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ON DERIVATIONS OF LIE ALGEBRAS
STEPHEN BERMAN

Introduction. A well known result in the theory of Lie algebras, due to
H. Zassenhaus, states that if & is a finite dimensional Lie algebra over the field
K such that the killing form of £ is non-degenerate, then the derivations of ¥’
are all inner, [3, p. 74]. In particular, this applies to the finite dimensional split
simple Lie algebras over fields of characteristic zero. In this paper we extend
this result to a class of Lie algebras which generalize the split simple Lie
algebras, and which are defined by Cartan matrices (for a definition see § 1).
Because of the fact that the algebras we consider are usually infinite dimensional,
the method we employ in our investigation is quite different from the standard
one used in the finite dimensional case, and makes no reference to any associa-
tive bilinear form on the algebras. If . is one of the Lie algebras under con-
sideration, we let Z(£) denote the derivation algebra of ¥ and (&) the
ideal of inner derivations. Our main result states that the dimension of
DL/ I (L) equals the nullity of the Cartan matrix which defines Z.

In Section 1 we give a brief description of the algebras we consider and in
Section 2 we prove our main result. In the final section we present an applica-
tion of our result to the problem of determining the isomorphism classes of the
algebras under consideration. One of the results in this section, Theorem 2,
was obtained in joint work with R. Moody, and is of independent interest.

1. Description of the algebras. A Cartan matrix is any / X [ integral
matrix (A4;;) such that 4,;, =2, 4,; £ 0if 7 # j, and 4,;; = 0 if and only if
A;; =0,for 1 =14,j = 1. We will always assume our Cartan matrix (4 ;) is
indecomposable, which is the same thing as requiring that the Dynkin diagram
associated to it is connected.

Let K be any field of characteristic zero and let.%# % be the free Lie algebras
over K generated by the 3/ elements e;, k4, f;, 1 < 7 < I. Let J denote the ideal
of % generated by the following elements,

(i byl

leq hj] — Aje,,

[fo bs) + Ajif s

]:eirf]'] - 6ijhiy fOr 1 é 17] é ly

and let ¥ denote the factor algebra. ¥y is called the universal heffalump
algebra over K attached to (4;;). We let 8 denote the ideal of .¥,, generated
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by the elements e;(ad e;)=4jit?, fi(ad f,)~4jit for 1 <4 j < [, and let ¥ g
denote the corresponding factor algebras. .# s is called the standard heffalump
algebra. Finally, we let # denote the radical of ¥, (for a description of %
see [1] or [5]) and let £z be the factor algebra. .# is called the reduced
heffalump algebra.

When working with any heffalump algebra we let e, k4, f; again denote their
images in the algebra and we let # be the linear span of the elements 4,
1 £ 4 £ 1, so that# is abelian. We also assume, from now on, that our Cartan
matrix is not of Euclidean type, (see [2] for an enumeration of these). Then
it is known [1], that # is the only maximal ideal of & so that ¥ is simple.

Let.Z be any of our heffalump algebras. The following facts are well known
and can be foundin [1;4;6].Let V =Za; @ ... ® Z a; be the free Z-module
with generators ay, . . ., a; and let V act on.# via a;(k;) = A;;. Then there is
a subset A of 7 such that

g =%+ Z ga
acA
(all sums are direct), where .%, is a subspace of ., and [Ze, Z5] C L ars.
If x € Za h €5 then [x, B] = a(h)x. Also, a; € A and Fo, = Keyy L s =
Kf;forl =4 =1L 1If

l
a=Zld¢a¢€A
i=

then either d; 2 0 or d; < 0 for all < from 1 to /, and 0 ¢ A. The elements of
A are called roots of . and we can speak of positive and negative roots. If
At (respectively A~) denotes the collection of positive (respectively negative)
roots then A = A*\U A~ and —At = A~ ¥ =¥- 0 ® L+ where
Lt =3t Lo and L= = Y pea= Yo & has has an automorphism of period
two, which is denoted 5, and (e;)y = fi, (hy)n = —h; for 1 =1 < [ so that
(L) = &~. Since we assume that (4 ;) is not Euclidean and the character-
istic of K is zero, we have that if 0 # a = Y. i 1dw; €V and d; =0 for 1 <
1 £ 1, then a(k) # 0 for some h € 5. However, it may be that for o, 8 € A,
a # 8 but a(h) = B(h) for all b € .

