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On Cabled Knots and Vassiliev Invariants
(Not) Contained in Knot Polynomials

A. Stoimenow

Abstract. It is known that the Brandt–Lickorish–Millett–Ho polynomial Q contains Casson’s knot in-

variant. Whether there are (essentially) other Vassiliev knot invariants obtainable from Q is an open

problem. We show that this is not so up to degree 9. We also give the (apparently) first examples

of knots not distinguished by 2-cable HOMFLY polynomials which are not mutants. Our calcula-

tions provide evidence of a negative answer to the question whether Vassiliev knot invariants of degree

d ≤ 10 are determined by the HOMFLY and Kauffman polynomials and their 2-cables, and for the

existence of algebras of such Vassiliev invariants not isomorphic to the algebras of their weight systems.

1 Introduction and Historical Motivation

The standard definition of a Vassiliev invariant [BL, BN, BS, Va, Vo] of degree at most
d is to be an invariant vanishing on d+1-singular knots. Vassiliev invariants are a class
of knot invariants, which can be associated in many ways with polynomials. One such
analogy is to think of singularity resolutions as a way to differentiate a knot invariant,

and in this setting the Vassiliev invariants are (as polynomials) functions with a van-
ishing derivative. An extension of this idea is the approach of braiding sequences and
braiding polynomials, which was initiated in a special case in [Tr] and later developed
in [St]. It provides a method of studying Vassiliev invariants via their polynomial be-

haviour on certain sequences of knots. This approach works directly on knots and
so it is a counterpart to the classical approach of chord diagrams. Another relation
to polynomials was conjectured by Lin and Wang [LW], asserting that (the values of)
Vassiliev invariants are polynomially bounded in the crossing number of knots. The

first substantial application of the approach of braiding sequences [St7] was to give a
new proof of the statement conjectured by Lin and Wang. (It was proved previously
by Bar-Natan [BN2], and also by Stanford [S].) Later [St2] this proof was extended
to Vassiliev invariants of links of arbitrary number of components. Recently a paper

by Eisermann [Ei2] appeared which, apart from the application to S1 × S2, covers
some initial part of our braiding sequence theory [St, St7, St2]. This also illustrates
how braiding sequences are a natural concept.

Birman and Lin explained how to obtain Vassiliev invariants from the link polyno-
mials (or polynomials of cables) [BL]. Since this procedure is a priori not exhaustive,

it is not straightforward to prove that some Vassiliev invariant v is actually not ob-
tainable from the link polynomials (or cables). The only way is to find knots not
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distinguished by the polynomials (or cables), but by v, as in [K4, St6]. Unfortu-
nately, in particular for cables, coincidences of polynomials are rare, and this makes

the task difficult. It was known [LL] that mutants [Co] have equal 2-cable skein (or
HOMFLY) P [FY, LM] and Kauffman F [Ka2] polynomials, and that they are not
distinguished by Vassiliev invariants of degree d ≤ 10 [Mr]. This led to the question
whether all such invariants are determined by the skein and Kauffman polynomials

and their 2-cables.
A different suggestive problem with Vassiliev invariants is to decide for a given

invariant whether it is such or not. Usually, a knot invariant is a Vassiliev invariant
or can be excluded from being such by rather elementary means (as far as the Vas-

siliev invariant part of the argument goes) [De, Tr, Bi, Ei]. However, we introduced
a certain type of invariants that satisfy similar polynomial behaviour, but in some
weaker sense than Vassiliev invariants [St2]. We called such invariants extended Vas-
siliev invariants. As an extended Vassiliev invariant behaves polynomially on braid-

ing sequences, it becomes difficult to recognize it as not of finite degree. The first
class of examples of such invariants [St2] are the derivatives of the Brandt–Lickorish–
Millett–Ho polynomial Q [BLM, Ho] evaluated at −2. Kanenobu had been studying
the values Q(k)(−2) earlier. For knots Q(−2) ≡ 1, and by his result [K] we have

Q ′(−2) = V ′′(1), with V the Jones polynomial [J], which is the Vassiliev invari-
ant of degree 2. (A similar statement holds for links, which we do not discuss here,
since in this case the further terms occurring are products of linking numbers, which
are Vassiliev invariants of degree 1.) Kanenobu [K2, Theorem 1] found a formula

expressing the Q polynomial of a rational (2-bridge) knot in terms of its Jones poly-
nomial. A consequence of this formula is that Q(k)(−2) on rational knots equals a
polynomial of degree ≤ 2k in the derivatives of V (t) at t = 1 (where the n-th deriva-
tive is taken to be of degree n). Hence the restriction of Q(k)(−2) to rational knots is

a Vassiliev invariant of degree ≤ 2k.
It turns out to be rather difficult to examine the finite degree property for Q(k)(−2)

on arbitrary knots. Apparently they are not Vassiliev invariants (see §3.3). However,
as also independently observed by Kanenobu, the previous easy arguments will not

suffice to show this. Whether Q(k)(−2) are Vassiliev invariants (and of which degree,
in the unlikely event that they are) remains an open problem.

The actual origin for the considerations in [St2] was the search for a way to ob-
tain Vassiliev invariants out of the Q polynomial. The polynomials V , P and F, and

the Alexander–Conway polynomial ∇ [Al, Co] have been treated in [BL, BN], but
apparently Q received little attention. Unfortunately, as the previous remarks already
suggest, beyond degree 2 the question whether (or how) one can obtain Vassiliev
invariants from Q seems rather difficult. Our aim here will be to provide a negative

answer up to degree 9. This problem was investigated independently in a recent paper
by Choi, Jeong, and Park [CJP].

This paper has two main parts. In Section 3, we explain how to show that Q deter-
mines no low degree Vassiliev invariants, and settle degree up to 7. To that extent the

problem is treated with a more detailed argument and mainly in its own right. Then
in Section 4 we are led to consider invariants of 2-cable knots and links for degrees
8 and 9. Here the application to the problem requires more of an explanation of our
computation. This computation has other noteworthy implications. In particular,

https://doi.org/10.4153/CJM-2007-018-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-018-0


420 A. Stoimenow

it provides some evidence that not all Vassiliev knot invariants of degree ≤ 10 are
determined by the HOMFLY and Kauffman polynomials and their 2-cables. It also

turns up the (apparently) first examples of knots not distinguished by 2-cable HOM-
FLY polynomials which are not mutants (because distinguished by 2-cable Kauffman
polynomials and by hyperbolic volume), and determines the braid index of prime
knots up to 12 crossings.

We should mention that some of our calculations are related to work by Meng

[Me] and Lieberum [Li], and extend similar previous calculations in degree up to
6 due to Kanenobu [K4]. We will make some remarks that put these and other re-
sults into our context. For the computations, various programs written in C++ and
Mathematica

TM

were used, as well as some tools included in the program KnotScape
[HT].

2 Notations and Basic Terminology

2.1 General Notations

Z, N, N+, Q, R and C denote the integer, natural, positive natural, rational, real and
complex numbers, respectively.

For a set S, the expressions |S| and #S are equivalent and both denote the cardinal-
ity of S. In the sequel the symbol ⊂ denotes a not necessarily proper inclusion.

An expression containing an asterisk ∗ subscript is meant to denote the union of all
expressions in which the asterisk is replaced by all values that make sense, including
omission. Contrarily, an asterisk as superscript is meant to denote the dual of a space.

Let [Y ]ta = [Y ]a be the coefficient of ta in a polynomial Y ∈ Z[t±1]. For Y 6= 0,
let CY = { a ∈ Z : [Y ]a 6= 0 } and

min degY = min CY , and max degY = max CY ,

be the minimal and maximal degree of Y , respectively. Similarly one defines for Y ∈
Z[x1, . . . , xn] the coefficient [Y ]X for some monomial X in the xi , and min degxi

Y ,
etc.

We use the following encoded notation for 1-variable polynomials: if the absolute
term occurs between the minimal and maximal degrees, then it is bracketed, else the
minimal degree is recorded in braces before the coefficient list [St3]. It is the same
as the notation used by Adams [Ad, appendix], or the one used by Lickorish–Millett

[LM, appendix] for the m-coefficients of P, whichever is shorter.

2.2 Knots and Knot Diagrams

The crossing number c(L) of a link L is the minimal number of crossings c(D) of all

diagrams D of L, cf. [Ka]. The braid index b(L) of L is the minimal number of strands
of a braid whose closure is L, cf. [Mo, FW].

The diagram on the right of Figure 1 is called the connected sum A#B of the dia-
grams A and B. If a diagram D can be represented as the connected sum of diagrams
A and B, such that both A and B have at least one crossing, then D is called composite,
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else it is called prime. A knot K is prime if, whenever A#B is a composite diagram of
K, one of A or B (but not both) represents an unknotted arc. Otherwise, if K is not

the unknot, K is called composite. K is the connected sum K = K1#K2 of K1 and K2,
with K1 represented by A and K2 by B.

