
J. Austral. Math. Soc. (Series A) 60 (1996), 334-342

ALEXANDER POLYNOMIALS OF TWO-BRIDGE KNOTS

YASUTAKA NAKANISHI and MASAKI SUKETA

(Received 22 November 1992; revised 20 April 1993)

Communicated by J. H. Rubinstein

Abstract

For two-bridge knots, the authors give necessary conditions on coefficients of Alexander polynomials.
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1. Introduction

A notion of two-bridge knot was introduced by Schubert [8]. In this note, we
study Alexander polynomials of two-bridge knots. After the work of Seifert [9],
the Alexander polynomial A(t) for a knot is a Laurent polynomial in Z[t,t~l]
characterized by the following two conditions: A(t~l) = A(t) and A(l) = ±1.
Throughout this note, Alexander polynomials are written as A(t) = ao — a\(t + t~1) +
a2(t

2 + r2) + (-1)" an(t" + t-")(an ^ 0). In 1958, Murasugi [6] showed that the
signs of coefficients of Alexander polynomials for alternating knots are alternating,
and so all a,-'s are assumed to be non-negative. In 1979, Hartley [5] showed that
the coefficients of Alexander polynomials for two-bridge knots satisfy the descending
property: a0 — • • • = a, > a,+i > • • • > an(> 0) for a certain integer i. We give
upper and lower bounds for a, by an as follows.

j

THEOREM 1. (^2«-2*C,-* -2n-kCk\an > an_j.
<t=0

Equality holds when the two-bridge knot is equivalent to C (2,2,..., 2, 2).

T H E O R E M 2 . (An - 2 ) a n + 1 > a n _ i > 2 a n - I .
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[2] Alexander polynomials of two-bridge knots

THEOREM 3. Ifan # 1, then (8n2 - I5n + S)an + 3/z - 3 > an-2.

335

2. Seifert matrices of two-bridge knots

For convenience of calculation, we remove the condition that the a, 's are positive.
Therefore, we consider all a, 's to have the same sign (possibly negative).

It is folklore that a two-bridge link can be written in Conway form [4] {\*)ijk • • • lm
using integers i, j,k,... ,l,m. In particular, a two-bridge knot can be written as
{\*)ijk • • -lm for certain even integers i, j,k,..., I, m. For convenience, we use
the form C(i, j,k,..., /, m) instead of the Conway form {\*)ijk • • -lm to present
a two-bridge knot. With this convention, a two-bridge knot can be written as
C(2bx ,2b2,...,2bn).Itis then easy to see that the knot presented by C{2bx, 2b2,...,
2b2n) bounds a Seifert surface as in Figure 1, which is a plumbing of a bx -full-twisted-
band, a (—£>2)-full-twisted-band,..., and a (—&2n)-full-twisted-band.

V

FIGURE 1.

From this surface, we calculate a Seifert matrix as

/
1

-b2

V =

0

0 -bin)

Again for convenience of calculation, we rewrite b> as (—l)'+1c, (1 < i < 2n).
From [9], we calculate the Alexander polynomial as

A ( 0 = d e t ( r V - V) = cxc2 • ••€,„« - I)2" +
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336 Yasutaka Nakanishi and Masaki Suketa [3]

where V is the transposed matrix of V and

i ] L , - c ^ c j + i • • • citkcit~t+l •••c2n iik

1 i f*

Here £^+ means the summation over all ^-tuples {iki,..., ikk) c { 1 , . . . , 2n — 1}
satisfying ikt + 1 < ikl+l (1 < / < & - 1).

3. Proof of Theorem 1

We remark that the number of terms in the summation presenting yk is 2n-kCk. On
the other hand, a«_; = 2nCj • cxc2 • • • c2n + YH=i(-l)k2n-2kCj-k • yk when j ^ 0, and

an = C\C2- • • c2n. Therefore,

*=0

j

\

We remark that the signs of an and an_y are the same. Since c,tic,tj+, and c,-tjc,-4j+i —
(—1)* have the same sign, the value of the equation above has the same sign as that of
an. Furthermore, equality holds when c, = (—1)' (1 < / < In) or c, = (—1)'+1 (1 <
/ < 2n). In both cases, the given two-bridge knot is equivalent to C(2, 2 , . . . , 2, 2).

