half-integral, we have that one endpoint of 𝑔(𝑃1) is an integer and the other a half-integer.
Without loss of generality assume 𝑔(𝑃1) = [𝑎, 𝑏 − 1/2], with 𝑎 < 𝑏. Let p1, p2 ∈ Z2 be lattice points
with 𝑔(p1) = 𝑔(p2) = 𝑏 and that lie sufficiently far from each other in opposite directions on the line
𝑓 −1(1) ∩ (𝑔−1 (𝑏) × {1}). This implies that

𝑃′
1 := conv(𝑃1 ∪ {(p1, 1), (p2, 1)})

is a lattice polytope containing 𝑃1, and

𝑃′ := conv(𝑃 ∪ {(p1, 1), (p2, 1), (x − p1, 2), (x − p2, 2)}),

where 1
2 x is the (half-integral) centre of P, is a centrally symmetric lattice polytope containing P and

with 𝑃′ ∩ 𝑓 −1(1) = 𝑃′
1. Also, by construction, 𝑔(𝑃′

1) = [𝑎, 𝑏] so its width equals

𝑏 − 𝑎 = �𝑤(𝑃1)� = 𝑤(𝑃1) +
1
2

.

The result follows from applying part (2) of Lemma 7.6 to 𝑃′. �

Corollary 7.11 (Case (2) for f ). Let Z be a lattice 3-zonotope of lattice-width three with respect to a
single functional f and with 𝜇(𝑍) ≥ 3/5. If Z has exactly two generators not orthogonal to f, then

vol(𝑍1) ≤
245
16

,

hence

vol(𝑍) ≤ 3 · 245
16

< 46.

Proof. The second inequality follows from the first one by part (3) of Lemma 7.6.
For the first inequality we simply modify the proof of Proposition 7.8 as indicated by Lemma 7.10:
By Proposition 2.8, 𝜇(𝑍) ≥ 3/5 implies that there is a 𝑘 ∈ [2/3, 7/3] with 𝜇(𝑍𝑘 ) ≥ 3/5. Part (1) of

Lemma 7.10 then gives 𝜇(𝑍1) ≥ 2/5.
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Since f is the only functional giving width three to Z, part (2) of Lemma 7.10 says that 𝑍1 has width
at least 7/2, so Corollary 6.1 with 𝜇𝑤 ≥ 7/5 implies

vol(𝑍1) ≤
49/4
4/5

=
245
16

,

as claimed. �
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