A # B = A B

Figure 1

Prime knots are denoted according to [Ro, appendix] for up to 10 crossings and
according to [HT] for ≥ 11 crossings. We number non-alternating knots after alter-

nating ones. So for example 11216 = 11a216 and 11484 = 11n117.

The obverse (mirror image) of K is denoted !K. If K =!K, then K is called achiral.
For a knot invariant v, define the invariant v! by v!(K) = v(!K). If v = v! (resp.,

v = −v!), v is called symmetric (resp., antisymmetric).

K is called rational (2-bridge) if it has a diagram on which the one (planar) coor-
dinate has exactly two local minima (or two local maxima) [Sh].

Given a knot diagram D and a closed curve γ intersecting D in exactly four points,
γ defines a tangle decomposition of D.

D = H G γ

A mutation of D is obtained by removing one of the tangles in some tangle decom-
position of D and replacing it by a version rotated 180◦ along the axis vertical to the
projection plane, or horizontal or vertical in the projection plane. For example:

H

G

(To make the orientations compatible, possibly the orientation of either H or G must
be altered.) Then γ is called the Conway circle for this mutation. If some knots K1,2

have diagrams differing by a mutation, then K1,2 are called mutants [Co]. We call
K an iterated mutant of K ′, if there are knots K = K1,K2, . . . ,Kn = K ′ with Ki

and Ki+1 being mutants. In the following, we will abuse the word “iterated” when
referring to mutants but assume it implicitly.
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2.3 Link polynomials

As for knot invariants, our notation is also the usual one: ∆(t) denotes the Alexander

[Al], ∇(z) the Conway [Co], V (t) the Jones [J] (see also [Ka]), P(l,m) the HOM-
FLY (skein) [LM, FY], F(a, z) the Kauffman [Ka2], and Q(z) the Brandt–Lickorish–
Millett–Ho polynomial [BLM, Ho]. In our convention the skein and Kauffman poly-
nomials are conjugate (that is, obtained by replacing a by a−1 in F and l by l−1 in P)

to those in [LM, Ka2]. The local relations in this convention will be given below. We
assume ∆ is normalized so that ∆(1) = 1 and ∆(t−1) = ∆(t). For V and Q the
conventions (also used here) are fairly standard.

The skein HOMFLY polynomial P(l,m) is a Laurent polynomial in two variables l

and m of oriented knots and links and can be defined by being 1 on the unknot with
the (skein) relation

(1) l−1 P
( )

+ l P
( )

= −m P
( )

.

We call the crossings in the first two fragments positive and negative, respectively.

The sum of the signs (±1) of the crossings of a diagram D is called writhe of D and
written w(D). The writhe is invariant under simultaneous reversal of orientation of
all components of the diagram, so is in particular well defined for unoriented knot

diagrams.

The Conway polynomial ∇ [Co], given by ∇(z) = P(
√
−1,

√
−1z), is well known

to be equivalent to the (1-variable) Alexander polynomial ∆ by a variable substitution:
∆(t) = ∇(t1/2 − t−1/2). Another well-known property of ∇ is that for any link L we

have [∇L(z)]zi = 0, if i has the same parity as the number n(L) of components of L,
and that zn(L)−1 | ∇L(z). For a knot K we always have [∇K (z)]z0 = 1.

For the Kauffman polynomial F, we have (in our convention) the relation

F(D)(a, z) = aw(D)
Λ(D)(a, z), where w(D) is the writhe of D, and Λ(D) is the writhe-

unnormalized version of F. Then Λ is given in our convention by the properties

Λ
( )

+ Λ
( )

= z
(

Λ
( )

+ Λ
( ))

,

Λ
( )

= a−1
Λ
( )

; Λ
( )

= a Λ
( )

,

Λ
(© )

= 1 .

Thus the positive (right-hand) trefoil has min dega F = 2.

The Brandt–Lickorish–Millett–Ho polynomial is given by Q(z) = F(1, z), and the

Jones polynomial by

V (t) = F(−t3/4, t1/4 + t−1/4) = P(−
√
−1t,

√
−1(t−1/2 − t1/2)) .

(See [Ka2, §III] and [LM].)

Q and ∇ (and hence ∆) are symmetric knot invariants, i.e., coincide on K and !K
for any knot K. (Q is symmetric also for links, while∇ is symmetric or antisymmetric
depending on the parity of the number of components.) V , P and F differ on mirror
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images under conjugation of a variable:

V !(t) = V (t−1),(2)

F!(a, z) = F(a−1, z),(3)

P!(l,m) = P(l−1,m).(4)

All polynomials X ∈ {F, P,Q,V,∆} are multiplicative under the connected sum:
X(K1#K2) = X(K1)X(K2).

By vol (L) we denote the (finite) volume of the (unique if it exists) hyperbolic
structure on the complement S3 \L of a link L in S3 (that is, a representation S3 \ L =

H3/Γ, where H3 is the 3-dimensional hyperbolic space, and Γ is a properly discon-
tinuously acting discrete group of isometries of H3). We write vol (L) = 0 if S3 \ L

has no hyperbolic structure.

3 Vassiliev Invariants

3.1 Generalities

Consider the linear space V, (freely) generated by all the (isotopy classes of) knot
embeddings. Let Vd be the space of singular knots with exactly d double points

(up to isotopy). Vd can be identified with a linear subspace of V by resolving the
singularities into the difference of an overcrossing and an undercrossing via the rule

(5) = − ,

where all the rest of the knot projections are assumed to be equal. This yields a
filtration of V

(6) V = V
0 ⊃ V

1 ⊃ V
2 ⊃ V

3 ⊃ · · · .

There is a combinatorial description of the graded vector space,

(7)

∞⊕

d=0

(
Vd
/

Vd+1

)

associated with this filtration, namely

(8) Ad := Vd
/

Vd+1 ≃ Lin {chord diagrams of degree d}
/

4T relation
FI relation

,
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where Lin denotes linear span, and the chord diagrams (CDs) are objects like this
(an oriented circle with finitely many dashed chords in it, up to isotopy)

and are graded by the number of chords. The 4T (4 term) relations have the form

− = − + ,

and the FI (framing independence) relation requires that each CD with an isolated

chord, i.e., a chord not crossed by any other one, is zero.

The map which yields the isomorphism (8) is a simple way to assign a CD DK to a
singular knot K. In the parameter space of K (which is an oriented S1), connect pairs
of points with the same image by a chord. When adding arrows for the crossings of K

oriented from the preimage of the undercrossing to the preimage of the overcrossing,

we obtain a (singular) Gauss diagram; see [PV, St5].
The connected sum of chord diagrams is defined by DK1

#DK2
= DK1#K2

(well up to
the 4T relation).

We define a knot invariant v to be a Vassiliev invariant of degree ≤ d if, when

extended to singular knots via

v
( )

= v
( )

− v
( )

,

it vanishes on (d + 1)-singular knots. The degree deg v of v is (suggestively) the small-
est integer d such that v is of degree ≤ d. Several properties and constructions of

Vassiliev (finite degree) invariants were known from [BL, BN]. In particular, in-
troducing Vd to be the linear space of Vassiliev invariants of degree ≤ d, the space
Vd/Vd−1 is isomorphic to the dual A∗

d of the linear space Ad of chord diagrams of
d chords modulo the 4T relation. Elements in A∗

d are called weight systems (of de-

gree d). Each v ∈ Vd gives rise to a weight system Wv ∈ A∗
d by evaluating it on a

d-singular knot representing the chord diagram, Wv(DK ) := v(K). The bijectivity
of this assignment is dual to the isomorphism (8), and is established using a universal

Vassiliev invariant, such as the Kontsevich-integral Z [Ko]. The application Wv ◦ Z of

the weight system of v ∈ Vd on the Kontsevich-integral gives back v modulo lower
degree invariants:

v(K) ≡ (Wv ◦ Z)(K) = Wv(Z(K)) mod Vd−1 .

If in fact v = Wv ◦ Z, we call v canonical; see [BG].
Vassiliev invariants are easily seen to form an algebra with usual addition and

multiplication, and the structure of this algebra was known to be the free symmetric
(polynomial) graded algebra generated by primitive Vassiliev invariants. Such invari-
ants v are given by the additional property that v(K1#K2) = v(K1) + v(K2) for any
knots K1,2.
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3.2 Deterministic Sets for Vassiliev Invariants

Since the space of Vassiliev invariants of given degree is finite-dimensional, there exist
finite sets Kd of knots, the values on which determine uniquely a Vassiliev invariant
of degree ≤ d. Equivalently, we say

Definition 3.1 A set Kd of knots is d-deterministic, if any Vassiliev invariant of de-
gree at most d vanishing on Kd vanishes identically. It is called d-primitive determin-

istic if this property holds for primitive Vassiliev invariants of degree at most d.