For @ € A we let ¥z denote the sum of the spaces.% s for which (k) = a(h)
for all k € 5. It is important to note that %,, = %, is one dimensional as is
L _a; =L 4. This follows because if 8(h) = a;(h) for some 8 € A and all
h € A, then the coefficient of a; in 8 must be non-zero because a;(k;) = 2,
and hence if 8 # a;, 8 — a; would give rise to a null root, which is impossible
since (4 ;) is not Euclidean (see [2]).

Let ) = {h € #|a(h) = 0 for all « € A} and note that %, = (0) if
L =% We always have, for any of our algebras, that the dimension of
adgs” = {ad h|h € 3} equals the rank of our Cartan matrix (4 ;). Finally,
we let Vg = K ®zV, and define a non-degenerate symmetric bilinear form
on Vg, {.,.), by taking the basis ay, . .., a, to be orthonormal. Thus, if o =
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i1 Coyy B = X izt dioy are in Vg then {a,8) = X +=1 Cid;. In Section 3 we
will recall some more facts about . ; which we will use there.

2. Derivations of the algebras. Let & = + 3 .cx-% . be any one of
our three heffalump algebras associated to the non-Euclidean Cartan matrix
(4 4;) over the field K of characteristic zero. We define

Dy ={D € DL)AD = (0)}.

LEMMA 1. Let D € D (&) and assume that D CH. Then D € D, and
there exist scalars v; € K such that e;D = veqy fiD = —yifi for 1 £ ¢ = 1.

Proof. Let D be a derivation of . which preserves # and let a € A, 0
Xa € Lo Say xaD = B + Y geaes where b’ € S and e € Ly for all g € A.
Then for any & € S we have

[Xa» H1D = [xaD, k] + [Xa, hD]

which implies that
amb' + 2 ah)es = 3, B(h)es + a(hD) xe-
Bea BeEA

From this it follows that '’ = 0 and that es = 0 unless .¥3 C.%5. Thus,
a(hD)xe = 0 for all & € 3 so that kD € 3 ,. Moreover, we have ¥,D C %5
forany @ € A, soin particular, Z,D C ¥ ;and ¥ _,,D C.F . forl <i £ 1.
Thus, there are scalars v;t, v;~ € K for which e,D = y;te;, fiD = v, f; for
1=<71=1 Now kD =ley D = (vi* + v )b €, but h, ¢ 7, for
1 £ i £ 1. It follows that —y;+ = y,—and D € Z,.

Definition. For any vy € Vi we define a map D, : ¥ —% as follows:
hiDy,=0for 1 £4 =1, and if a € A, xo € Lo we let xaDy = (@, 7)xar We
extend D, by linearity to all of . and note the fact that [Zs, Z5] C Luis
implies that D, € &, for all y € V.

LemMA 2. Dy N I (&) = ad oo and the dimension of D is l.

Proof. If ad x € D, N I (&) then [k, x] = 0 for all k € . This clearly
implies that x € 5. Also, by Lemma 1, we have that &y = {D,|y € Vk} and
hence is of dimension /.

TueoreEM 1. (&) = D+ I (&) and the dimension of D (L)) I (&)
equals the nullity of (A4 ;).

Proof. Let D € 2 (&) and let {es,}%_1 be a basis of £+ such that eg, € L,
forall i = 1 and e5; = ¢; for 1 = j < 1. Let e_g; = (eg;)n so that {e_g;}51 is
a basis of ¥~ and e_s; = f; for 1 < j < I For each i 2 1 we choose k; € H#
such that B;(h;) = 2 for all © = 1 and k; = [e;, f;] for 1 = j =< L. This choice
of an infinite collection of %,'s is possible since (4 ;;) is not Euclidean.

https://doi.org/10.4153/CJM-1976-022-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-022-x

LIE ALGEBRAS 177

For each 7 = 1 let

hiD = Zl G/”@_ﬂj +};i + El b”eﬁj
J= 1=

where ﬁi € A and the coefficients aj, bijare in K and almost all of them are
zero. Since 5 is abelian we have that [k;D, k] = [k.D, k4], so upon comparing
coefficients we obtain that a;8;(h) = ax;8;(h;) and byB;(h) = bi;8;(k:) for
all 7, j, k = 1. Taking 7 = j we get that a;,8;(h) = 2axs;, bs:8:(hr) = 2b;; for
all7, £k = 1.

