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Abstract. The definition of the Celestial Ephemeris Pole (CEP) which 
is the pole of reference for precession and nutation, should be revised tak­
ing into account recent advances in observation and theory. This paper 
reviews the current realization of the CEP and discusses possible exten­
sions of both the conceptual definition and the realization of the CEP. 
Attention is focused on the corresponding connections between the Earth 
orientation parameters describing rotational variations and the related 
excitation parameters expressing dynamics of the geophysical fluids. 

1. Introduction 

The coordinate transformation between the Terrestrial Reference System (TRS) 
and the Celestial Reference System (CRS) makes use of an intermediate pole of 
reference, the Celestial Ephemeris Pole (CEP). The CEP was defined as a pole of 
reference for precession and nutation in the report presenting the International 
Astronomical Union (IAU) 1980 Theory of Nutation (Seidelmann, 1982); see also 
(Capitaine et al., 1985) and (Capitaine, 1986) for supplementary clarifications. 
Recently it became clear that the CEP should be redefined taking into account 
advances in modeling and monitoring Earth rotation (Capitaine and Brzezihski, 
1998). Particular points which have to be taken into account are the following. 

• Space geodetic techniques, Very Long Baseline Interferometry (VLBI) and 
Global Positioning System (GPS), are able to monitor changes in Earth 
orientation on a near-continuous basis, with a sampling interval 1 or 2 
hours, and with an angular resolution of the order of 0.1 mas (milliarcsec-
ond). 

• There are diurnal and subdiurnal terms both in polar motion and nuta­
tion, which are predicted by theory and in some cases also verified by 
observations. This includes prograde diurnal and semidiurnal terms in 
nutation with amplitudes of the order of 10 /xas (microarcseconds), and 
diurnal/semidiurnal terms in polar motion driven by the oceanic tides, 
with amplitudes up to several hundreds of /xas. 

• There has also been significant improvement in modeling and monitoring 
global dynamics of the geophysical fluids, including subdiurnal estimates 
of the atmospheric/oceanic angular momentum. 
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The purpose of this paper is to review the current realization of the CEP 
(sections 2 and 3) and consider possible extensions which take into account 
diurnal and subdiurnal variations in Earth rotation (section 4). Our presentation 
is based on the matrix transformation between the TRS and the CRS in the 
form proposed by Brzezinski and Capitaine (1993; 1995). The corresponding 
model of polar motion is extended by following the concept of Mathews (1998). 
We consider in detail how this extended model can be used for geophysical 
interpretation of the modern polar motion observations. 

2. Current realization of the CEP 

Current practice is to describe Earth rotation by the conventional IAU preces­
sion/nutation model and the following five Earth orientation parameters (EOP) 
which are routinely estimated from observations 

• xp,yp - the terrestrial coordinates of the CEP; 

• 6ij),6e - the spatial offsets in longitude and obliquity of the CEP with 
respect to its position predicted by the precession/nutation model; 

• UT1—UTC - variations of the universal time expressing the unpredictable 
part of the sidereal rotation angle around the CEP axis. 

These parameters can be used in the coordinate transformation between the CRS 
and the TRS at the date t of observation. Different forms of such transformation 
are described in detail in Chapter 5 of the IERS Conventions (McCarthy, 1996). 
Our preferable expression is that proposed by Brzezinski and Capitaine (1993; 
1995) 

[TRS] = R2{-xp) Rxi-yp) Rsi^R^-Y') R2{X') [CRS]', (1) 

in which Ri(a) stands for the rotation around the /th axis by the angle a, CRS' is 
the celestial system after applying the conventional precession/nutation model, 
X',Y' are the incremental celestial coordinates of the CEP (referred to the pole 
of CRS') and <f> = 4>0 + il(t — t0) + 6<j> denotes the angle of diurnal sidereal rotation 
around the CEP axis with the average angular speed fi and the residual part S(f> 
including the unpredictable variations UT1 —UTC. 

Let us note that 

1. The incremental celestial coordinates of the CEP are related to the cur­
rently reported quantities, the EOPs, by the expressions X' = 8tj)sme0, 
Y' — 6e, in which e0 is the mean obliquity at the reference epoch t0. 

2. The angle 6<f> including UT1 variations depends on the applied conventions 
(classical procedure, using the Conventional Ephemeris Origin, etc.), but 
the differences are negligible when considering only the direction of the 
CEP. 

3. From observations it follows that xp,yp = O(10- 6) , X',Y' = O(10~8). 
Therefore transformation (1) involves only small rotations about the equa­
torial axes, which are very convenient to handle in mathematical deriva­
tions. 
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From eq. (1) it can be deduced that the unit vector ec along the CEP axis 
has the following first representations: 

(xp, ~yp, 1)T in the TRS, (X',Y', l ) T in the CRS'. 