In practice, it is desirable to choose a d-deterministic set as small as possible. The
minimal size is clearly dim Vd, and many such sets of this cardinality exist, but no one
knows how to find any of them except by computation for a few small values of d.
Thus we may try to find larger sets which are provable to be d-deterministic. This

problem has been considered (including for links) in several previous papers of the
author (see [St7]), and estimates on the crossing number of knots in one particular
d-deterministic set Kd were given. The estimates, however, are not optimal. For
our subsequent purposes, we will derive a more efficient estimate for knots. It is

formulated in the following lemma, which is needed to make the later arguments
more rigorous.

Lemma 3.2 For any d > 0, the set of knots with (prime) diagrams of at most d + 1 +
d(d−2)

4
crossings is d-(primitive) deterministic.

Remark Note that knots with prime diagrams may well be composite, and so we
do not make any claim as to the primeness of the knots represented by our diagrams.

Proof We use the result of [CD] that chord diagrams modulo the 4T-relation and
composite chord diagrams are generated by such with a special chord (that is, a chord
intersecting all the others). Note (as in [CD]) that such a chord diagram is described
by a permutation of the endpoints of the non-special chords.

Thus it suffices to consider chord diagrams with a special chord or connected sums
of such diagrams. To realize a prime chord diagram with d chords, including a special
one, by a singular knot diagram, put d − 1 singular crossings on a straight line.

(9)

First assume d is even. The other strand must pass through these singular crossings
in some (arbitrary) permuted order. Its part above and below the line in (9) consists
of d

2
− 1 arcs joining two singular crossings and one arc connected to the remaining

singular crossing with a “loose end”:

(10)
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Clearly any two of these d
2

arcs can be made to have at most one intersection. Thus the
strand can be made to have at most 2

(
d/2

2

)
self-intersections. There remain the d sin-

gular crossings. Call the one of the special chord the special singular crossing. One ad-
ditional (non-singular) crossing is needed for the second (generally self-intersecting)
strand in (10) to exit the loop made up of the first strand between the two passes of
the special singular crossing.

In case d is odd, one side of (9) contains d−1
2

arcs joining two singular crossings,

and the other d−3
2

such arcs, and two arcs with a loose end. Then one has at most

d + 1 +

(
(d − 1)/2

2

)
+

(
(d − 3)/2

2

)
+ 2 · d − 3

2
=

(d − 1)2

4
+ d ≤ d + 1 +

d(d − 2)

4

crossings.

Now with f (d) := d + 1 + d(d−2)
4

, we have f (d) ≥ ∑k
i=1 f (di), when di ≥ 2

and
∑k

i=1 di = d. This establishes the assertion of the lemma for arbitrary Vassiliev
invariants. Now considering primitive Vassiliev invariants, we can restrict ourselves
to chord diagrams which are not connected sums. Thus, we must argue why the

(singular) knot diagrams representing prime chord diagrams with a special chord are
prime. It is easy to see that each arrow of a non-singular crossing intersects a chord
of a singular crossing. Then the intersection graph of the (singular) Gauß diagram is

connected, which (see [St5]) is equivalent to the knot diagram being prime.

Corollary 3.3 A primitive Vassiliev invariant of degree≤ 4 is determined by its values

on rational knots. (See also [K4].)

Proof Knots with prime ≤ 7 crossing diagrams are all rational.

3.3 Vassiliev Invariants Derived from the Polynomials

From [BN, BL] we know that the Conway, Jones and Kauffman polynomials give rise
to Vassiliev invariants. We recall that there is a relation between the Conway–Vassiliev
invariants ∇i = [∇]zi and the Kauffman–Vassiliev invariants; see [K3], given by

(11) Fi, j(K) :=
√
−1

i+ j d j

da j

∣∣∣
a=

√
−1

[F(K)]zi .

By [BL], this is a Vassiliev invariant of degree ≤ i + j. (Since Fi,0 ≡ δi,0 is constantly

1 or 0, we can assume j > 0.)

We have the identity F1,1 = −2∇2 coming from the uniqueness of the (symmet-
ric) Vassiliev invariant of degree 2. For higher degree, the evident problem is that
the dimension of the space of Vassiliev invariants grows rapidly. The only further
relation to the Conway Vassiliev invariants is (see [K3, p. 422])

(12)
F2,1 + F2,2

2
− 6F3,1 = ∇2 − 7∇2

2 + 18∇4 .
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With Lemma 3.2 in hand, the verification of such identities (at least in not too high a
degree) is straightforward.

For i > 4, ∇i cannot be expected to be related to the Fi ′, j ′ . Indeed, ∇6 is not

contained in F, as shown in [K4, St6]. That is, there are two distinct knots K1 and K2

with F(K1) = F(K2), but ∇6(K1) 6= ∇6(K2). For instance, K1 and K2 can be taken
to be the two 11 crossing knots 1130 and !11189 with equal Kauffman polynomial,

but different Conway polynomial, as pointed out by Lickorish [L]. As observed by
Kanenobu, for the higher ∇i the same property then follows by taking the connected
sum of the K1,2 with trefoils.

The Jones polynomial gives rise to a series of Vassiliev invariants by its values
V (n)(1). The skein polynomial P yields Vassiliev invariants in the same way as F.

For a link L,

(13) Pi, j (L) :=
√
−1

i+ j d j

dl j

∣∣∣
l=

√
−1

[P(L)]mi ,

is a Vassiliev invariant of degree ≤ i + j. However, here rather than j > 0 we must
pose j ≥ 0 and i of the opposite parity to the number of components n(L) of L, and

i ≥ 1 − n(L). (Remark that for j = 0 we obtain, up to sign, the ∇i .)

As for Q, the results of Kanenobu, explained in §1, suggest that we consider the
values Q(k)(−2) for k ≥ 2. Here we are less fortunate, and the following is easy to see.

Proposition 3.4 Q ′′(−2) is not a (global) Vassiliev knot invariant of degree ≤ 4.

Proof Assume v = Q ′′(−2) is a Vassiliev invariant of degree ≤ 4. Using Q(−2) ≡
1, one can correct v by a multiple of Q ′(−2)2 to a Vassiliev invariant v̄ that is additive
under connected sum, and so primitive. By Corollary 3.3, we have that v̄ is deter-
mined by its values on rational knots, and Kanenobu’s formula [K2] shows that on

rational knots v̄ can be expressed using V (n)(1). Since this expression is also a Vas-
siliev invariant of degree ≤ 4, it would extend to all knots. Since also Q ′(−2) can be
expressed from V using [K], we obtain that v is determined by V (on all knots). Then
any pair of knots with equal (or conjugate) V would have equal Q ′′(−2). But the pair

51 and 10132 shows that this is not the case. We quote their V and Q polynomials from
[St3] using encoded notation:

V (51) = V (10132) = {2} 1 0 1 −1 1 −1,

Q(51) = [5] −2 −6 2 2, Q(10132) = [5] −18 −14 38 20 −24 −12 4 2.

We thus obtain a contradiction.

The fact that Q ′′(−2) is not of degree≤ 4 was observed by Kanenobu with similar
reasoning. Of course, this argument can only work in low degree, but a more general
argument for arbitrary degree and arbitrary derivative is not obvious.
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3.4 Braiding Sequences

The approach of braiding sequences gives another motivation for the non-triviality
of the finite degree property question on the derivatives of the Brandt–Lickorish–
Millett–Ho polynomial evaluated at z = −2. It also suggests similar phenomena for

the evaluations at z = 2.

Definition 3.5 ([St]) For some odd k ∈ Z, a (parallel) k-braiding of a crossing p

in a diagram D is a replacement of (a neighborhood of) p by the braid σk
1. A braid-

ing sequence BD,P (associated to a numbered set P of crossings in a diagram D; all
crossings by default) is a family of diagrams, parametrized by n = |P| odd numbers

x1, . . . , xn, each one indicating that at the crossing numbered as i an xi-braiding is
done.

Figure 2 shows the parallel −3-braiding and the antiparallel one. The theory for

antiparallel braidings is almost equivalent, but for convenience the reader may as-
sume that only parallel braidings are done.

−→ or

Figure 2: Two ways to do a −3-braiding at a crossing.

Definition 3.6 If for a knot invariant v and any braiding sequence BD,P with |P| =

n, the map

PD,P : (x1, . . . , xn) 7→ v(D(x1, . . . , xn))

is a polynomial, we call v a braiding polynomial invariant. We call PD,P the braiding
polynomial of v on BD,P.