4. Proofs of Theorems 2 and 3

A simple proof of Theorem 2 can be given as an analogy of the following fact:

FACT. Let pu ..., pnbe positive integers with p\ • • • pn = N. Then Y^=\ Pi ''' P>
•••pn<(n-\)N + \.

Preparing for a proof of Theorem 3, we give an alternative proof of Theorem 2 as
follows.
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(An-2)an-(-\)"-{-an^

= (2n — 2)c\C2 • • • c2n + 22 C ' C 2 ' ' ' c^iic'u+i ' ' ' cin ~ (~1)" '
' i i = i

2n-2

= ^ C i C 2 - - - c ; , | C , i ; + 1 • • • C 2 n ( C / 1 1 C , n + i + l ) + C i C 2 - - - C 2 n _ 2 - ( - 1 ) " " '

n - 1

n - 1

+ ^ ^ C 1 C 2 ' ' ' c2*C2/t+l ' ' ' c2n(c2«;C2*:+l + 1)
k=\

= ^2(C\C2 • --Cu-2 • C2n_\C2n - (-\f)(C2k-\C2k + \)c2MC2k+2 • • • C2n-2

k=\

n-1

+ 2_^C\C2 " ' ' c2kC2k+\ ' - • Cln\C2kC2k+\ + I).
k=\

We remark that the signs of an and an^\ are the same. Since cxc2 • • • c2k-2 • c2n-\C2n

and Cic2 • • • c2k_2 • c2n-Xc2n — (—Xf have the same sign, c2k^c2k and c2k_\c2k + 1 have
the same sign, c2kc2k+l and c2kc2k+\ + 1 have the same sign, and the value of the
equation above has the same sign as that of an. Therefore (An — 2)\an\ + 1 > |an_i|.
Furthermore equality holds when c, = (—1)' (1 < / < 2« - 1 or 2 < / < 2n) or
c, = ( -1) ' + 1 (1 < / < 2n - 1 or 2 < i < 2n).

2 n - l

an_i -2an + \ = (2n - 2 ) c , c 2 • • • c2n - ^ cxc2 • • • c~luc^+x • • • c2n + 1

in=i

n - 1

= ^^(C1C2 " ' - C2*-2 • C2n_\C2n — l)(c2k-\C2k — 1 ) ^ + 1 ^ + 2 • • • C2n-2
k=\

n-1

+ ^2 C1C2 • • • C2kC2k+\ • • • C2n(c2kC2k+x - 1) .

Again we use the fact that the signs of an and an_\ are the same: Since c\C2 • • • c2k-2 •
c2n_xc2n and cxc2 • • • c2t_2 • cln_xc2n - 1 have the same sign, c2k.lc2k and c2k^c2k - 1
have the same sign, and c2kc2k+] and c2kc2k+\ — 1 have the same sign, the value of the
equation above has the same sign as those of an and an^\. Therefore, we have

an-x\ > 2\an\ - 1.
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Furthermore, equality holds when c,• = 1 (1 < i < 2/z — 1 or 2 < i < 2n) or c,• = — 1
(1 < i < In — 1 or 2 < / < 2ri). The proof of Theorem 2 is complete.

LEMMA 4. The following value has the same sign as that of an:

E =(n(2n - 1) + (2n - 2)2 + (2« - 4)(n - l))an

- (2n - 2)(-l)"-1 + e(n - 1) - an.2,

I — 1 j / a n < 0 and n is odd,
where € — \

1+1 otherwise.

PROOF. It can be seen that

E = {2n- 2)((2« - 2)an + y, - (-I)""1) + (2« - 4)(n - \)an - y2 + e(« - 1).