The minus sign in the j/-coordinate is due to the opposite conventions for the 
reported polar motion components and for the direction of the TRS axes. Let 
us further denote by ez, ez> the unit vectors along the polar axes of the TRS 
and CRS', respectively. The difference e*c — ez which is referred to as polar 
motion, is obtained as (xp, —yp, 0)T in the TRS. Similarly, the difference ec — ez1, 
expressing the celestial perturbation of the CEP, usually referred to as nutation, 
has the following expression in the CRS': (X', Y', 0)T. The third component of 
these differences is zero in the first order approximation, hence an equivalent and 
compact representation of polar motion and nutation is obtained after projecting 
them onto the polar planes (terrestrial and celestial, respectively, which are 
almost parallel but differ by the approximately uniform rotation with diurnal 
period) and using complex variables 

p = Xp - iyp, P - X ' + iY', 

where i — A/—T. 

3. Basic kinematical relationships 

3.1. Polar motion versus nutation 

The coordinate transformation (1) is described by 5 parameters, the EOP's, 
while from the elementary geometrical considerations it is known that only 
3 parameters are necessary, hence there are 2 redundant degrees of freedom. 
There is full degeneracy between polar motion and nutation parameters: any 
(small) change AP of the celestial coordinates can be compensated by the change 
Ap = APe~%^ of the terrestrial coordinates; see (Brzeziriski and Capitaine, 1993) 
for derivations and extensive discussion. In the extreme case, the whole pertur­
bation of the pole can be expressed in the terrestrial frame 

[TRS] = R2(-xp - x'p) R^-y, - y'p) Rz{4>) [CRS]' , (2) 

where 
x'p = -X'cos<t>-Y'sm<fi, y'p = -X'sm<f> + Y'cos <j>, (3) 

or, using complex variables, 
p' = -Pe-«, (4) 

where p' = x' — iy' and the rotation angle <p can differ slightly from that used 
in eq. (1) due to the change of the rotation axis. In equations (3) and (4) the 
sidereal rotation angle can be replaced by its linear part <j> = <j)0 + &(t — t0) 
without any significant loss of accuracy; this simplification will be applied in all 
expressions below involving the sidereal rotation factor e~^ or its powers. 

From eq. (2) it can be seen that e~c = tz> meaning that the celestial 
location of the CEP is now that described by the precession/nutation model, 
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and is fully predictable. The whole perturbation of the terrestrial pole in space, 
where perturbation means the difference actual position—model, is expressed in 
the terrestrial frame as 

p = p0 + p' = Po-Pe-i*, (5) 

where p0 the term considered as polar motion in eq. (1). This is the 
so-called polar motion gauge in labelling polar motion and nutation, according 
to the terminology of Eubanks (1993). 

Let us compare now the expressions (1) and (2). The entire transformation 
matrix is the same in both cases and it is expressed by the same 5 variables 
arp,2/p,Z',y',UTl - UTC. Note, however, that X',Y' have different interpre­
tations in eq. (1) and eq. (2) (see discussion below). Consequently, the partial 
derivatives of the transformation with respect to all variables are the same. 
Therefore there is no need to change either the estimation procedure or the ob­
servation strategy when switching from the first expression to the second one. 
The fundamental difference between the transformations (1) and (2) is that 
they employ different intermediate poles of reference, and that in the second 
case there is no more ambiguity in the definition of the CEP. This is a strong 
argument in favour of eq. (2) as an expression of the coordinate transformation 
between the celestial and the terrestrial reference frames, and for defining the 
CEP. This approach will be applied throughout the rest of the paper. 

If we assume that both p0 and P are slowly varying quantities, which is 
in the spirit of the CEP definition given by Seidelmann (1982), then p' in eq. 
(5) expresses nearly diurnal retrograde variations in polar motion. (The phrase 
"slowly varying" in this sentence and also whenever used in this paper, means 
with periods longer than 2 days or with frequencies between —0.5 and 0.5 cpsd 
(cycles per sidereal day), which should be clear from the rest of this paragraph). 
If p0 and P are estimated simultaneously (this is the case of the routine VLBI 
determinations) with sampling interval A days (sidereal), then the frequency 
ranges covered by p0 and p' are the Nyquist intervals fl (—1/2A, 1/2A) and 
ft(—1 — 1/2A, —1 + 1/2A), respectively. Maximum frequency coverage by p is 
obtained for A = 1, equal to ft( —1.5,0.5). For subdiurnal sampling the fre­
quency ranges for p0 and p' become overlapping. Therefore the model described 
by eq. (5) is no longer directly applicable in this case. An extension of this 
model for higher frequencies will be discussed in Section 4. 