Theorem 3.7 ([St]) A knot invariant v is a Vassiliev invariant of degree deg v ≤ d if

and only if it is a braiding polynomial invariant and all its braiding polynomials have

degree deg PD,P ≤ d for any BD,P. Herein, degree is counted in all variables altogether,

that is, with respect to

deg

n∏

i=1

xli
i =

n∑

i=1

li.
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Definition 3.8 A knot invariant is an extended Vassiliev invariant of degree ≤ d, if
it is a braiding polynomial invariant and for any BD,P its braiding polynomial has

degree degx j
PD,P ≤ d in any single x j ∈ {x1, . . . , xn} with |P| = n, that is, with

respect to

degx j

n∏

i=1

xli
i = l j .

Example 3.9 The determinant ∆(−1) = V (−1) is an extended Vassiliev invariant
of degree 1, if one restricts oneself to braiding sequences of antiparallel braidings only.

The squared determinant ∆(−1)2
= Q(2) is an extended Vassiliev invariant of degree

2 (also for parallel braidings).

Theorem 3.10 ([St7]) The invariants Q(k)(−2) are extended Vassiliev invariants of

degree≤ 2k. The invariants Q(k)(2) are extended Vassiliev invariants of degree≤ 2k+2.

This leads to a suggestive, but not very easy to answer, question:

Question 3.11 Are Q(k)(±2), or polynomial expressions thereof, (ordinary) Vas-
siliev invariants?

Definition 3.12 A knot invariant v is called polynomially bounded of degree ≤ d if
there is a constant C > 0 such that |v(K)| ≤ C c(K)d for any knot K. (Here c(K) is

the crossing number of §2.2.)

The following is the polynomial growth conjecture [LW], proved in [BN2, S] for

knots, and in [St7] for links.

Theorem 3.13 Vassiliev invariants of degree ≤ d are polynomially bounded of degree

≤ d.

Since the determinant is not a polynomially bounded invariant, it is not a Vassiliev
invariant, and thus extended Vassiliev invariants are a non-trivial notion.

Now, we prove the following straightforward, but useful criterion

Theorem 3.14 A knot invariant is a Vassiliev invariant (of degree ≤ d) if and only if

it is a polynomially bounded (of degree ≤ d) and a braiding polynomial invariant.

Proof The “only if” part follows from our previous results. Now assume v is a
braiding polynomial. We also assume that |v(K)| < C c(K)d for all K, and wish to

conclude that deg PD,P ≤ d for all BD,P. Assume that for some BD,P we have dD,P :=
deg PD,P > d. Let QD,P = [PD,P]dD,P

6= 0 be the homogeneous degree-dD,P-part of
PD,P. There are odd (in fact, positive) numbers k1, . . . , kn with QD,P(k1, . . . , kn)6= 0.
Then consider the diagrams Dp := D(k1 p, . . . , kn p) for odd p → ∞. (By proper

choice of sign of ki one can achieve that Dp is alternating.) The map p 7→ v(Dp)
is a polynomial in p of degree dD,P > d, and the crossing number of Dp is linearly
bounded in p, so that for the knots Kp represented by Dp we have |v(Kp)| growing
faster than c(Kp)d, a contradiction.
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Corollary 3.15 The invariants Q(k)(±2), or polynomial expressions thereof, are Vas-

siliev invariants (of some degree) if and only if they are polynomially bounded (of that

degree).

3.5 Vassiliev Invariants Not Obtained from the Q Polynomial

3.5.1 An Example for Degrees 3 and 4

The first purpose of our investigation is to show the following statement. It explains
the method of computation that is later extended to higher degrees.

Proposition 3.16 Q does not contain a Vassiliev knot invariant of degree 3 or 4 that

is substantial, i.e., not a linear combination of composite and lower degree ones.

Proof First we recall that it does not make sense to look for a Vassiliev invariant of
degree 3 (or any other odd degree), as Q is a symmetric invariant [St4]. (Even non-
mutually obverse examples with the same Brandt–Lickorish–Millett–Ho polynomial

and different Vassiliev invariants of degree 3 are easily found, e.g., 912 and 10156.)

As is well known (see [BN, KM]), the linear space of primitive Vassiliev invariants
of degree 4 (modulo degree ≤ 3) is 2-dimensional and generated by the projections
on it of the degree 4 Vassiliev invariants c4 coming from the Conway–Alexander poly-

nomial and v4 coming from the Jones polynomial.

Q = [5] − 6 − 20 28 30 − 30 − 26 8 10 2

1019

1036 11454

V = −1 2 −3 6 [−7] 8
−8 7 −5 3 −1

∆ = 2 −7 11 [−11] 11
−7 2

V = 1 [−2] 4 −6 8 −8
8 −6 4 −3 1

∆ = −3 13 [−19] 13 −3

V = 1 −3 5 −7 8 −9
8 −5 4 [−1]

∆ = 1 −5 12 [−15] 12
−5 1

Figure 3: Three knots with the same Q polynomial, showing that it cannot contain any in-

teresting Vassiliev invariant of degree 4, and their V and ∆ polynomials (all recorded as in

[St3]).
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As Q contains v2 and hence v2
2, we may waive primitivity and adjust c4 and v4

in whichever way we like, only taking care that v4 has no part in degree 3, i.e., is

symmetric. (Clearly c4 is so, in whichever way we choose it, as is ∆.) Thus, consider

c4 :=
1

24
∆

(4)(1) and v4 :=
1

12

(
V (4)(1) + 6V (3)(1)

)

(for which v4(!K) = v4(K) is straightforwardly checked).

If an invariant of the kind av4 + bc4 for some a, b ∈ R is contained in Q, and for
two knots K1, K2 we have Q(K1) = Q(K2), then

(14) b (c4(K1) − c4(K2)) + a (v4(K1) − v4(K2)) = 0.

Thus, to show that it is not the case for any (a, b) 6= (0, 0), it suffices to find a tripli-

cation of Q, that is, knots K1, K2 and K3 with Q(K1) = Q(K2) = Q(K3), such that

(15) det

(
c4(K1) − c4(K2) c4(K1) − c4(K3)

v4(K1) − v4(K2) v4(K1) − v4(K3)

)
6= 0.

Such an example is the triple 1019, 1036 and 11454. (This is one of the two tripli-
cations of Q I found in Hoste–Thistlethwaite’s tables [HT] of ≤ 11 crossing prime

knots.) We let the reader verify (15), just recording their polynomials in Figure 3.

Thus, unfortunately, there seems no easy way, e.g., to show via Vassiliev invariants

(as it works for V ; see [St5, corollary 7.1]) that the untwisted Whitehead doubles of a
positive or almost positive knot have non-trivial Q polynomial. This was my original
motivation for a large part of the investigations described in [St2].

3.5.2 Vassiliev Invariants up to Degree 7

Now we explain how to extend our result. For degree up to 7 we can present a detailed
argument and calculation.

Theorem 3.17 The Q polynomial determines no Vassiliev invariants up to degree 7,

except those derived (as polynomials of degree at most 3) from v2.

Proof Let v be a Vassiliev invariant of degree ≤ 7 determined by Q. Since v is

symmetric, it has even degree [St4]. The space of symmetric invariants of degree up
to 6 is generated by the primitive invariants

(16) v2; v4,1, v4,2; v6,1, v6,2, v6,3, v6,4, v6,5 ,

and the composite invariants

(17) v2
2; v3

2, v2
3, v2v4,1, v2v4,2.
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Here so far vi (resp., vi, j) denotes the unique (resp., j-th in some arbitrary order-
ing) primitive Vassiliev invariant of degree i. From now on, call all these (including

composite) invariants vi, j (by setting vi,1 := vi for i = 2, 3 and assigning such a
term for the invariants of degree i in (17), with j above the range in (16)). Con-
crete expressions for vi, j (with one exception, v6,5, and up to symmetric invariants
of lower degree) can be found from the Kauffman polynomial. Set Fi, j as in (11) for

i ≥ 0, j > 0. The property (3) implies that there are numbers ci, j such that

F̃i, j = Fi, j +

j−1∑

k=1

ci,kFi,k

is a symmetric invariant for i + j even (and antisymmetric for i + j odd). In fact, one

can restrict the k-sum over 1 ≤ k < j with j − k odd. For instance, one can choose

F̃d,1 = Fd,1

F̃d,2 = Fd,2 + Fd,1

F̃d,3 = Fd,3 + 3Fd,2

F̃d,4 = Fd,4 + 6Fd,3 − 6Fd,1

F̃d,5 = Fd,5 + 10Fd,4 − 60Fd,2

F̃d,6 = Fd,6 + 15Fd,5 − 300Fd,3 + 360Fd,1

The F̃i, j are not primitive, but a test on a few knots (see below) shows that most
of them are linearly independent. Thus one can obtain (some) primitive Vassiliev
invariants vi, j from the F̃i ′, j ′ by linear combinations (possibly including products).