Thus,

©

2(hD — ﬁ,) = Zl ajfﬁj(hi)e—ﬂj + Zl b:‘jﬁj(hi)eﬁj = h;ad x,
=

j=

where

0 [oed
X = 2‘1 aj€—p; — z; bjses;
J= =

and the finite dimensionality of 5 insures that almost all coefficients in x are
zero. We now have that z;(D — 1/2 ad x) = h, € # foralli = 1and hence,
since {%;}%.1 spans ¥, that D — 1/2ad x € D, by Lemma 1. Thus 9 (%) =
Do+ I (&) and hence 9(¥)/ I (L) >~ Dy/ady #. From Lemma 2 it
follows that the dimension of Z (¢")/ 4 (£’) equals the nullity of (4 ;).

Remarks. (1). It is perhaps worthwhile to point out that our method can be
applied to the Classical Simple Lie Algebras over fields of characteristic p
not 2 or 3, which arise from the Cartan matrices of finite type (see [1]). In
particular, except when the matrix is of type 4, and p|l + 1, we see that all
derivations of such algebras are inner and hence this covers the case of algebras
of type Es over fields of characteristic 5. For this case the result that all
derivations are inner appears to be new (8, p. 112].

(2) If our Cartan matrix is a 1-tiered Euclidean Cartan matrix and .% is
the reduced heffalump algebra arising from it over the field K of characteristic
zero then & =% @ K[x, x], where £ is a finite dimensional split simple
Lie algebra over K [6; 7]. R. Moody has applied our techniques to this situa-
tion and concludes that 2 (¥)/J (&) is isomorphic to the infinite dimensional
abelian Lie algebra K[x, x~!]. Here K[x, x~!] denotes the ring of finite Laurent
series over K.

3. An application to isomorphism classes. Our main result in this section
is that if K is a field of characteristic zero then there is a doubly infinite family
of simple infinite dimensional Lie algebras of heffalump type over K each of
which belongs to a different isomorphism class. More specifically, if £ = 1 we
let I, denote the ¢ X ¢ identity matrix and x,(p) the ¢ X ¢ matrix with p’s on
the main diagonal and —1’s elsewhere. For # = 2 we define two 4n X 4n
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Cartan matrices (4 ;) and (B;;) as follows:

i Xn (2) Xn (0)

-2 I2n
— Xn(o) Xn(2)
(Ay) = Ry 5Tl
62 (=1 (=4 xa(=1)
(-Bij) — Xn(—z) Xn(z) Xn(—l) Xn(—5)

Xn(_4) Xn(—l) Xn(z) Xn(—l)
—Xn<_2) Xn('—5) Xn('—l) Xn(2) '

We let &, (respectively #,) denote the reduced heffalump algebra attached
to (44) (respectively (B;;)) over K. We are going to show that for any
mz2ifl ¥ =%, o ¥ =%, then the only algebra in the collection
{gn, gn, n = 2} which is isomorphic to . is ¥ itself.

It is clear that both (4;;) and (B;;) are indecomposable Cartan matrices.
Moreover, for n = 2 fixed, and 1 £ 7 £ n we let v; denote the column vector

[51iv ceey Bniv _6liy se ey —6n‘1y 6]1» ceey 67!‘17 -_'_6119 ey —anl]

and note that »; is in the kernel of both of our 4% X 4 Cartan matrices. Also,
it is an easy matter to check that the vectors vy, . . . , v, span the kernels of our
matrices and hence the nullity of each of the 4n X 4n Cartan matrices is
exactly z. Thus, if Z,, is one of the reduced algebras.%,, or.Z,, then Theorem 1
implies that %, is not isomorphic to.Z, if n # m. Hence, to prove our result,
we need only show .¥, and .¥, are not isomorphic. This will follow from
Theorem 2 below.