Here the first term (2« — 2)an + yx — (— I)""1 has the same sign as that of an from
the proof of Theorem 2. Therefore, it is sufficient to show that the following value
has the same sign as that of an: F = (2n — 4)(« — \)an — y2 + e{n — 1).

F =(2n - 4)(n - \)an - ^ cxc2 • • • c^c^+i • • • cinc^+x • • • c2n + e(n - 1)
*2

=(2n - 4)(n - \)an - ^ cxc2 • • • c^xc2kx • • • c^Yc2h • • • c^ + e(n - 1)
**

C\C2 * * ' C/21Ci2| + i • • * Ci22Ci22+\ ' "C2n

***

=(« -2)(n - \)an/2 - ^ c x c 2 - • • c^-xCu, • • • c ^ c ^ • • • c2n +e(n - 1)

**

C\C2 • • • C,-21Cj21 + i • • • CinCi11+\ • • • C2n(C,-2,C,-21 + iC,-22C,22+1 — 1 ) .

Here, £ t 2 means the summation over all pairs i2i and i22 satisfying i2i + 1 < i22;
X)** means the summation over all pairs kt and k2 satisfying k\ < k2, and JZ»«* means
the summation over all pairs i2y and /22 satisfying i21 + 1 < /22 with one of i2l and i22

is even.

It can be seen that the last term

C\C2 • • • C,-2|C,-21+i • • • C,-22C,22+1 • • • C2n(,C,-2|C,-2|+iC,22C,22+i — 1)

***

has the same sign as that of an. Therefore it is sufficient to show the following value
has the same sign as that of an:

G = (n- 2)(n - l)an/2 - ^ c x c 2 • • • c ^ - i c i , • • • C2*"2-iC^2 •••c2tt + €(n- 1).
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For convenience of calculation, we rewrite c2k-\C2k = dk, and then we have an =
d\d2 • • -dn, and

CiC2 • • • C2k,-\C2kt • • • c2k\-\C2k2 • • • c2n = 2 _ , d x d 2 • • • dkl • • • dh • • • dn.

From now on, we consider the following two cases: (i) n is even, and (ii) n is odd.
(i) Suppose that n is even. We remark that

»/2

k=\

n/1

k=l

has the same sign as that of an = d\d2- • -dn, for any pe rmuta t ion / of {1, 2 , . . . , « }
t h a t i s , {/,, i2 /„} = { 1 , 2 , . . . , « } .

CLAIM 1. The set of all pairs k\ and k2 satisfying 1 < ki < k2 < n — 1 can be
divided into n — 1 disjoint families of subsets S = {(iu i2), Os, 14), • • •, O'n-i, /«)}
satisfying {/,, /2, . . . ,/„} = {1, 2 «}.

The proof of Claim 1 is illustrated in Fig. 2 for the case of n = 10. We consider
n - 1 disjoint families of subsets: {(1,«), (2, n - 1 ) , (3, n-2),..., (n/2, (« + 2)/2)},
{(2, «), (3, 1), (4, n-1),..., ((«+2)/2, («+4)/2)}, {(3, n), (4, 2), (5, 1), . . . , ((« +
4)/2, (« + 6 ) /2 )} , . . . . and {(« - 1, n), (1, « - 2), (2, n - 3 ) , . . . , ((« - 2)/2, n/2)}.
This division satisfies the condition.

9 2 9 . 2 9 . 2 9 . 2

65 65 65 65

9 i 2 9 ' 2 9 1 2 9 L 2 9 I

3

4
65 65 65 65 65

FIGURE 2.

For each subset, we consider an equation as in (A), which has the same sign as that
of an. From this fact, it is seen that G has the same sign as that of an.
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(ii) Suppose that n is odd. We remark that

(«-D/2

(B) ((/i - l)/2 - \)an - J2 4 4 • • • <C,4 •' • 4
k=\

(n-3)/2
= J^ ( 4 4 • • • 4*-2 • 4^4- , -i)(4-a-,4» - i)4a+l4*+2 • • • 4-3 • 4 - 4

for any permutation / of {1, 2, . . . , « } . Here,

(n-3)/2

k=\

has the same sign as that of an.