Even more, since the F̃i, j exceed the dimension of the space of primitive (symmetric)
invariants for i + j ≤ 6, there are linear dependencies.

A first easy observation is that

F̃0,2 = 4F̃1,1,

which is also a multiple of v2 = ∇2, so that we can discard F̃1,1. Then turn to degree
≤ 4. Consider the few thousand (including composite) knots of up to 13 crossings.
(They can be generated from the tables of [HT].) A test of F̃0,2, F̃2

0,2, F̃0,4, F̃1,3, F̃2,2,
F̃3,1 on these knots shows the linear relations

31F̃0,2 + 5F̃0,4 − 16F̃1,3 + 16F̃2,2 − 4F̃2
0,2 = 0

3F̃0,2 + F̃0,4 − 8F̃1,3 + 48F̃2,2 − 192F̃3,1 = 0.

Thus one can eliminate F̃2,2 and F̃3,1. Then a test in degree ≤ 6 of

F̃0,2, F̃2
0,2, F̃3

0,2, F̃2
0,3, F̃0,4, F̃1,3, F̃0,2F̃0,4, F̃0,2F̃1,3, F̃0,6, F̃1,5, F̃2,4, F̃3,3, F̃4,2, F̃5,1
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shows the relations

− 1485F̃0,2 − 135F̃0,4 + 2F̃0,6 + 360F̃1,3 − 24F̃1,5 + 240F̃2,4

− 1920F̃3,3 + 11, 520F̃4,2 − 46, 080F̃5,1 + 180F̃2
0,2 = 0,

− 4464F̃0,2 − 3564F̃0,4 − 45F̃0,6 + 4410F̃1,3 + 54F̃1,5 + 1296F̃2,4 − 14, 688F̃3,3

+ 97, 920F̃4,2 − 403, 200F̃5,1 + 64F̃2
0,3 + 72F̃3

0,2 − 48F̃0,2F̃0,4 + 384F̃0,2F̃1,3 = 0,

thus eliminating F̃5,1 and F̃4,2.

This calculation is justified by Lemma 3.2. It also confirms the well-known fact

that F contains both of the primitive invariants of degree 4 as well as 4 of the 5 prim-
itive invariants of degree 6. The missing invariant v6,5 = ∇6 is provided (up to some
correction by composite invariants) by the coefficient of z6 in the Conway polyno-
mial ∇(z), as explained in [St6] from the example of Lickorish (and recalled above

in §3.3).

Now assume Q(z) = F(1, z) determines v =
∑

i=2,4,6

∑
j ci, jvi, j . First note that if

c6,5 6= 0, then F determines ∇6, a contradiction. Thus, assume c6,5 = 0, and we deal

only with the Vassiliev invariants coming from the Kauffman polynomial. Then we
can without loss of generality replace vi, j by F̃i ′, j ′ (for i ′ + j ′ = i).

Among prime knots of ≤ 10 crossings [Ro, appendix], Q has 13 duplications.

These are the pairs

(944, 82), (945, 87), (915, 10159), (98, 10131), (95, 10134), (921, 10151), (912, 10156),

(925, 926), (1022, 1035), (1014, 1031), (1056, 1033), (1019, 1036), (1043, 1072).

The polynomial of (one knot of) each pair is given in Table 1.

8 2 [-7] 0 22 2 -20 -4 6 2
8 7 [-7] 4 20 -8 -20 2 8 2
9 5 [ 1] -12 2 28 0 -22 -4 6 2

9 8 [ 1] -8 8 22 -12 -22 2 8 2
9 12 [-3] -6 10 14 -12 -16 4 8 2
9 15 [ 1] 4 -2 -2 -8 -8 6 8 2
9 21 [-3] -2 16 4 -26 -12 12 10 2

9 25 [-7] 0 30 2 -42 -14 18 12 2
10 14 [ 1] -4 -10 20 16 -26 -18 10 10 2
10 19 [ 5] -6 -20 28 30 -30 -26 8 10 2
10 22 [ 1] 0 -4 6 12 -12 -16 4 8 2

10 33 [ 1] -16 0 44 4 -48 -16 18 12 2
10 43 [-7] -4 28 22 -32 -42 0 22 12 2

Table 1: The Q polynomials of the ≤ 10 crossing prime knots occurring in duplications. (Only

one knot in each pair is recorded.)
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Each such pair gives rise to a linear relation on the ci, j as (14) in the proof of
Proposition 3.16 on a and b. The F̃i, j are given in Table 2.

By imposing jointly all these 13 conditions on the ci, j , we find that the only possi-
ble linear combinations

∑
ci, jvi, j determined by Q must lie in the span of v2, v2

2 and
v3

2, as desired.

Remark As in the proof of Proposition 3.16, we could have tried to use a single
large group of knots with equal Q polynomials, but different Vassiliev invariants, to
find enough relations between the ci, j . (Note that a group of n knots can give up to

n − 1 independent linear relations.) However, among prime knots of up to 16 cross-
ings, I found no group whose linear conditions on the ci, j eliminate anything except
polynomials of v2. Note that generically a considerable part of the coincidences of
the Q polynomial arise from mutations. But mutations preserve Vassiliev invariants

up to degree 6 [CDL, CDL2, MC, Mr] and are useless for our purpose.

4 Vassiliev Invariants and 2-Cable Polynomials

4.1 Calculating Invariants

If one wants to extend our result to degrees ≥ 8, more computation is required. We

will present here the outcome that suffices to cover degrees 8 and 9. A first task is to
find a way to obtain all such Vassiliev invariants. Expectedly, this problem has been
encountered before. In particular, a related (and still unsolved) question posed by
Przytycki [Ki, Problem 1.92 (M)(c)] is

Question 4.1 Do all invariants of knots of degree 10 or less come from the HOM-
FLY and Kauffman polynomial and their 2-cables?

Recall that a 2-cable Kp of a knot K with framing p is constructed as follows. For
even p, (a diagram of) Kp is obtained by applying

(18) −→

to any crossing of a diagram of K of writhe p/2. For odd p one applies (18) to a
diagram of writhe (p − 1)/2, except at one crossing, where one performs

(19) −→ .

Then Kp is connected (a knot) for odd p and disconnected (a 2-component link) for
even p. We write K± for K±1.

In an attempt to approach Przytycki’s problem, we considered the Vassiliev invari-
ants

(20) Pd := {Pi, j : i + j ≤ d } ,
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where Pi, j is defined as in (13), and i, j ≥ 0, with i even. Note that Pd are all
invariants of degree ≤ d, as are

(21) Fd := {Fi, j : i + j ≤ d }.

To obtain a Vassiliev invariant of degree ≤ d, one can also use products of invariants
Pi, j and Fi, j .

The invariants in Pd and Fd were considered by Meng [Me] and Lieberum [Li],
using their weight systems. Our calculation is supported by some results they ob-

tained. However, it also shows phenomena that point to caution in some tempting
conclusions concerning the structure of the algebra generated by Vassiliev invariants
of the HOMFLY and Kauffman polynomials.

One can apply Pd and Fd also to 2-cables Kp of K with various framings. We

denote by Pd(Kp) and Fd(Kp) the resulting invariants. If the framing is even, then
the 2-cable is disconnected, and then the restriction to i modifies to i ≥ −1, with i

odd for Pi, j .
For

v ∈ (Pd \ Pd−1)(K∗) ∪ (Fd \ Fd−1)(K∗) ,

let d̃eg v := d. Note that d̃eg v is not a priori evident to be the same as the degree of v

as a Vassiliev invariant (whence the notational distinction), although clearly deg v ≤
d̃eg v. In some situations though, we have equality, and we clarify why, since the

notation and arguments will be of relevance in later explanation. We formulate a
statement only with F, letting the reader understand that most subsequent remarks
on one of P and F also apply to the other in a similar way.

Lemma 4.2 For odd p and i, j ≥ 0 with i + j even, and i even or i = 1, we have

deg Fi, j(K) = deg Fi, j (Kp) = i + j.

Proof Let us write for a set M ⊂ P∗(K∗) ∪ F∗(K∗) of invariants

Md :=
{ k∏

l=1

vl : vl ∈ M,

k∑

l=1

d̃eg vl ≤ d
}
,

and consider

F̂(h,N) := F
(√

−1e−(N−1)h/2,
√
−1
(

eh/2 − e−h/2
))

.