If we consider eq. (4) from the point of view of time series analysis, then 
—P can be interpreted as the so-called complex demodulate of polar motion at 
diurnal retrograde frequency —fl. 

3.2. CEP versus instantaneous rotation pole 

The instantaneous rotation vector can be expressed in the TRS using the per­
turbation form introduced by Munk and MacDonald (1960) 

u — n ( m i , m 2 , 1 + mz) . (6) 

The corresponding pole, the instantaneous pole of rotation (IPR), described by 
the complex parameter m — mi + imi, can be expressed in terms of the reported 
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quantities, the Earth orientation parameters, using the following relationship 
derived by Brzeziriski (1992) 

m = p - i ^ ; (7) 

see also (Brzeziriski and Capitaine, 1993) for extensive discussion. 
If we split up m in the same way as p: 

m = m0 — ra'e-'*', (8) 

then eq. (7) applied separately to p and p' yields 

m0 = p0-i jr , m = -i — . (9) 

Eq.(7) expresses the well-known fact that the IPR is not directly observed by 
the space geodetic techniques (also by the optical astrometry), therefore using it 
as a reference pole involves differentiation of the empirical data which is always 
an undesirable operation amplifying the high frequency noise. 

4. Extension for high frequency perturbations 

Parameterization of the CEP expressed by eq.(5) is no longer representative be­
cause it leaves out of consideration important components of polar motion such, 
as diurnal prograde and semidiurnal variations having both physical explana­
tion and observational evidence. One possibility is to suppress the second term 
expressing nearly diurnal retrograde variations, which would enable subdiurnal 
sampling of polar motion. Another possibility, proposed recently by Mathews 
(1998), is to extend model (5) by adding a separate term expressing diurnal 
prograde variations, and another one for semidiurnal prograde variations, etc. 
We will follow this idea below with special emphasis on the consequences for 
geophysical interpretation of the modern polar motion data. 

4.1. New parameterization of the CEP 

Let us consider the following model for polar motion of the CEP corresponding 
to the proposal of Mathews (1998) 

K*)= £ Pn(t)em*, (10) 
n = - J V - l 

in which the complex parameters pn{i) — xPin(t) — iyPln(t) are assumed to be 
slowly varying quantities with the cut-off frequency H/2, and <j> = cf>0 + Q(t — t0). 
In terms of the real-valued parameters this model reads 

N 

xp = ] P (xPin cos n<f> + yPtn sin ncf) , 
n = - J V - l 

(11) 
N 

yp = Yl (-xp,n s'm n<t> + yPiTl cos n<p) . 
n=-7V-l 
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Note that for N = 0 this model reduces to the decomposition (5) considered so 
far with — P replaced by p_i. 

The rath term of expansion (10) describes harmonic oscillation with fre­
quency raft (low frequency for ra = 0, diurnal prograde/retrograde for ra = 1/ — 1, 
semidiurnal prograde/retrograde for n = 2/ — 2, etc.), which subject slow mod­
ulation expressed by the time-dependent amplitude pn(t). The frequency range 
covered by the rath term is ft(ra — 1/2, re +1/2) . There is no overlapping between 
different terms and the total frequency range corresponding to expansion (10) 
is Q(-N -3/2,N+l/2). 

By suppressing x'p, y'p in eq. (2) and inserting for xp, yp eq. (11), we obtain 
the coordinate transformation expressed in terms of the new variables. This 
transformation, together with the a priori models for the motion of the CEP 
relative to the CRS and to the TRS, can be used to estimate xp,n(t),yP,n(t) 
directly from the space geodetic measurements. Of course, before doing that 
it is necessary to modify the data analysis algorithms. Such an attempt using 
VLBI observations was reported by Bizouard et al. (1999). Note that for some 
monitoring techniques in which the diurnal retrograde variations in polar motion 
are fully correlated with perturbations of the orbital elements (GPS, Satellite 
Lase Ranging - SLR), it may be appropriate to suppress the term n = — 1 from 
the model (10)—(11), and add to the a priori model the corresponding empirical 
corrections determined by VLBI. 

