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Let w be a positive integer and pu t N = {1, 2, . . . , n\. A collection 
{Si, S2, . . . , St} of subsets of N is called determining if, for any T C N, the 
cardinalities of the t intersections T C\ Sj determine T uniquely. Let 
€1, €2, . . . , en be n variables with range {0, 1}. I t is clear t h a t a determining 
collection {Sj) has the proper ty t h a t the sums 

E « 
ieSj 

determine the et uniquely. We are interested in finding, as a function of n, 
the least integer fin) such t h a t there exists a determining collection con­
taining fin) subsets of N. This can be interpreted as a "coin-weighing" prob­
lem: given n coins known to weigh either a or /3 (a ^ ^ ) , fin) is the least 
number of weighings necessary, on a calibrated scale, to determine the weight 
of each of the n coins (one can always normalize so t h a t a = 0 and (3 = 1). 

I t is clear t h a t the sets {1}, {2}, . . . , {n} form a determining collection, 
hence t h a t f(n) < n. T h e purpose of this paper is to show t h a t f(n) = 
0(n/log log ri), thus proving a conjecture of N . J. Fine (1). T h e au thor would 
like to thank J. L. Self ridge for suggesting the problem, and for many helpful 
discussions. T h e case n = 5 comes from (2). 

Since there is no addit ional difficulty we allow the et to have range 
{0, 1, 2, . . . , k — 1J, where k > 2 is an integer fixed for the remainder of 
this paper. Then f(n) is the least number of sets Sj C V̂ such t h a t the sums 

ieSj 

determine the et uniquely. 
We consider a more general problem where some of the variables range 

through the real numbers . A variable whose range is {0, 1, 2, . . . , k — 1} is 
called restricted; otherwise it is unrestricted. 

Let €1, €2, . . . , er be restricted variables and ci, cr2, . . . , as unrestricted 
variables. By a method (r, s, t) we mean a collection of t subsets of the r + s 
variables eu o-j, such t h a t the t sums, obtained by summing the variables in 
each of the t subsets, determine the et and <Tj uniquely. T h e existence of a 
method (r, s, t) means t h a t there are t linear forms, with coefficients 0 or 1, 
in the r -\- s variables et, ajf such t h a t the values of the linear forms determine 
the values of the e{ and aj uniquely, hence t h a t f(r + s) < t. 
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Put R(r,s,t) = (r + s)/t. In Lemma 3, we define a "multiplication" of 
methods, which when applied to the methods constructed in Lemma 2 makes 
R(r, s, t) arbitrarily large. 

LEMMA 1. Suppose there exists a method (r, s, t). Then, if p > 1, rf < r, 
sf < s, t' > /, Z&ere £x̂ s£ methods (rf, s\ tf), (r ~\- s', s — s', t), and (pr, ps, pt). 
For each a > r + s} there exists a method (a, 0, c) with a/c > (r + s)/2t. 

Proof. The first part is obvious. Now set a = q(r + s) — g, where 
0 < g < r + s. By the first part there exists a method (g(r + s), 0, g/) ; hence 
there exists a method (a, 0, $ ) . But a/g£ > (g — 1) (r + s)/g£ > (r + s)/2t. 

LEMMA 2. 7w m d m > 0, //zere exists a method (m + 1, &w, &w + 1). 

Proof. Let e0, ez, . . . , eTO be restricted variables and alf o-2, . . • , c7/cm be 
unrestricted variables. Put 

and 

Lj — o-j + 2-f e**> 
z=ft 

where 1 < j < &w, and /z is obtained from j by kh~l < j < &*. Then c* appears 
in those forms Lj for which 1 < j < fe*. Hence, 

j=l i = 0 

By the uniqueness of the expansion of a number to the base k, this determines 
the €f uniquely, and then as 

m 
aJ — Lj — ^Lf ei> 

2=7* 

the dj are determined. 

Put 

(r, s, t) * (u, v, w) = (rv + ta, sz;, ta;). 

Under the map 

<"*«-C <)• 
the operation * corresponds to matrix multiplication, hence is associative. 

LEMMA 3. Suppose there exist methods (r, s, t) and (u, v, w). Then there exists 
a method (r, s, i) * (u, v, w). 
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Proof, Let eijt 1 < i < r, 1 < j < v, be n; restricted variables; let 8mj, 
1 < m < /, 1 < j < w, be £w restricted variables; finally, let <r ,̂ 1 < i < s, 
1 < j < v, be 5V unrestricted variables. For each fixed j , 1 < j < z>, the 
existence of method (r, 5, t) implies that there exist t linear forms Lmj} 

1 < m < /, with coefficients 0 or 1, in the etj and atj, whose values determine 
the etj and atj uniquely. For each fixed m, 1 < m < t, we apply method 
(w, z/, w) to the Lmj and the <5wi, treating the Lmj as the v unrestricted variables 
of the method (u,v,w). Thus there exist w linear forms Kny 1 < n < w, 
with coefficients 0 or 1 in the Lmj and the 8mj, whose values determine the 
values of the 8mj and Lmj, hence the values of the eî;- and <r .̂ For different j , 
the Lmj are linear forms in distinct variables ez;- and o-ZJ-. Hence the tw linear 
forms 

Jmn\eiji &iji $ij) ~ Kn{Lmj{€ij, (Tij), 8mj) 

have coefficients 0 or 1, and determine the rv + tu restricted variables ei;, 
8mjJ and the sv unrestricted variables atj. 

Put (r, s, t)1 = (r, 5, £), and inductively 

(r,s,t)n+1= (r,s,t)n*(r,s,t). 

LEMMA 4. / / 0 < c — b < a, then 

R[(a,b,c)m] = -c 

Proof. An easy induction. 

THEOREM. f(n) = O(n/loglogn). More precisely, 

lim sup(/(w)log logn/n) < 21og£/( l — 1/e). 
W-^oo 

Proof. By Lemmas 1, 2, and 3, there exists a method 

(aTO, »m, cm) = (w, *« £w + 1)*™. 

Clearly, 

cro = (km + l)km = £™*m(l + l/£w)*m ~ e£wA:m. 

By Lemma 4, 

i?(tfm, 6m, Cro) = ml 1 - ( 1 - tfn-T-j-J J + ( 1 - £^T~J ) 

~ mil — 1/e) 

Put dm = am + bm; then dm ~ m (I — l/e)cm, and log log dm~ m log &. By 
Lemma 1, there exist methods (dmj 0, cm)\ hence 

f(dm) < cm~ dm/m {I - 1/e). 

+ 
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Thus 

tt-»oo L dm J 1 ±/e 

By Lemma 1. 

f(n) < 2nf(dm)/dm, where dm < n < dm+i. 

Hence 

lim sup f(n) log log n/n < 2 log k/(l — 1/e). 
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