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Abstract. We characterize those partially ordered sets I for which the canonical
maps Mi → colim Mj into colimits of abstract sets are always injective, provided that
the transition maps are injective. We also obtain some consequences for colimits of
vector spaces.
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1. Introduction. Crowns arise in various problems related to partially ordered
sets (posets). Thus, for example, they appear in the study of retracts and fixed points
(see [7]), in calculation of the cohomological dimension (see [5]), in applications to
homotopy theory (see [11]) and in the investigation of incidence algebras and their
quotients (see [1] and [6]). At the same time, quite often they play a “negative” role:
the absence of crowns of some kind ensures the existence of certain good properties
of posets or constructions related to them. For instance, an incidence algebra κ[S] of
a finite poset S is completely separating if and only if S contains no crowns [6]. It is
not surprising that such a situation arises in a problem of colimits which is discussed
in this note: roughly speaking, the crowns are antagonists of directed sets for which
colimits are usually considered and well understood (note that colimits over directed
posets are called directed colimits, or direct limits, or inductive limits).

More precisely, if one takes a directed colimit colim Mi (also denoted by lim−→ Mi),
where i runs over a directed poset I, such that the transition maps ϕij : Mi → Mj are
injective, then the canonical maps Mi → colim Mj are also injective, which is a crucial
property for applications. Thus, one may wonder which are the posets I for which
this always happens. We completely characterize such I in the case when the Mi’s are
abstract sets and obtain consequences for the colimits of vector spaces.

This problem is related to a similar question about the ring-theoretic version of
cross-sectional algebras of Fell bundles over inverse semigroups studied in [8], since
such algebras are epimorphic images of colimits of vector spaces over non-necessarily
directed posets. In the C∗-algebraic context, it is proved that the fibres are canonically
embedded into the cross-sectional algebra; however, the abstract ring theoretic version
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of this fact is not established so far. Moreover, colimits are used in formal software
development. This was inspired by J. Goguen in [9] (see also the fifths “dogma” in [10]),
and being pursued by several authors (see, in particular, [4, 13, 14]). More precisely,
colimits are the algebraic tools to compose specifications into new ones, and it is
important to make sure that the initial specifications are canonically embedded into
more complex ones obtained via general colimits. We believe that the present article
may be useful for the above-mentioned problems.

2. Setting of the problem. Let I be a set with a partial order �, considered as a
small category, in particular, we interpret i � j as a (unique) arrow from i to j. Denote
by Set the category of sets. In analogy with the case of directed posets (see [12, Chapter
VIII]), by an I-spectrum1 MI we mean a diagram M : I → Set (i.e. M is a functor) such
that each M(i � j) : M(i) → M(j) is injective. Write, Mi = M(i) and ϕij = M(i � j). The
maps ϕij : Mi → Mj, with i � j, are called the transition maps.

Alternatively, an I-spectrum MI consists of (possibly empty) sets Mi (i ∈ I) and
maps ϕij : Mi → Mj (i � j) such that

∀i ∈ I ϕii = id (the identity map), (1)

(i � j � k) =⇒ ϕjkϕij = ϕik, (2)

∀i, j ∈ I (i � j) ϕij isinjective. (3)

We shall write a � b if a � b and a �= b, and a � b will be also denoted by b � a.

REMARK 1. If Mi = ∅ and i � j, then ϕij is an empty map and its composition with
other maps is also empty. In particular, ϕii is the identity map. On the other hand, if
Mi �= ∅ and i � j, then Mj cannot be empty.

Given an I-spectrum, the colimit of the diagram M → Set will be denoted by
colim Mi. We say that the I-spectrum MI is faithful if all canonical maps Mi →
colim Mj are injective. A poset I is called faithful if any I-spectrum is faithful.

Write M =
∐

i∈I
Mi and let εi : Mi → M be the natural embeddings. Recall that

by the construction of colimits in Set,

colim Mi = M/ν,

where ν is the smallest equivalence relation containing the following binary relation:

μ = {(εi(ai), εj ◦ ϕij(ai)) | i, j ∈ I, i � j, ai ∈ Mi} ⊆ M × M,

and the canonical maps Mi → colim Mj = M/ν are the compositions Mi ↪→ M
χ→

M/ν, where χ is the natural projection. Therefore, I is faithful if and only if for
every I-spectrum MI = ({Mi | i ∈ I}, {ϕij : Mi → Mj | i � j}) the maps ψi = χ ◦ εi are
all injective.