At this point we need to recall some more information about reduced
heffalump algebras. An [/ X I Cartan matrix (Cy;) is called symmetrizable if
and only if there exist positive rational numbers e, . . ., €, for which 4 ;;¢; =
Aje; for 1 =2, j = 1. Note that our matrix (4;;) is symmetric, hence sym-
metrizable; but that (B;,) is not symmetrizable. Also, it is known [6] that if &
is a reduced heffalump algebra over K attached to a symmetrizable Cartan
matrix, then there is a non-degenerate symmetric bilinear form (.,.) : & X
¥ — K which is associative in the sense that ([x, ¥], 2) = (x, [y, 2]) for all x,
v,z €%,

Let . denote the reduced heffalump algebras over the field K which is
attached to the / X / indecomposable Cartan matrix (C;;) and assume (C;;) is
not Euclidean. The Weyl group, W, of (C;;) is defined to be the subgroup of
GL(Vx) generated by the reflections 7;, 1 < 7 < [, defined on Vi by

air, = a; — Cjiaj

for 1 4,7 = 1. It is known [1; 6] that if w € W there is an automorphism
6(w) of & such that Zf(w) = L for all « € A and H#9(w) = . In fact,
hb(r;) = h; — C;h;for 1 < 4, 7 £ I and each 6(w) is in the subgroup of Aut
(&) generated by elements of the form exp (ad z) where z € % and ad z is
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locally nilpotent on .. Since the inverse of exp (ad z) is exp (ad (—32)), it is
easy to see that if (.,.):.¥ X% — K is any non-degenerate symmetric
associative bilinear form on . then (x8(w), y8(w)) = (x, y) for all x, y € ¥
and w € W. We are now in a position to prove the following result which was
obtained jointly with R. Moody.

THEOREM 2. Let (Cy;) be an indecomposable Cartan matrix which is not
Euclidean and let & denote the corresponding reduced heffalump algebra over
the field K of characteristic zero. Then £ has a non-degenerate symmetric associa-
tive bilinear form if and only if (Cy;) is symmetrizable.

Proof. We need only show that if (.,.) : ¥ X% — K is such a form then
(Cy;) is symmetrizable. For any a € A, e, € ¥, and h, ' € 5 we have that

a(k) (e b') = (lew k], B') = (€a [h, B']) = 0.

Since h and &’ are arbitrary we get that (&,, ) = (0) for any o € A. Thus,
our form restricted to3# is non-degenerate.
Next, we note that (k;, k;) # 0 for 1 = ¢ < [. Indeed,

(h‘[v h’i) = ([e'ivfi]; hi) = (e‘lr [f‘iy hl]) = —“2(31,f1)-

Also, for b € A, 8 € A, and eg € ¥s we have ([eq, k], eg) = (ey, [k, eg]), so that
a;(h) (e, e5) = —B(h)(ey e5). Thus, since F,; = F5, is one dimensional we get
(e, L5) = (0) unless 8 = —a;. It follows that (es, f;) # 0, since our form is
non-degenerate, and hence that (k;, h,) # Ofor1 <4 < L.

We now normalize our form, multiplying it by a non-zero scalar if necessary,
toassume (41, k1) = 1.Forl < 4,j,k < lwehave (b hy) = (h8(ri), h6(ry)).
It then follows using the formula %.,0(r,) = k; — Cyhy, that

CuCully, b)) = Cp(hy, b)) + Cu(hy, y) for 1 < 4,7,k < 1.
Take 7z = k to get
2C;i(hyy by) = Cyi(hs, b)) + 2(hyy by)
and interchange ¢ and j to obtain
2Cii(hy, by) = Cis(hy, by) + 2(hy, hs).
Thus, for1 =1,7 <,
C”(hi, hi) = 2(h1, h]‘) = 2(’% h,) = C”(hj, h’i)r
so setting e; = (hy, k) yields
Cije; = Ciuesfor1 = 4,5 = 1.

Also, the fact that (C,;) is indecomposable together with ¢; = 1 implies that
each ¢; is a positive rational number.
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Theorem 2, together with our previous remarks, now implies the following
result.

THEOREM 3. Let K be any field of characteristic zero. Then there s a doubly
infinite family of 1somorphism classes of simple heffalump algebras over K.
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