CLAIM 2. The set of all pairs kx and k2 satisfying \<kx<k2<n — \ can be
divided into n disjoint families of subsets S = {(iu i2), (/3, / 4 ) , . . . , (in-2, in-\), in)
satisfying [iui2, . . . , / „} = {1, 2 , . . . , « } .

The proof of Claim 2 is illustrated in Fig. 3 for the case of n = 9. We consider
n disjoint families of subsets: {1, (2, n), (3, n - 1), . . . , ((« + 0 / 2 , (n + 3)/2)},
{2, (3, 0 , (4, « ) , - . . , ((« + 3)/2, (« + 5)/2)}, {3, (4, 2), (5, 1 ) , . . . , ((« + 5)/2, (« +
7 ) / 2 ) } , . . . , and [n, (1, n - 1), (2, w - 2 ) , . . . , ((« - 0 / 2 , (n + 0 /2)} . This division
satisfies the condition.

9^ \ 2 9 I 2 9 1 2 9 ^ 2

65 65 65 65

9 ^ 1 2 9 1 ^ 2 9 ' 2 9 > 2 " ' "

8^.3 8^T^^-3 8«\ \ \ 3 8 . / / / » 3 8./ / ^ 3

65 65 65 65 65

FIGURE 3.

For each subset, we consider an equation as in (B), where
(n-3)/2

^ - i ^ - i ) 4 + 1 4 t J • " 4 - 3 4

has the same sign as that of an.
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Therefore, we can arrange G as follows:

n

G = (terms with the same sign as that of an) — ^~] d,+ an + e{n — 1).

It is sufficient to show that an — YL\<\<n ^>' + e(n ~ 1) n a s m e s a m e s ign a s t n a t of a,,.
Since an = d\d2 • • • dn and all d,'s are integers, we can see this immediately. Now we
see that G has the same sign as that of an. The proof of the lemma is complete.

From the lemma, it follows that (8n2—15«+8)|aJ+(3«—3) > |an_2|. Furthermore,
equality holds when c, = ( -1) ' (1 < i < 2«)orc, = ( -1) ' " 1 (2 < / < 2n + \). Since
we suppose an =£ ± 1 , equality never holds. The proof of Theorem 3 is complete.

5. Remarks

5.1. The conditions in Theorems 1 and 2 are not sufficient. For example, «„_[
must be odd if an is odd. The condition in Theorem 3 may be improved after some
effort. In the proof, we use a result corresponding to a theorem in the theory of
1-factor-decompositions for a complete graph. If we can create a similar result for a
complete hyper-graph, we can apply it to estimate a«_;-.

5.2. There was a conjecture that the coefficients in the Alexander polynomial for
a two-bridged knot have a convex property: 2|tfn_J | > |an_;-_i | + \an-j+\ |. But this is
false. For the two-bridge knot 5(47, 13) in Schubert form (which is the knot 926 in
[7]), the Alexander polynomial is t6 - 5t5 + 11?4 - 13?3 + 1 It2 - 5t + 1. Furthermore
for the two-bridge knot S(79, 49) in Schubert form (=1044), the Alexander polynomial
is t6 - It5 + I9t4 - 25?3 + 19/2 - It + 1. Thus we raise the following question:

QUESTION. For an arbitrary pair of integers N and j with 1 < j < n — 1, does
there exist a two-bridge knot such that |an_y_i | + |a«_7+11 — 2|an_y | > Nl

The answer is affirmative when n is sufficiently greater than N and j . For example,
we take integers c, = (—1)'+1 (/ = 1 ,2 , . . . , 2M). If M is sufficiently greater than N
and j , then the two-bridge knot corresponding to the above c, 's is as required:

- 16M + 8 > M(M > 2),

|crf,_,| + \an-i\ - 2\an_2\ = 32M3/3 - 54M2 + 244M/3 - 36 > M(M > 3),

and so on. But we can see that for this case 2\at | > \ao\ + \a2\.
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