We shall consider the following:

PROBLEM. Characterize the faithful posets.

1One may also use the term inductive system from Category Theory.

https://doi.org/10.1017/S0017089515000166 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000166
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A similar problem can be formulated in the category of vector spaces. Then, we
assume that each Mi is a vector space over a fixed field and all ϕij are linear maps. In this
case, we take M = ⊕i∈I Mi and the subspace N ⊆ M generated by all εi(ai) − εj ◦ ϕij(ai),
i, j ∈ I, i � j, ai ∈ Mi. Then, colim Mi = M/N. We shall say that a poset I is linearly
faithful if for any I-spectrum of vector spaces each ψi is injective.

In all what follows, Mi (i ∈ I) will be abstract sets and ϕij : Mi → Mj maps of sets.
If M is a set and κ a field, denote by 〈M〉 the vector κ-space whose base is M. Then,

〈 〉 determines a functor from the category of sets to that of κ-spaces. The forgetful
functor from κ-spaces to sets is a right adjoint to 〈 〉, and by [3, Corollary 3.9] we
have that 〈 〉 commutes with colimits. Let now MI = ({Mi | i ∈ I}, {ϕij | i � j}) be an
I-spectrum, and let ϕ̃ij : 〈Mi〉 → 〈Mj〉, (i, j ∈ I, i � j) be the linear extension of ϕij, i.e.
ϕ̃ij = 〈ϕij〉.Then, obviously VI = ({〈Mi〉 | i ∈ I}, {ϕ̃ij | i � j}) is an I-spectrum of vector
spaces, and by the above

colim 〈Mi〉 = 〈colim Mi〉.

Consequently, if MI is not faithful, then neither is VI , and thus we have the following:

PROPOSITION 1. If the poset I is linearly faithful, then I is faithful.

Recall that a subset F of a poset I is called a filter (resp. an ideal) if a � x (resp.
if a � x) implies x ∈ F for any a ∈ F , x ∈ I . If A ⊆ F and for every x ∈ F , there exists
a ∈ A, such that a � x, then we say that the filter F is generated by the subset A. If A
consists of a single element, A = {a}, then F is called the principal filter generated by a.

The set of all common upper bounds of a subset J ⊆ I will be denoted by U(J).
If, for example, J = {a, b}, we also write U(a, b) instead of U(J).

3. Crowns. A poset K is called a crown [7], if K is an union of disjoint sets

K0 = {1, 2, . . . , n}, K1 = {1, 2, . . . , n} (4)

for some 2 ≤ n < ∞ such that the following relations of comparability, and only they
(except the relation of equality), are valid:

∀α (1 ≤ α ≤ n) α � α, α � α + 1,

where the indices are taken modulo n, i. e. n + 1 = 1 and n + 1 = 1. All elements in K0

and K1 are assumed to be distinct, i.e. K0 ∪ K1 has 2n elements. The diagram of the
crown is as follows:

1 2 3 · · · n − 1 n

◦ ◦ ◦ · · · ◦ ◦

◦ ◦ ◦ · · · ◦ ◦
1 3 · · · n − 1 n2
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We refer to n as the degree of the crown. Without loss of generality, for any I-
spectrum M : I → Set, the sets Mi will be assumed to be pairwise disjoint and the
symbol εi, identifying any a ∈ Mi with its image εi(a) ∈ ∐

Mi, will be omitted.
The following statement shows the existence of non-faithful posets:

PROPOSITION 2. No crown is faithful.

Proof. For each k ∈ K \ {1}, we take a singleton {ak} as Mk. In addition, we set
M1 = {a1, b}. Thus, the bijections ϕkl for (k, l) �= (1, 1), (n, 1) are determined uniquely.
Further, let

ϕ11(a1) = a1, ϕn1(an) = b.

Clearly, the collections {Mk}, {ϕkl} form a K-spectrum. All pairs

(a1, a1), (a1, a2), (a2, a2), (a2, a3), . . . , (an, an), (an, b)

are contained in μ. By the transitivity (a1, b) ∈ ν. This means that the considered
spectrum is non-faithful. �

COROLLARY 1. No crown is linearly faithful.

Proof. This follows using Proposition 1. �
However, adding to the crown some additional links may make it faithful, as it is

shown in the following statement.

REMARK 2. The poset I , obtained from the crown K = {1, 2; 1, 2} by adding the
link 1 � 2, is faithful. This follows from the fact that I is a directed set ([2], Section 7,
no 6, Remark 1).

