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Abstract

A simple model by which Hardy-Weinberg proportions are attained in a single generation while maintaining gene frequencies is stated and
illustrated. The title ‘Quasi-random mating’ is proposed. Confusion about the Hardy-Weinberg principle can be avoided only if there is clear
separation between the basic deterministic model and factors influencing a population’s structure. Eighty years passed before C. C. Li coined
the term ‘pseudo-random mating’. The lesson taught by Li has not been taken on board.
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By a sleight of hand, G. H. Hardy (1908) indicated how the
proportions {g? p? 2pq} could be produced and maintained by
‘random mating’ while keeping the gene frequencies unchanged.
Later, it was perceived that Wilhelm Weinberg (1908) had the same
idea. Hardy (1908) and Weinberg (1908) have been cited or
honored countless times. Hardy has been portrayed in a feature
film as the eccentric professor of mathematics. Weinberg is less
well known in the English-speaking world. An account of his life
and work is given by Sperlich and Friih (2015).

C.C.Li(1988) proved that Hardy-Weinberg proportions can be
maintained by what he called ‘pseudo-random’ mating. Kimura
(1988, pp. 87-91) has a section entitled ‘Gene Frequency and
Mating System’. He is critical of the way the Hardy-Weinberg
principle is treated in textbooks, pointing out that its most useful
application is relating gene and genotypic frequencies rather than
emphasizing how it explains stability. The preface to the book is
dated February 1988, the same year in which Li (1988) appeared.
Kimura’s explanation of the Hardy-Weinberg principle is conven-
tional and there is no way of knowing whether he would have
changed it in the light of Li’s finding.

A search on the internet using the phrase ‘Hardy-Weinberg
principle’ yields similar responses to that by Wikipedia (2023).
After giving the array {¢% 2pq, p*}, Wikipedia states that the array is
used primarily to test for population stratification and other forms
of nonrandom mating. The inference is that if mating is not
‘random’, frequencies will not follow the above array. Evidently
there is no impetus in the genetics community to incorporate the
fact shown by Stark (2006) that the array can be produced in one
round of nonrandom mating while keeping the gene frequencies
constant. The point of this note is to restate the model in the
simplest form with a numerical example. A suggested title for
model (1) defined in the next section is ‘quasi-random mating’.
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The final section comments briefly on the use of the Hardy-
Weinberg principle in genetic association studies that exploit the
notion called Mendelian randomization.

The Basic Model — ‘Quasi-Random Mating’

The usual entry to population genetics theory begins with the
Hardy-Weinberg law. Consider an autosomal locus with two
alleles A and B and genotypes AA, BB and AB numbered 1, 2 and 3.
Mating pairs are formed in the current generation to produce
offspring in the next. The proportions of the mating pairs are given
symbolically in Table 1. The elements c; are non-negative and
symmetrical in value (¢; = ¢;;) and sum to 1.

Malécot (1969) is the English version of Les Mathématiques
de I'Hérédité (published in 1948), which was one of the first
systematic introductions to population genetics theory. In 1948,
Malécot was still not aware of Weinberg (1908) and referred to
Hardy’s (1908) law.

Malécot’s account is faultless but, being expressed in
probabilistic terms, it obscures the fact that Hardy’s model is
deterministic. This would not create a problem except that it has
led to the construction of an elaborate edifice in which the original
model is embellished with the details of real populations.

There is a further problem in that Hardy’s model is incomplete.
Li (1988) shows that Hardy-Weinberg proportions can be
maintained by nonrandom mating, which he calls ‘pseudo-random
mating’. This property is implicit in a formula given by Stark (1980).

Stark (2006) shows that Hardy-Weinberg proportions can be
reached in one generation from any genotypic distribution,
assuming that males and females are equally distributed, as is now
demonstrated. Suppose that the genotypic proportions are

G, = ¢* + Fpg; G, = p* + Fpg; G3 = 2pq(1 — F),

F measures departure from Hardy-Weinberg form and the gene
frequencies are ¢ = (2G; + G;)/2;p = 2G, + G3)/2 =1 —gq.
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Table 1. Symbolic mating proportions reproducing offspring

Male\Female AA BB AB Total
AA C11 C12 Ci3 G,
BB € Coo Co3 Gy
AB n a2 Ca3 Gs
Total G, Gy Gz 1

Table 2. Mating proportions for parameters g = 1/4, F = 1/3, h =1/20, elements
to be divided by 512. Hardy-Weinberg proportions in offspring are {1, 9, 6}/16.

