
A NOTE ON HOMOTOPY INVARIANCE OF

TANGENT BUNDLES
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Although tangent bundles of manifolds are not always homotopically

invariant, but in some categories of the manifolds they can be homotopically

invariant.

In this note, I show that tangent bundles of 7r-manifolds and almost

parallelizable manifolds depend only on their homotopy types.

We denote by Mn a n-dimensional connected closed dίfferentiable mani-

fold, by τMn the tangent bundle, and by ^ the bundle equivalence.

1. Let Mn be a ^-manifold. For a given immersion of Mn into (n + 1)

-dimensional Euclidean space or a triviality of the stable tangent bundle

τMn © ε, we can define a map of Mn into the n-dimensional sphere Sn, so

called the "normal map" or the "Gauss map". This map is covered by a

bundle map of τMn into τSn, and its degree is decisively related to the

Euler characteristic l{Mn) and the semi-Euler characteristic of Mn. (Milnor

[3], Bredon-Kosinski [1])

THEOREM 1. Let Ml and Ml be π-manifolds of dimension n, and let f:

M\ -> M\ be an arbitrary homotopy equivalence. Then, we have τM\ ~ f*{τMv

2).

Proof. Let Ft be a framing of the stable tangent bundle rMJ © ε and

let vFi be the Gauss map for i = 1, 2. Firstly we show that we can choose

the framings Fx and F2 so that deg. vFχ = deg. vFi.

If n is even the assertion is clear, since deg. vFχ = — x(M9l), deg. vF =

—- χ(M9i) independently of the choice of the framings and M\ , M\ are of
Δ

the same homotopy type.
For n = 1, 3, 7, since M\ and M\ are parallelizable, the theorem is

r

trivial. Let n — 2r + 1, n =¥ 1, 3, 7. By Theorem 3 of [1], deg. vF = Σ rank
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Hk(M"; Z2) mod. 2 for i = 1, 2, independently of the choice of the framings.

Since Ml and Ml are of the same homotopy type, we know that deg. vFχ =

deg. vF% mod. 2 always.

Now, if we construct a new framing F\ of τM\ © ε by a continuous

map fir: MJ-> SO (w + 1), so that /^(a) = g{x) F/O), there is a following

relation between deg. vF, and deg. vFl . ((2 2) of [1]).

deg. vF/ = deg. (π © #) + deg. vFl, where π denotes the canonical projection

of SO {n + 1) onto Sn . Thus we have,

deg. vp — deg. vFi = deg. {π o g) + (deg. vFl — deg. vFt). We note that

deg.v^ — deg. ^ 2 is even. If n is odd, since there exists a continuous map

g such that deg. (π o g) can be any even integer, we can choose F[ so that

Thus we can choose the framings Ft and F2 so that deg. pFl =

deg. pFt . We may assume that deg. / = 1. Then, in the following dia-

gram, deg. pF% o / = deg. / x deg. pFz = deg. pF% = deg. pFί. So that by Hopf's

Classification Theorem, pFiof is homotopic to pFl,

that is, the diagram is homotopy commutative. There-

fore we have τMl ~ pρ (τSn) ~ (vp2 of)*{τSn) ^ f*{vF

«/*(rM5).
This completes the proof of the theorem.

Ί

In the proof of this theorem, if z(MJ) = 1{Ml) or if the semi-Euler

characteristic of Ml is equal to that of Ml in mod. 2, according as n is even

or odd, then the map / need not be a homotopy equivalence but the condi-

tion deg. / = 1. So, we have

THEOREM V. Let Ml and Ml be π-manifolds of dimension n . If n is even

and X(Ml) = X(Ml), or if n is odd and the semiΈuler characteristic of Ml is equal

to that of Ml in mod. 2, then for any continuous map f: M\-+M\ of degree 1,

« /*(τAf5).

COROLLARY 1. In the category of π-manifolds, whether a π-manifold of even

dimension has an almost complex structure or not depends only on its homotopy type.

Proof This is clear.

COROLLARY 2. Let Ml and M'£ be π-manifolds of dimension n, and let f:

Ml ~> Mn

2 be a homotopy equivalence. Then, for any twisted spheres 7\ and T2 of
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Γn, there exists a homotopy equivalence g: M\%T1-^M\%T2 such that τiM'l^T,)^

g*τ(MnT2).

Proof. Since MΊ\$Tt i — 1, 2 are 7r-manifolds and are homeomorphic

to M", this follows from Theorem 1.

2. Let us consider such a manifold Mn that Mn — (a point) is an open

7r-manifold. If we call such a manifold to be almost n, a manifold Mn is

almost 7r if and only if it is almost parallelizable. Because, the tangent

bundle of Mn — (a point) is induced from that of Mn — (Interior of an

imbedded τ?-disk), and a manifold with boundary is π if and only if it

is parallelizable. (Kervaire-Milnor [5]).

THEOREM 2. Let Ml and M\ be almost parallelizable manifolds, and let f:

MΊ-+MI be a homotopy equivalence. Then, we have that rMΐ ̂  f*{τMn

2). In

other words, tangent bundles of (n — l)-parallelizable manifolds are homotopically

invariant.

Proof. Let Ot e Hn(M7i; πn_1(SOn+1)) / = 1, 2. be the obstruction class

for extending the triviality of τMn

t 0 ε on the (n — l)-skeleton over the whole.

If n Ξ=Ξ l, 2, 3, 5, 6, 7 mod. 8, by the analogous argument of Kervaire and

Milnor [4], [5], we know that M\ and M\ are π-manifolds. So, the theo-

rem is valid by Theorem 1. If w = 4fc, since the &-th Pontrjagin classes

Pk(M1l) = m Oi (πι\ an integer) i = 1, 2 and the indexes of Ml and M\ are

equal (we may assume that deg. / = l . ) , we know that Ox = f*O2. So

that, the obstruction class f*O2 — Ox for extending the isomorphism of

τM9l ® ε onto f*{zM?£) © ε on the (n — l)-skeleton over the whole vanish.

Thus, f*{zMn

2) is stably equivalent to τM\. But, in this case, we can show

that f*(τMn

2) is equivalent to τM\\ If we denote by at e Hn{Mΐ; π^SOJ)

i = 1,2 the obstruction classes for extending the triviality of τM\ on the

(n — l)-skeleton over the whole, then the obstruction class for extending

the isomorphism of τMΐ onto /*(rM;) on the {n — l)-skeleton is given by

f*a2 — «!. we can show that f*a2 — aλ — 0. The proof is included in

that of K. Shiraiwa [7].

Finally, note that if Mn is a (n — l)-parallelizable manifold, then Mn is

almost parallelizable. Because, choose a point of Mn and tie to an interior

point of every n-simplex with an imbedded arc. Then, there exists a n-cell

which contains the tree.

https://doi.org/10.1017/S0027763000012745 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012745


250 HIROYASU ISHIMOTO

This completes the proof.

COROLLARY 3. For (n — l)-connected 2n-manifolds, n Ξ= 3,5,6,7 mod. 8, their

tangent bundles are homotopically invariant. For (n — ϊ)-connected {2n + ϊ)-manifolds,

n ΞΞ 5, 6 mod. 8, their tangent bundles are homotopically invariant.

Proof. In this case, these manifolds are almost parallelizable or stably

parallelizable.

COROLLARY 4. The matters corresponding to the corollaries 1, 2 are also valid

for almost parallelizable manifolds.
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