4. Pure subcrowns. Let I be a poset and J ⊆ I a subset. Then, the partial order
� of I induces a partial order �J = � ∩ (J × J) on J. Then, we shall say that J is a
subposet of I. A subcrown of I is a subposet of I which is a crown with respect to the
induced partial order.

A subcrown K of I of degree n ≥ 4 will be called pure if

(∀i, j ∈ K) U(i, j) �= ∅ =⇒ K ∩ U(i, j) �= ∅.

It is easy to see that this condition is equivalent to the following:

(∀i, j ∈ K0) dist(i, j) ≥ 4 =⇒ U(i, j) = ∅, (5)

where dist(i, j) is the length of the shortest path between i and j in the undirected graph
corresponding to the subcrown.

For n = 3, we shall strengthen the definition of a pure subcrown. Namely, a
subcrown K ⊆ I of degree 3 is called pure if U(K0) = ∅. We mention by the way
that any crown of degree 3 obviously satisfies (5).

For the case n = 2 we also need a special definition of purity. Let J be a subset of I
and i, k ∈ J. We shall say i and k are J-connected, if there are j1, . . . , jm ∈ J, such that

i �
� j1 �

� . . . �
� jm �

� k,
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where every two neighbouring elements are connected by a relation � or �. If there is
no such a sequence, we say that i and k are J-disconnected.

A subcrown K = {1, 2; 1, 2} ⊆ I of degree 2 is called pure if the elements 1 and 2
are U(1, 2)-disconnected.

THEOREM 1. If I is non-faithful, then I contains a pure subcrown.

Proof. Let MI = ({Mi}, {ϕij}) be a non-faithful I-spectrum.
(1) We show first the existence of a subcrown. There exists an index, say 1 ∈ I,

and elements a, b ∈ M1, a �= b with ψ1(a) = ψ1(b). It follows that (a, b) ∈ ν,
i. e. there are non-necessarily distinct indices i2, . . . , im ∈ I and elements c2 ∈
Mi2 , . . . , cm ∈ Mim such that

(a, c2), (c2, c3), . . . , (cm−1, cm), (cm, b) ∈ μ̃, (6)

where μ̃ is the symmetric closure of μ (i. e. μ̃ = μ ∪ μ−1). It will be convenient
to write 2 = i2, . . . , m = im and i1 = im+1 = 1, c1 = a, cm+1 = b. Then, from (6)
we obtain the following chain

1 �
� 2 �

� . . . �
� m �

� 1, (7)

and for each i = 2, . . . , m − 1 one has ci+1 = ϕi,i+1(ci) or ci = ϕi+1,i(ci+1). This
will be denoted by ci → ci+1 or ci ← ci+1, respectively.
We choose M1 and a, b ∈ M1 (a �= b, ψ1(a) = ψ1(b)) for which the sequence
(6) has the smallest length.
First, note that in a minimal chain the signs � and � alternate. Secondly, for
the pairs (1, 2) and (m, 1) of (7) the signs are different. Indeed, if, for example,
1 � 2 and m � 1, then we obtain a chain

(c2, c3), . . . , (cm−1, cm), (cm, c′
2),

where c′
2 = ϕ12(b) �= ϕ12(a) = c2 (since a �= b). This chain is shorter than (6), a

contradiction.
Consequently, the chain of indices (7) has one of the two forms:

1 � 2 � 3 � . . . � m � 1

or

1 � 2 � 3 � . . . � m � 1. (8)

In both cases m is even, and it is easy to see that m �= 2.
Observe that without loss of generality, we may assume that our chain is of
form (8). Indeed, suppose that the minimal sequence of elements is

a → c2 ← c3 → . . . → cm ← b. (9)

In this case, 1 � 2. Denote d = ϕ12(b). Then, c2 �= d (otherwise, a = b in view
of the injectivity) and we obtain a chain of form (8) with the same length
as (9):

c2 ← c3 → . . . → cm ← b → d.
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A priori, some elements of the sequence (8) may coincide. We shall show that
for a minimal chain this is impossible, and, moreover, that the elements in (8)
form a subcrown.
Suppose i � j for some 2 ≤ i, j ≤ m, |i − j| > 1, i. e. there exists ϕij : Mi → Mj.
Assume i < j. Then, if ϕij(ci) = cj, we obtain a shorter chain

a ← c2 → . . . � ci → cj � . . . ← cm → b

(here the symbol � denotes one of the two arrows ← or →). If ϕij(ci) �= cj, then
(ci, cj) ∈ ν and again we get a shorter chain

ϕij(ci) ← ci � . . . � cj.