But even if the transformation (2) is applied only with the 3 classical pa­
rameters xp, 2/p,UTl—UTC, that means after removing diurnal retrograde terms 
x'y' and with the subdiurnal resolution, the model (10)—(11) can be accom­
plished numerically. The parameters of the rath component are estimated by 
the so-called complex demodulation procedure which consists of multiplying the 
input time series p(t) = x(t) — iy(t) by the factor e_mc* and appropriate smooth­
ing. Note however, that for resolving the high frequency terms it is necessary 
that the sampling interval of the series is less than half of the shortest period in 
the model. 

We chose asymmetrical summation limits in the extended model (10) in 
order to have symmetry with respect to the initial model (5). In some cases, 
however, such as when the model is fitted to the subdiurnal time series (this 
is always the case for the excitation function - see Sec. 4.3), it may be more 
natural and more convenient to perform the summation from —N to N. The 
value of N depends on the quality of measurements and on the assumed accuracy 
of the model. At present, the choice N=2 seems to be reasonable because the 
model includes all diurnal/semidiurnal variations with respect both to the TRS 
and to the CRS. This yields 6 complex parameters (pn) or, equivalently, 12 
real parameters {xp<n, yPtn) for polar motion, which can be estimated as daily 
averages. Note that UT1 may also be subjected to a similar parameterization in 
order to account for diurnal and subdiurnal perturbations, which would further 
increase the number of the Earth orientation parameters. 

Decomposition (10) is based on the implicit assumption that there is no 
significant power in polar motion around the critical frequencies ft(l/2 + re), ra = 
0, ±1 , ±2 , . . . , which are thecommon edges of the subsequent frequency intervals. 
This assumption is reasonable on the basis of the current knowledge about polar 
motion. In particular: 1) all of the known Earth's rotational eigenfrequencies 
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are either near a = 0 (CW, ICW) or near a = - f t (FCN, FICN); 2) seasonal 
excitations are low frequency effects; 3) all variations of tidal origin are grouped 
around the frequencies a — reft with integer re, which are central frequencies 
of the terms of expansion (10); 4) the only atmospheric normal modes having 
detectable influence on polar motion are the Rossby-Haurwitz waves ipl, ij)\ with 
frequencies of about —0.10, —0.8ft, respectively (Brzeziriski and Petrov, 1999). 

4.2. Relationship between the CEP and the IRP 

Let us decompose polar motion of the instantaneous rotation axis in a manner 
similar to what has been done for the CEP in eq. (10) 

N 

m(t)= J2 ™ » ( ' ) ^ . (12) 
n=-N-l 

where the complex amplitudes mn(t) satisfy similar assumptions as pn(t). That 
means these are slowly varying quantities with the cut-off frequency ft/2, and 
4> = <t>0 + ft(* - t 0 ) . 

From the assumptions concerning decompositions (10) of p and (12) of m 
it is rather obvious that the relationship (7) can be applied separately to the 
corresponding terms of the expansion. After substitution and some simple alge­
bra, the rotation factor e""^ on both sides cancels out and we are left with the 
following first-order relationship 

mn = p„(l + n) - i -^ , (13) 

which for n = 0 , - 1 reduces to eq. (9) with —P,—m' replaced by p_i,ra_i , 
respectively, as would be expected. 

4.3. Dynamics of the CEP 

The conservation of angular momentum yields the equation of polar motion, 
which can be written in the following general form 

% X ) = 0, (14) 

where T is an abbreviation of the linear differential operator, m = mi + im2 

describes polar motion of the instantaneous rotation axis, as defined by eq. (6), 
and x = Xi + *X2 is the equatorial excitation function. After substituting eq. (7) 
for m, eq. (14) can be expressed as the ordinary differential equation involving 
the reported quantities, the terrestrial coordinates of the CEP 

r 5 

$ > / P ( , ) = £ > j X ( i ) , with ar^0, 6 S ^ 0 , (15) 
/=0 j=0 

in which the superscript (k) stands for the fcth time derivative and ai.bj are 
constant coefficients. 
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A natural further step is to split up the excitation function in the same way 
as it has been done for p and m 

X(t)= £ Xn(0 «•'"*• (16) 
n=-N-l 

Equation (15) is linear and, therefore, can be applied separately to the corre­
sponding terms of the expansions (10) and (16). Before doing that, we will 
perform standard factorization of eq. (15) which yields 

(dt-i(Ti)---(dt - iar)p = b(dt -iui)---(dt - «ws)x, (17) 

where dt denotes the time derivative operator, b — bs/ar, o\ are the angular 
eigenfrequencies which are resonant frequencies for the excitation of polar mo­
tion. The frequencies u>j play a similar role when solving the inverse problem, 
inferring \ from the observed p. 