Then we have (extending the notation of coefficients to power series)

Fi, j(K) ≡ Ci, j

[
F̂(h,N)(K)

]
hi+ j N j(22)

≡ Ci, j

[
F̂(h,N)(K ∪ O)

]
hi+ j N j+1

mod Lin (F∗(K))i+ j−1 ,

where Ci, j are non-zero numbers, and K ∪ O is the split union of K with an unknot.
The right hand side of the congruence is a canonical Vassiliev invariant of degree
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i + j by the result of Le-Murakami and Kassel [LMr, LMr2, LMr3, Ks] (compare
Proposition 5 in [Li]). Now [ F̂K∪O(h,N) ]hi+ j N j+1 6≡ 0 is not hard to see. Let K be

the unknot, with F(K ∪ O) = (a + a−1)/z − 1. The coefficient of the power series
F̂(K ∪O) is easily found to be non-zero for the given i, j; for i 6= 1 it is, up to a factor,
a Bernoulli number. (With other K and a similar calculation, one can settle more
i, j.)

Thus indeed deg Fi, j (K) = i + j. Then the same is true for Fi, j(Kp) if p is odd.
To see this, recall that connected n-cabling of a degree d Vassiliev invariant v applies

a dual Adams operation (ψn)∗ of [BN] on its weight system Wv ∈ Vd/Vd−1 ≃ A∗
d .

That ψn is an automorphism of Ad was stated in [BN, Exercise 3.12]. In fact, we
know that the eigenvalues of ψn are powers of n with exponents given by the number
of univalent vertices of unitrivalent graphs; see [KSA, MR].

For the calculation of 2-cable polynomials of K it is sufficient (but also, up to

algebraic transformations, necessary) to determine the polynomials of a connected
cable of K and !K. To keep the diagrams as simple as possible, we use the 2-cables
with blackboard framing from the diagrams in [HT] and one negative half-twist.
For the skein polynomial, this calculation was possible for all prime knots up to 13

crossings (including mirror images). The Kauffman polynomial is technically more
difficult. We obtained a set S of 898 prime knots up to 12 crossings (including all≤ 10
crossing knots, except 105), where both Kauffman polynomials could be determined.
We used this set S for all subsequent Vassiliev invariant calculations.

4.2 Dimensions

Table 3 gives lower bounds for the dimension of Vassiliev invariants of bounded de-

gree calculated for various combinations of Pi, j and Fi, j applied to knots and various
2-cables. With the previous designation, for example the column d entry of the row
PP+P− is

dim Lin (P∗(K+) ∪ P∗(K−) ∪ P∗(K))d

∣∣∣
K∈S

,

and S is the set of knots explained above. Clearly, many linear dependencies will oc-
cur, but in degree d ≥ 7, they are increasingly difficult to prove rigorously. Contrar-
ily, linear independence is easy to prove if S is large enough. Although some general
theory behind Table 3 is known, there are many detailed aspects in the calculations it

reflects that apparently were never clearly pointed out. Thus we will list below several
features of the table that should be clarified, and point out phenomena and previous
results it relates to.

The numbers obtained, given in the table, can only be ensured to represent lower
bounds for the dimensions, since it is difficult to rigorously verify that some Vassiliev
invariant is identically zero. From the fact that we evaluated enough invariants to

obtain the full dimension up to degree 8, we can conclude that the set S we used is
d-deterministic, and so our numbers are exact for d ≤ 8. However, we do not know
about degrees 9 or 10. Indeed, non-trivial Vassiliev invariants of increasing degree
may vanish on many low-crossings knots (for example the ∇i). All deterministic sets
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deg ≤ 0 1 2 3 4 5 6 7 8 9 10

dim ≥

total 1 1 2 3 6 10 19 33 60 104 184

P/PP! 1 1 2 3 6 9 16 24 40 60 95

P+/P− 1 1 2 3 6 9 16 24 40 60 95

PP+/PP− 1 1 2 3 6 10 19 31 53 85 140

P+P− 1 1 2 3 6 9 17 27 46 72 117

PP+P− 1 1 2 3 6 10 19 31 53 86 142

P+P−P0 1 1 2 3 6 10 19 30 52 82 136

PP+P0/PP−P0 1 1 2 3 6 10 19 31 54 87 145

PP+P−P0 1 1 2 3 6 10 19 31 54 87 145

PP+P−P3 1 1 2 3 6 10 19 31 53 86 142

P−2P−P0P+ 1 1 2 3 6 10 19 30 52 82 136

PP−2P−P0P+ 1 1 2 3 6 10 19 31 54 87 145

PP−P0P+P2P3 1 1 2 3 6 10 19 31 54 87 145

F 1 1 2 3 6 10 18 29 49 78 127

F+/F− 1 1 2 3 6 10 18 29 49 78 127

FPP+P−P0 1 1 2 3 6 10 19 32 57 94 159

FF+F−F0 1 1 2 3 6 10 19 33 59 99 168

FF+F−F0F−2 1 1 2 3 6 10 19 33 59 99 168

FF+F−F0F−3 1 1 2 3 6 10 19 33 59 99 168

FF+F−F0F2 1 1 2 3 6 10 19 33 59 99 168

FF+PP+P−P0 1 1 2 3 6 10 19 33 60 102 176

FF0PP+P−P0 1 1 2 3 6 10 19 33 60 102 176

FF+F−F0PP+P−P0 1 1 2 3 6 10 19 33 60 102 177

Table 3: This table contains dimensions of various spaces of Vassiliev invariants for degree≤10.

The first row gives the total dimension of Vassiliev invariants up to degree deg as calculated

by Bar-Natan [BN] and Kneissler [Kn].

The second section of rows gives lower bounds for the dimension of Vassiliev invariants up

to degree deg obtainable as polynomial expressions from Pdeg of the HOMFLY polynomial P,

and its (application on) 2-cables Pp(K) = P(Kp) of twist p. P± denotes P±1. The product

of some of the P symbols denotes that the invariants of these polynomials have been taken

together. The slash separates between alternative combinations of polynomials that give, as we

explain, the same dimensions (although not necessarily the same linear spaces!).

The last section gives dimensions of invariants derived via Fdeg from the Kauffman polyno-

mial F and its applications Fp on 2-cables of twist p, with F± = F±1. Some combinations of

P∗ and F∗ invariants are also given. They are chosen so as to make evident that the last row’s

dimensions cannot be increased by adding further invariants.
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we know in degree d > 8, as well as the one from §3.2, are too large to allow effi-
cient calculations. One can find smaller sets using a basis of Vd/Vd−1. (Its primitive

part would be enough.) But such a basis is itself non-trivial to find, and was appar-
ently never explicitly given (even if likely obtained in the course of the calculations of
Bar-Natan [BN] and Kneissler [Kn]). Even if so done, the resulting reduction is still
unlikely to be easily manageable. Another way to prove a set deterministic is to evalu-

ate the remaining Vassiliev invariants, but this does not seem very efficient either. At
least, the comparison of the first and last rows of the table shows that the difference
between the numbers in degree 9 (resp., 10), and the actual dimension is at most 2
(resp., 7).

Once we obtain only lower bounds, it makes sense to reduce invariants modulo a
large prime, which we chose to be 9091, in order to keep numbers simple. (In partic-
ular, in 2-cable Kauffman polynomials the coefficients are large enough to make Fi, j

exceed machine-size integers. Mathematica
TM

, which bypasses this problem, could

not handle well the extent of calculation needed for the upper degrees.)
Some coincidences of rows are easy to explain (even without knowing the abso-

lute accuracy of the numbers in giving the proper dimensions), or at least known.
In particular, mirroring the (set of) invariant(s) induces an involution on the space

Vd/Vd−1. The injectivity of ψ2 was mentioned in the proof of Lemma 4.2. The fact
that PP! contributes the same linear span of invariants as P is a consequence of prop-
erty (4). For that same reason, and because (!K)p = !(K−p), it becomes useless to
consider the invariants from the various 2-cable polynomials of !K for K ∈ S.

We also obtained lists of linear independent invariants (omitted here for space
reasons), but we have not tried to identify a basis of the primitive part of Vd/Vd−1

that is obtainable. It is very difficult (see the following remarks) to determine the
exact degrees of the Vassiliev invariants and their primitivity status. One should also

be cautioned that the linear relations between such invariants involve up to about
30-digit coefficients, and are much more complicated than insightful.