Male\Female AA BB AB Total
AA 9 41 14 64
BB 41 201 78 320
AB 14 78 36 128
Total 64 320 128 512
The mating frequencies are
Cij = GIGJ(I + heiej/v) (1)

where e, =p(F—1)/(q+ Fp);e; =q(F —1)/(p+Fq)ies = 1;
and v = pq(1 — F*)/((q + Fp)(p + Fq)).

The gene frequencies are not changed through the action of (1).
Subject to constraints, & can be chosen over a wide range, allowing
uncountable possibilities for varying the mating regime but still
producing, in one generation, offspring distributed according to
the Hardy-Weinberg formulae:

H, = ¢ H, = p* H;s = 2pq. (2)

This can be verified by calculating the offspring frequencies by
applying Mendel’s rule to (1):

AAcy; 4¢3+ 33/4 BB ¢y 4 €3 4 €33/4 AB 2015 4 €13 + 3 + €33/2

Table 2 illustrates the model for g = %, F = %, h=1/20. The
offspring distribution is {1/16, 9/16, 6/16}.

The Hardy-Weinberg model, as explained by Hardy (1908),
produced the equilibrium distribution characterized in the
notation used here by

4H1 . H2 = (H3)2 (3)

Hardy used expression (3) simply as a shorthand for (2), which
does not convey information about {cy}. Malécot (1969, p. 14)
identifies (3) as ‘Hardy’s Law’. The set {G;, G,, G3} conforms to (3)
if and only if F=0.

Mendelian Randomization

In many studies, counts of genotypes have produced proportions
approximately in Hardy-Weinberg form. As a result it is used as a
convenient benchmark for assessing the validity of data. Often the
inference has been drawn that the mating regime of the population
is ‘random’. The object of this paper is to stress that there is an
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uncountable number of ways, other than ‘random mating’, but
close to random mating, which can produce the Hardy-Weinberg
distribution. Taking the value h =0 in (1) specifies what is given
the label ‘random mating’. Taking negative and positive values of i
near to zero provides mating regimes close to ‘random mating’
with Hardy-Weinberg frequencies in offspring for any starting
structure.

Rodriguez et al. (2009) give an example of the epidemiological
concept known as Mendelian randomization (MR). They state: ‘A
particular genetic feature of randomly breeding populations is that
of Hardy-Weinberg equilibrium (HWE)’ (p. 506). ‘In a very large
(outbred) population there should be exact HWE at the point of
conception’ (p. 512). They claim that MR permits causal inference
between exposures and a disease. They suggest that property (3)
could be used to construct a test for agreement with the Hardy-
Weinberg distribution (p. 506).

In studies such as Gu et al. (2000), the expectation is that a locus
will have approximate Hardy-Weinberg proportions so that a
nonsignificant test result in the control group assures a valid
comparison with affected subjects.

Gu et al. (2000) classified 1032 subjects with respect to the
CYP2A6 locus, noting those who possessed, or did not possess, the
160H allele. Possessing the 160H allele was associated with later age
to begin smoking and greater likelihood to quit smoking. From the
point of view of this paper the authors validated their findings by
comparing counts of the 160H allele with predictions based on the
Hardy-Weinberg formulae (distribution [2]).

Bosco et al. (2012) is an example of taking a simple test of
concordance of a set of counts with hypothetical distribution (2)
and building an elaborate theory with no obvious advantage to
applied population genetics. The authors pursue a will-o’-the-wisp:
‘In order to identify the properties of the equilibrium state revealed
by the system’s time series one should apply dynamical criteria and
not statistical ones’ (p .9). Although Bosco et al. cite Li (1988) and
Stark (2006), the messages of Li and Stark are not reflected in their
analysis.