After substituting in eq. (17) the nth term of (10) and (16), we derive 

(dt - « 7 l , n ) •••(#< - i<7r,n)Pn = & (# t - lWi,„) • • • ( 0 t ~ ^s,n)Xn, (18) 

where <r/n = a\ — nQ. and Wj>n = UJ — nft, and the rotation factor e"1* 
appearing on both sides of the equation has been cancelled out. 

Comparison with eq. (17) shows that the only difference is that all charac­
teristic frequencies have been changed by subtracting nil. That is now they are 
referred to the central frequency of the nth term. Of course, the same rule of 
transformation applies to the corresponding frequency domain equation. 

Eq. (18) relates slowly varying functions pn and Xn representing for n jt 
0 high frequency variations in polar motion and in the equatorial excitation 
function (nearly diurnal prograde/retrograde for n = 1/ — 1, nearly semidiurnal 
prograde/retrograde for n = 2/ — 2, etc.). This gives us the advantage that 
these variations can be investigated numerically using much smaller data sets 
than when using the standard approach because, according to the assumptions, 
it is sufficient to sample pn, Xn with the interval of 1 day (or even longer in some 
cases). We applied such a method to study atmospheric effects on nutation over 
the data span of about two decades (Bizouard et al. 1998). 

Another advantage of the present approach is that the response of the Earth 
to the applied excitations is different at various frequency regions, therefore dif­
ferent simplifications of eq. (18) are allowed depending on n. When considering 
the low frequency component (n = 0), e.g., the liquid core effects expressed by 
the FCN resonance can legitimately be neglected, as it is done in the well-known 
polar motion equation of Munk and MacDonald (1960). On the other hand, in 
the analysis of diurnal retrograde variations the FCN plays a very important role 
and should be taken into account, while the influence of the Chandler resonance 
can be significantly simplified; see (Brzezinski, 1994) for extensive discussion. 

Finally, let us note that we used here a general form of the polar motion 
equation, eq. (15), bearing in mind that the presently used equations may be 
still refined in the future in order to fulfill the increasing accuracy requirements. 
A particular case of the broadband Liouville equation is described with details, 
including transformation to the diurnal retrograde band and various simplifica­
tions, by Brzezinski (1994). An application of this equation to the six-hourly 
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time series of the atmospheric angular momentum data in order to estimate the 
influence upon the nutation amplitudes, was reported by Bizouard et al. (1999). 

5. Concluding remarks 

Our preferred concept for the definition of the Celestial Ephemeris Pole is based 
on the assumption that its motion in the celestial frame, nutation, comprises 
only predictable variations due to the gravitational interactions of the Earth 
with the Moon, the Sun and the planets, while other perturbations caused by the 
internal processes within the system Earth+ocean+atmosphere, are considered 
as the terrestrial motion, that is polar motion. This definition does not contain 
any ambiguity and, according to equations (2) to (4) and following comments, 
all the historical EOP time series can be easily converted to the new convention 
without any computational effort. 

We considered in details the extended realization of the CEP which takes 
into account the high frequency perturbations. The underlying model of polar 
motion, eq. (10), consists of a sum of sinusoidal oscillations with frequencies 
nil which are multiples of the diurnal sidereal frequency, and multiplied by 
the time-dependent amplitudes. These amplitudes, the new EOP, are slowly 
varying in time and can be estimated as daily averages from the intensive mea­
surements by space geodesy. The idea of the model is that instead of shortening 
the sampling interval for the polar motion coordinates in order to express the 
high frequency variations, we keep the sampling interval of 1 day or longer 
but introduce additional parameters (2 for each term) expressing nearly diurnal 
prograde/retrograde oscillations, nearly semidiurnal prograde/retrograde oscil­
lations, etc. 

We give several arguments in favor of this new approach to modeling polar 
motion. 

• All the important features of polar motion and its excitation function 
appear with frequencies in the vicinity of the frequencies nil with integer 
n. Therefore, in this model they are mapped on low frequency variations 
of the parameters. 

• Such a model can easily be accomplished numerically for the subdiurnal 
estimates of polar motion or of the excitation function. The method, 
the so-called complex demodulation procedure, consists of multiplying the 
input time series by the factor e_t* and smoothing appropriately. 

• This model is also convenient for geophysical interpretation of the ob­
served rotational perturbations. We demonstrated that the linear differ­
ential equation of polar motion can also be decomposed into the series 
of equations eq. (18) which are applicable to the individual terms of the 
expansion. Each of the equations relates slowly varying variables, which 
reduces the number of data used in computations in comparison to the 
standard approach. These equations can also be usually simplified tak­
ing into account variability of the transfer function at the corresponding 
frequencies. 
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