4.3 “Hidden” Vassiliev Invariants

Assume for a moment that the numbers in the table are exact (rather than just lower
bounds). Assume further that all the new invariants contributed by each set of Pd

in comparison to Pd−1 are invariants of degree d, and that all (prime) factors of

all composite invariants obtained have been generated for smaller d. Then we find
from the various rows of the table the projected sequences of primitive Vassiliev in-
variants of degree exactly d that can be obtained. For example, for the P-row it
reads 1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5 and for the F-row 1, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8. These se-

quences appear in [Li, Proposition 12], and seem the only case studied closely so
far. However, the projected sequences may not always be correct. Consider the
rows PP+, where we obtain 1, 0, 1, 1, 2, 3, 5, 6, 7, 8, 9 and PP−P+, where we obtain
1, 0, 1, 1, 2, 3, 5, 6, 7, 9, 10. Apparently, adjoining P− seems to give a new invariant

in degree 9. But it is easy to see that Pd(Kp) gives the same elements in Vd/Vd−1

for any p of a given parity. Thus Pd(K−) cannot increase the dimension in degree
d. This means that a Vassiliev invariant of degree d may be realizable from some Pd ′

with d ′ > d, but not from Pd (of a given set of cables). In particular, the difference
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between PP−P+ and PP+ in degree d = 9 comes from a Vassiliev invariant v8 in de-
gree d < 9. We know that v8 cannot be obtained from (P∗)8, since by the remarks

in §4.2 our numbers are accurate for d = 8. It must have degree 7 or 8, as we have
already exhausted all invariants of degrees d ≤ 6 with PP+. The additional difference
in degree 10 must come from a new Vassiliev invariant of degrees 7 to 9. But these
invariants are immediately lost if we work with the (degree d) weight systems of Pd.

This explains why the weight systems obscure sometimes essential information.

Even if we cannot explicitly observe an instance of this phenomenon, it is in prin-
ciple possible that one can even obtain a composite Vassiliev invariant from some
Pd(K∗) without being able to obtain some of its factors.

The (possible) peculiarities explained above caution the following:

(a) The algebra of some set of Vassiliev invariants may not be isomorphic to the al-

gebra of their weight systems. This can occur if not all invariants are primitive and
have linear independent weight systems (of the appropriate degree). To exclude such

possibility, the composite and lower degree Vassiliev invariants must be proved to be
generatable from previous degrees. One situation where this is needed is Theorem 3
of [Li]. It requires the result used in (22) that any Fi, j(K) can be altered by elements in
Lin (F∗(K))i+ j−1 so that it becomes canonical (of degree i + j), and similarly Pi, j(K).

For canonical invariants, linear dependencies of the weight systems extend to linear
dependencies of invariants.

(b) It is difficult to prove that some Vassiliev invariant v is actually not obtain-
able from HOMFLY (or some cables of it). For P we can deduce from the proof of
Lemma 4.2 that if a Vassiliev invariant v of degree d = deg v lies in the algebra gen-

erated by P∗(K), then it lies in Lin (P∗(K))d. On the opposite side, for cables of
P, there is no a priori limit on d ′ in terms of d, whose Pd ′ we must consider, and
not only polynomials, but possibly fractions of polynomials of Pd ′ must be exam-
ined. There may be even other (yet unknown) ways to obtain Vassiliev invariants,

not using (only) the P∗. Thus the only approach is to find knots not distinguished
by HOMFLY (or its cables) but by v, as in [K4, St6]. A systematic way to find such
examples is unknown.

4.4 Connected and Disconnected Cables

It is suggestive from the skein relation of P that the Vassiliev invariant v8 in §4.3
can be obtained from P8(K0). This explains the difference between the PP+P− and
PP+P−P0 rows occurring already in degree 8.

In general one can obtain the P-polynomial of a disconnected n-cable as a linear

combination of polynomials of connected n-cables whose coefficients have a power
in m between 0 and 1 − n. This means that

Lin Pd (all n-cables) ⊂ Lin Pd+n−1 (connected n-cables) .

However, in general

Lin Pd (all n-cables) 6= Lin Pd (connected n-cables) .
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That is, there is a way of obtaining new Vassiliev invariants by disconnectedly cabling
invariants of the same degree, not obtainable by connected cablings. This was no-

ticed by Dasbach [Da]. The eigenvalues of the Adams operations (mentioned in the
proof of Lemma 4.2) show, as observed in [MR], that the space of invariants given by
connected n-cablings of an invariant v of degree d stabilizes (modulo lower degree)
for n > d. In contrast, Dasbach’s result roughly means that, by starting from Pd,

one will obtain new invariants of degree d from disconnected n-cables at least up to
n ≤ exp (C ·

√
d) for some constant C > 0 (independent of n and d). Thus, even

though polynomials of disconnected cables are linear combinations of polynomials
of connected cables, and hence the same is true for their global sets of Vassiliev in-

variants, the situation is quite different if one restricts oneself to their invariants of
bounded degree.

On the other hand, for any connectivity, the relations between cable polynomials
allow us to limit the number of cables of that connectivity which suffice to generate

all possible Vassiliev invariants from all such cables. In case n = 2 we have

Lemma 4.3 For the polynomials Pp of the 2-cables of framing p (connected for p odd

and disconnected for p even), we have

Pp = −l4Pp−4 − (2l2 − m2l2)Pp−2.

Proof Consider the generating series f (l,m, z) =
∑∞

p=0 Pp(l,m)zp (whose conver-

gence is easy to establish). The skein relation implies Pp+2 = −mlPp+1 − l2Pp, so
that

f (l,m, z) =
A(l,m, z)

1 + mlz + l2z2
,

for some A ∈ Q[l,m, z]. Taking f (l,m, z) ± f (l,m,−z), we obtain the denominator

(1 + mlz + l2z2)(1 − mlz + l2z2) = 1 + l4z4 + 2l2z2 − m2l2z2,

which leads to the stated relation.

This means that for connected/disconnected 2-cables, the invariants of Pd are ex-
hausted if we apply them on Pp for two consecutive odd (resp., even) p. By a similar
argument for F, three consecutive p of a given parity suffice. In practice, as the ta-

ble shows, p = ±1, 0 already apparently generate all invariants from Pd and Fd for
d ≤ 10 (for both parities of p taken together).

4.5 Mutations and Non-Mutations

Note the difference between the P+P−P0 and the PP+P−P0 rows. This suggests that
HOMFLY may have Vassiliev invariants not contained in its 2-cables. In general, al-
most all knots with different HOMFLY polynomial will also have different 2-cable

HOMFLY polynomial. But the Vassiliev invariant observation suggests that it may
not always be so. So far, the only known examples of knots with equal 2-cable HOM-
FLY polynomial are mutants [LL]. They also have the same HOMFLY (and Kauff-
man) polynomial.
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12341 12627

0 24

-8 10 5 27 69 99 75 6 -44 -44 -20 -4
-8 10 -60 -315 -755 -1016 -710 -22 467 462 213 42
-8 10 331 1705 3800 4752 3129 33 -2126 -2157 -1040 -206

-8 10 -1011 -5283 -11308 -13286 -8335 -7 5603 5795 2823 537
-8 10 1805 10023 21665 24516 14755 -52 -9503 -9781 -4556 -794
-8 10 -1965 -12201 -27766 -31277 -18030 41 10913 10763 4610 692
-8 10 1325 9768 24362 28057 15528 -11 -8578 -7886 -2968 -355

-8 10 -549 -5129 -14689 -17703 -9448 1 4563 3811 1191 104
-8 10 135 1728 5989 7729 4007 0 -1583 -1179 -285 -16
-8 10 -18 -357 -1602 -2259 -1148 0 338 222 37 1
-8 8 1 41 267 418 210 0 -40 -23 -2

-6 6 -2 -25 -44 -22 0 2 1
-4 0 1 2 1

Table 4: Two knots with the same 2-cable HOMFLY polynomials (P+ is displayed), which are

not mutants.

However, the calculations performed while compiling the above table led to the
discovery of some duplications of P∗ which are not mutants.

Example 4.4 The knots 121305 and !121872 have the same P, F and 2-cable P. To
check the coincidence of P∗, comparing P± suffices. Still 121305 and !121872 are not
mutants. This is most easily shown using the result of [Ru], since their hyperbolic

volumes differ: vol (121305) ≈ 15.483, while vol (!121872) ≈ 15.619. Another such
group is made of the two mutants 121378, 121423, and the knot !121704. Again P, F

and 2-cable P coincide, but while vol (121378) = vol (121423) ≈ 15.094, we have
vol (!121704) ≈ 14.983.

Later, after considerable calculation, we found that these pairs of knots have also
different 2-cable Kauffman polynomials F+, with the difference coming out as a Vas-
siliev invariant of degree 7. Thus there is a Vassiliev invariant of degree 7 not con-

tained in the HOMFLY, Kauffman and 2-cable HOMFLY polynomials, but in the
2-cable Kauffman polynomial. (Note that P∗ exhaust all invariants up to degree 6.)

There is one further pair made up of 12341 and 12627 (see Figure 4). These knots are
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achiral, and for them, comparing P+ suffices to see that P∗ coincide. This time they
are distinguished using an invariant of degree 8 of the 2-cable Kauffman polynomials.