It is ironic that much of the lip service paid to Hardy’s law is
poorly directed, as Salanti et al. (2005) show in detail. The authors
evaluated dozens of genetic association studies published in high-
prestige journals. They conclude that ‘testing and reporting for
HWE is often neglected and deviations are rarely admitted in the
published reports. Moreover, power is limited for HWE testing in
most current genetic association studies’ (p. 840).

Fisher (1922, p. 324) uses criterion (3) of the previous section
in deriving the equilibrium of a locus under selection, showing
clearly how he perceived that Hardy’s (1908) paper had removed
any doubts about how a population’s genetic composition could
be maintained. Charlesworth (2022) acknowledges the huge
contribution of Fisher (1922) but points out two errors,
subsequently resolved, which do not diminish the achievement
of that paper.

In that paper, Fisher refers to quantitative genetics theory
developed by himself in 1918 that gives insight to the correlation
between relatives for traits such as human stature. The variance
and the correlation between parents, the tendency referred to as
homogamy by Fisher, are central to the dissection of such traits.

Sella and Barton (2019) describe the use of genomewide
association studies (GWASs) in humans to analyze the genetic
basis of complex (quantitative) traits. Their article is wide ranging,
taking in many facets, as would be expected after a century of
intensive research on wild and commercial species. The following
quotation illustrates the debt owed to Fisher (1918):
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With numerous loci affecting a trait, how should we think about the
relationship between an individual’s genotypes at these loci and the
person’s trait value? In principle, quantitative genetics can describe any
relationship between genotype, environment, and phenotype. The variance
of a trait due to genetics (Vg) can be partitioned into additive (V,),
dominance (Vp), and a combined epistatic component (V;), which itself
can be partitioned into two-locus (Vaa, Vap and Vpp) and multilocus
components (Vppp, etc.); higher-order terms in this expansion are defined
through the residuals of lower-order ones. Fisher introduced this expansion
in his seminal 1918 paper, showing how in principle the components can be
estimated from the phenotypic correlations among relatives. (p. 464)

Clark (2023) uses the theory in a study of social status in English
pedigrees over along period. He found three notable results: strong
persistence of social status across family trees; decline in
correlation with genetic distance in the lineage is unchanged over
the period 1600-2022; the correlations follow those of a simple
genetic model of additive genetic determination of status.

Genealogies, including 422,215 individuals born in the period
1600-2022, were assembled. Six measures of social status, one of
which is literacy, were scored. Correlations for the measures were
calculated for relatives up to fourth cousins.

For the birth period 1725-1869, the correlation between
relatives for literacy decreased from .407 for full sibs to .146 for
fourth cousins. Measures such as these are explained by Clark
(2023) in terms of m, the correlation between parents, and h? a
measure of heritability for the trait.

Clark (2023) gives a table (Table A6, p. 32) of implied
underlying phenotype correlation in marriage scores for the period
1837-2022. In five adjoining intervals over this period Clark gives
the correlation between marriage partners as .480, .464, .384, .346,
and .275. These were based on the score of the groom and an
imputed measure of the bride using her father’s score. The
relevance of Clark’s study for this paper is that choice of mates in
humans is far from ‘random mating’.

A book review by Coop and Przeworski (2022) includes the
following:

The author, Dr. Kathryn Paige Harden, is a Professor of Psychology at the
University of Texas, Austin, who specializes in behavioral genetics. Her
book starts from the premise that human behaviors, and in particular
educational attainment, are ‘heritable, i.e., that within a study sample, some
fraction of the phenotypic variance is explained by differences in genotypes.
(p. 846)

In brief, Coop and Przeworski (2022) conclude that this view is not
justified by current understanding. One suspects that they may have a
similar view of Clark’s (2023) findings with respect to social status.
Coop and Przewoski part company from Harden when Harden
claims that a (Mendelian) lottery is a perfect metaphor for genetic
inheritance. This gets into the difficult area of group comparisons
such as comparing IQ scores in different racial groups.

Stark (2023) presents a different approach to maintaining a
population’s genetic structure and Hardy-Weinberg equilibrium,
which is the main focus of this paper.
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