The case i > j is symmetric.
All these arguments remain valid if we take a instead of ci (or of cj), noting that
in this case i = 1 and 3 ≤ j ≤ m − 1 (or j = 1 and 3 ≤ i ≤ m − 1). This shows
that (8) gives a subcrown.

(2) We show next that the obtained subcrown K is pure for m ≥ 8 (i. e. when the
degree of the crown ≥ 4). It suffices to verify the condition (5). Take arbitrary
i, j ∈ K0 with dist(i, j) ≥ 4 and suppose that there exists k ∈ I such that i � k,
j � k. Assume i < j. Then, we have

. . . → ci−1 ← ci → ci+1 ← . . . → cj−1 ← cj → cj+1 ← . . . .

If ϕik(ci) = ϕjk(cj) = d, then the original chain can be shortened:

. . . → ci−1 ← ci → d ← cj → cj+1 ← . . .

If ϕik(ci) �= ϕjk(cj), we get a new shorter chain:

ϕik(ci) ← ci → ci+1 ← . . . → cj−1 ← cj → ϕjk(cj).

The case i > j is similar.
(3) We check now the purity of K for m = 6. Consider the chain (8). Suppose that

there is an element i ∈ I such that 2 � i, 4 � i, 6 � i. Write

ϕ2i(c2) = x, ϕ4i(c4) = y, ϕ6i(c6) = z.

If x �= y, we obtain a shorter chain

x ← c2 → c3 ← c4 → y.

Therefore, x = y and, similarly, y = z. But then we get again the shorter chain

a ← c2 → x ← c6 → b,

contradicting our assumption.
(4) It remains to consider the case m = 4. Suppose that our crown K = {2, 4; 1, 3}

has form (8):

1 � 2 � 3 � 4 � 1
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with the corresponding sequence of elements

a ← c2 → c3 ← c4 → b,

where a �= b.
Assume that the elements 1 and 3 are U(2, 4)-connected. Write j0 = 1 and
jl+1 = 3, and let j1, . . . , jl ∈ U(2, 4) be such that

j0 �
� j1 �

� . . . �
� jl �� jl+1.

Consider the “intermediate” subposets Kα = {2, 4; jα, jα+1}, 0 ≤ α ≤ l. By
Remark 2, they are faithful. Therefore, (ϕ2jl (c2), ϕ4jl (c4)) ∈ ν|Kl implies ϕ2jl (c2) =
ϕ4jl (c4). The latter equality, in turn, implies ϕ2jl−1 (c2) = ϕ4jl−1 (c4) and so on. At
the last step, we get a = ϕ21(c2) = ϕ41(c4) = b, contradicting the assumption
a �= b.

�

5. Filters and faithfulness. For the converse of Theorem 1, we need additional
notions.

Let I be a poset. Denote by min I the set of minimal elements of I. For a ∈ I , let
Fa = {x ∈ I | x � a} (the principal filter generated by a).

Consider the following conditions on I :
(1) | min I| < ∞. In this case, we shall use positive integers to denote the minimal

elements, i. e. we write min I = {1, 2, . . . , n}.
(2)

⋃
i∈min I

Fi = I .

(3) For all i, j ∈ min I , i �= j,

Fi ∩ Fj

{ �= ∅, if |i − j| ≤ 1,

= ∅ otherwise

(as in Section 3 we work with i, j modulo n). In particular, if n ≥ 4 then Fi ∩
Fj ∩ Fk = ∅ for pairwise different i, j, k ∈ min I .
For n = 3, the last equality may not hold, so we add one more condition:

(4) If n = 3, then F1 ∩ F2 ∩ F3 = ∅.

PROPOSITION 3. If a poset I satisfies conditions (1)–(4) and n ≥ 3, then I is non-
faithful.

Proof. We construct an I-spectrum MI = ({Mx|x ∈ I}, {ϕxy|x � y}) as follows.
Write Gi = Fi−1 ∩ Fi (in particular, G1 = Fn ∩ F1). Note that by conditions (3) and

(4), Gi ∩ Gj �= ∅ implies i = j. We put

Mx =
{ {ax} if x �∈ G1,

{ax, bx} if x ∈ G1.