(Note that the lowest degree of an invariant distinguishing 12341 and 12627 must be
even, since by [St4] odd degree invariants can be changed by invariants of lower
degree so that they vanish on achiral knots.)

There has been further work on generalizations of mutations [APR, JR, Tz, HP],

but none of this seems to explain the coincidence of the 2-cable HOMFLY polynomial
in these examples.

The observed coincidences of P and F also on non-mutants with the same 2-cable
HOMFLY polynomials extend to prime ≤ 13 crossing knots and suggest

Question 4.5 Does Pp for some p (or at least for all p taken together) determine P

and/or F?

Note that this question may relate to more than mere curiosity. In [KS] we ob-
served a (conjectural) relation between F and the Whitehead double HOMFLY poly-
nomials, and there is also Yamada’s remarkable result [Y] that F determines the
2-cable Jones polynomial.

Remark Using Alexander Shumakovitch’s database, we found that the new Kho-

vanov polynomial Kh [Kh] coincides on these examples as well, and on all other
pairs of prime ≤ 13 crossing knots with equal P+. Still, Kh is known to distinguish
some knots with equal P and F (most interestingly 942 and its mirror image). How-
ever, I do not know of an example showing that Kh can distinguish knots with equal

F and Murasugi-signatures.

4.6 Braid Index

It is known that one can estimate the braid index of a knot K from its P polynomial
[Mo, FW]:

(23) 2(b(K) − 1) ≥ max degl P(K) − min degl P(K).

This estimate is called the Morton–Franks–Williams inequality. Since obviously

b(Kp) ≤ 2b(K) for any p ∈ Z, we can estimate b(K) also from the 2-cable P polyno-
mials of K, as is done in [MS]. We attempted to use this method to settle the braid
index for prime knots of up to 12 crossings. This requires us to find braid repre-
sentations of the strand number given as (lower) bound from the Morton–Franks–

Williams inequality or its application on the 2-cable polynomials. (For a few cases of
large bound, one can conclude the existence of such representations from Ohyama’s
inequality [Oh], and for special types of knots from Murasugi’s results [Mu2].) We
were able to calculate 2-cable P polynomials up to 13 crossings, but were aware of the

difficulties of finding braid representations. We know from [HS] of one undecidable
13 crossing knot, and in [St8] we gave a 14 crossing example of failure of the 2-cable
Morton–Franks–Williams inequality. On the contrary, we indeed succeeded in find-
ing the desired braid representations for up to 12 crossing knots, thereby showing
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9 42 4 12 1298 5 12 1499 5 12 1695 4 12 1899 5
9 49 4 12 1313 5 12 1503 5 12 1702 5 12 1922 5

10 132 4 12 1333 5 12 1506 5 12 1704 4 12 1929 4
10 150 4 12 1373 5 12 1541 4 12 1712 4 12 1933 5

10 156 4 12 1378 4 12 1542 4 12 1723 5 12 1944 5
11 387 5 12 1382 5 12 1548 5 12 1726 4 12 1946 4
11 391 4 12 1385 5 12 1553 5 12 1737 5 12 1982 4
11 400 5 12 1391 4 12 1598 5 12 1787 5 12 1983 4

11 404 4 12 1396 5 12 1600 5 12 1803 5 12 2008 5
11 437 4 12 1400 5 12 1610 5 12 1804 5 12 2015 5
11 446 5 12 1408 4 12 1628 4 12 1811 5 12 2016 4
11 449 4 12 1418 5 12 1650 4 12 1825 5 12 2017 4

11 453 4 12 1423 4 12 1652 5 12 1833 5 12 2037 3
11 484 5 12 1430 5 12 1653 5 12 1837 4 12 2053 5
11 491 5 12 1473 4 12 1657 4 12 1839 5 12 2075 4
11 503 4 12 1476 4 12 1672 5 12 1845 5 12 2099 4

11 538 5 12 1486 5 12 1679 5 12 1883 5 12 2122 5
11 547 4 12 1487 4 12 1683 5 12 1884 5 12 2129 5
11 548 5 12 1488 5 12 1684 5 12 1898 4 12 2131 5

12 1295 5 12 1489 5 12 1685 5

Table 5: Knots with unsharp Morton–Franks–Williams inequality

Proposition 4.6 The 2-cable Morton–Franks–Williams inequality is sharp for prime

knots with up to 12 crossings.

To summarize the result of our computation, we assume that the calculation of
P is easy, so restrict ourselves to the exceptions. Table 5 gives the 98 prime knots of

12 crossings or less for which the (usual) Morton–Franks–Williams inequality is not
sharp, along with their braid index. (The unsharpness of (23) is by 2, except for the
knots printed in bold, where it is 4.) Note that all these knots are non-alternating,
although for higher crossing numbers alternating examples are known at least for

links from [Mu].

4.7 Main Application

With all possible framings of P and F, we still do not obtain two invariants of degree
9, and expectedly several invariants of degree 10. Thus it seems that Question 4.1 is
to be negatively answered. However, by the previous remarks, the only way to do so
is to find knots not distinguished by the HOMFLY and Kauffman polynomial and

their 2-cables. The only such known examples are mutants [LL], but they have the
same invariants up to degree ≤ 10 [Mr]. (In fact, this result motivated Przytycki’s
question.) Thus a systematic approach to answering the question negatively seems
lacking.
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7 2 :12 1659 11 415 :10 8 12 1728 :12 1668
8 19 :12 1727 11 431 :11 395 12 1298 :12 1295
9 44 :8 2 10 36 :10 19 12 1589 :12 1326
9 45 :8 7 11 370 :10 7 11 140 :12 1770

10 159 :9 15 11 473 :12 1823 11 210 :12 1735
10 131 :9 8 11 452 :10 10 11 110 :12 1468
10 133 :12 1670 11 388 :11 371 11 118 :11 45
11 512 :10 140 11 491 :10 38 11 294 :11 146

10 151 :9 21 11 374 :10 30 11 189 :11 30
10 156 :9 12 10 72 :10 43 11 56 :12 1608
9 26 :9 25 11 427 :10 46 11 216 :11 196
12 1750 :12 1682 11 546 :10 71 11 28 :12 1792

10 35 :10 22 12 1893 :12 1556 11 180 :12 1302
11 492 :11 435 12 2070 :12 1337 11 165 :12 1824
11 434 :12 1867 12 1789 :12 1576 11 225 :12 1630
10 31 :10 14 12 2105 :12 1336 11 279 :12 1913

11 461 :10 85 12 1458 :12 1394 11 330 :11 24
11 453 :11 385 12 1901 :12 1709 12 1150 :12 492
10 56 :10 33 12 1903 :12 1652 12 742 :12 503
11 484 :10 20 12 1685 :12 1600 12 882 :12 212

Table 6: 60 pairs of knots of ≤ 12 crossings with the same Q polynomial, which are not mu-

tants. The comparison of Vassiliev invariants of degree ≤ 8 on them allows us to prove Theo-

rem 4.7.

The calculations up to degree 8 now allow us to prove our main result.

Theorem 4.7 The Q polynomial determines no Vassiliev knot invariants of degree

d ≤ 9 which are not polynomials of v2.

Proof By the previous symmetry argument, it suffices to consider degree d ≤ 8.

Take the 60 duplications of Q in Table 6. We chose them so that the knots are not
mutants (which was verified using the hyperbolic volume). We already observed that
the invariants of FF+PP+P−P0 generate all invariants up to degree 8. By evaluating
these families on the 120 knots in these pairs, we can confirm this. Now consider the

matrix obtained by evaluating v(K1) − v(K2) for any Vassiliev invariant v of degree
d ≤ 8 and knots K1,2 in a pair (with rows given by a basis of invariants v and columns
by pairs of knots). One calculates that this matrix has rank 55, which corresponds to
removing the powers vi

2 for i = 0, . . . , 4 from the dimension 60 of Vassiliev invariants

of degree d ≤ 8. (Thus 55 pairs would suffice, but the other 5 are used to ensure some
confidence in the calculation.)

From Corollary 3.15 we obtain the following.
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Corollary 4.8 Assume that X ∈ Q[x1, x2, x3, . . . , y0, y1, y2, . . . ] is an honest polyno-

mial1. If X(Q ′(−2),Q ′ ′(−2), . . . ,Q(2),Q ′(2),Q ′′(2), . . . ) is a polynomially bounded

invariant of degree d ≤ 9, then it is as a knot invariant a polynomial of degree d ≤ 4 in

Q ′(−2).

Note that we do not know whether X is a polynomial of degree d ≤ 4 in x1, since
we do not know whether the Q(k)(±2) are algebraically independent invariants. On
the opposite side, one can, with just a bit of reformulation and extra argument, also

incorporate the values V (k)(±1) into X in a statement of the above type.
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