We assume that ax �= bx and that the sets Mx are disjoint.
The maps ϕxy (x � y) are defined uniquely, if |My| = 1. For |Mx| = |My| = 2,

x � y, we set

ϕxy(ax) = ay, ϕxy(bx) = by. (10)
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Next, we define

ϕxz(ax) = az, ϕyz(ay) = bz (11)

for any x ∈ F1 \ G1, y ∈ Fn \ G1, z ∈ G1 such that x � z and y � z. Since y � x ∈ G1

implies y ∈ G1, it follows by conditions (2)–(4) that all ϕxy are completely defined.
Evidently, each ϕxy is injective.

To prove that MI is an I-spectrum, we have to verify the condition

(x � y � z) =⇒ ϕyzϕxy = ϕxz. (12)

If either x, y, z �∈ G1 or x, y, z ∈ G1, then (12) is evident. Therefore, we can
assume that z ∈ G1 (otherwise x, y �∈ G1) and x �∈ G1 (otherwise y, z ∈ G1). Then, from
condition (3) we have x ∈ Fn \ G1 or x ∈ F1 \ G1. In the first case, one have either
y ∈ Fn \ G1 or y ∈ G1, and (12) is true. The second case is treated the same way.

Choosing an arbitrary element k ∈ Gk for each k ≤ n, we get a crown

K = {1, . . . , n; 1, . . . , n}.

Now the non-faithfulness of MI follows from the fact that its restriction to K coincides
with the spectrum constructed in the proof of Proposition 2.

�

6. The converse of Theorem 1. We begin with the following statement.

LEMMA 1. Each filter in a faithful poset is faithful.

Proof. Let F be a filter in a faithful poset I , and let

MF = ({Mx|x ∈ F}, {ϕxy|x � y})

be an F-spectrum. We extend it to I by putting Mx = ∅ for x ∈ I \ F . The maps ϕxy

for x ∈ I \ F , x � y, are determined automatically and it is easy to see that we obtained
an I-spectrum MI which must be faithful. Therefore, MF is also faithful. �

THEOREM 2. If a poset I contains a pure subcrown, then I is non-faithful.

Proof. Let K be a pure subcrown in I of form (4) (see Section 3). By Lemma 1,
replacing I by the filter generated by K0 = {1, 2, . . . , n}, we may assume that

⋃
i∈K0

Fi =
I. In particular, min I = K0.

First, suppose that n ≥ 3. We have that I satisfies conditions (1) and (2) from
Section 5. Furthermore, Gk �= ∅ for any k ∈ K0, since it contains the element k of
the crown. If Fi ∩ Fj �= ∅, then it follows from the purity that |i − j| ≤ 1, i. e. (3)
holds. Finally, condition (4) follows from the definition of purity for n = 3. Then by
Proposition 3, we conclude that I is non-faithful.

It remains to consider the case n = 2. Let K = {1, 2; 1, 2} be a pure subcrown in I
and I = F1 ∪ F2, where F1 and F2 are the principal filters generated by 1 and 2. Recall
that min I = {1, 2}. Write G = F1 ∩ F2 = U(1, 2). Denote by H the set of elements of
G which are G-connected with 1. We note some obvious properties of H:
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H is a filter in I ;
H is an ideal in G;
2 �∈ H, as K is pure.

Similarly as we did in the proof of Proposition 3, set

Mx =
{ {ax}, if x �∈ H,

{ax, bx}, if x ∈ H.

The maps ϕxy (x � y) are uniquely defined, if y �∈ H. For x, y ∈ H, x � y, they are
given by the equalities (10). For x ∈ F1 \ G, y ∈ F2 \ G, z ∈ H such that x � z and y � z
the maps ϕxz and ϕyz are defined by (11). Since H is a filter in I and an ideal in G, all
ϕxy are defined and they are injective.

We need to check (12). If either x, y, z �∈ H or x, y, z ∈ H, then (12) is obvious.
Therefore, we can assume that z ∈ H (otherwise x, y �∈ H) and x �∈ H (otherwise y, z ∈
H). Further, if y ∈ G, then y ∈ H as H is an ideal in G, and (12) is readily verified.
Assume y �∈ G.

Suppose y ∈ F1 \ G. Then, x �∈ F2, as y �∈ G. Hence, x ∈ F1 \ G and (12) is true.
The case y ∈ F2 \ G is symmetric. It remains, as in the Proposition 3, to refer to the
proof of Proposition 2. �

Applying Proposition 1, we obtain the following:

COROLLARY 2. If a poset I contains a pure subcrown, then I is not linearly faithful.
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