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ON A PROBLEM OF G R O N B A U M 

BY 

P. ERDÔS 

In memory of my friend and collaborator, Leo M oser 

Pn will denote a set of n points in the plane. A well known theorem of Gallai-
Sylvester (see e.g. [4]) states that if the points of Pn do not all lie on a line then they 
always determine an ordinary line, i.e. a line which goes through precisely two of 
the points of Pn. 

Using this theorem I proved that if the points do not all lie on a line, they 
determine at least n lines. I conjectured that if n>n0 and no n— 1 points of Pn are 
on a line, they determine at least 2 « - 4 lines. This conjecture was proved by Kelly 
and Moser [3], who, in fact, proved the following more general result: 

Let Pn be such that at most n—k of its points are collinear. Assume 

(1) n > i(3(3£-2)2 + 3 £ - l ) . 

Then Pn determines at least 

(2) kn-i(3k+2)(k-l) 

lines. They also observed that (2) is best possible. 
B. Grunbaum asked the following question: Determine the sequence of integers 

m(!n) < m2
n) < • • • so that for every i there is a Pn which determines exactly m\n) lines. 

m(!n) = l, m2
n)=n, m (

3
n)=2«-4 if n>21 (see [3]). Clearly the largest value of m\n) is 

L I . Grunbaum observed that L I - 1 and L I —3 cannot be values of m\n\ The 

proof is easy. If the points are not in general position at least three must be on a 

line, thus m\n)= L I — 1 is impossible. If 4 points are on a line or there are two lines 

containing three points we get at most L I — 5 or L I — 4lines, thusm\n)= L I — 3 
is also impossible. 

The problem of characterizing the sequence {mf^ seems to be very difficult. We 
prove the following 

THEOREM. There exists c± such that for each m satisfying c 1 n 3 / 2 <m<LI» 

A W ^ L i — l , m # L I — 3 , there is a Pn which determines exactly m lines. 

We also show that our theorem is best possible in the following sense: There is 
a c2 (cx and c2 are absolute positive constants) so that there is an m > c2n

312 for 
which there is no Pn which determines exactly m lines. To determine the largest 
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such m, seems to be a difficult problem; I doubt that the methods of this paper 
can solve it. In view of this we do not attempt to get the best values for cx and c2. 

First we show that there is an m > c2n
312 so that no Pn determines m lines. Let 

k0 be the largest integer for which 

(3) n>i(3(3k0~2)2 + 3k0-l), i.e. k0 = (l+o(l))(^y^ 

Put 

(4) m = £0n-i(3£o + 2 ) (£ 0 - l ) - l . 

It is easy to see that no Pn determines exactly m lines. If at most n-k0 of the 
points lie on a line then by (2) Pn determines at least m 4-1 lines. Assume next 
that n — l,l<k0 points of Pn are on a line. Then clearly Pn determines at most 

1 + Q +'(»-'), l<ko 

lines which by (3) and (4) is clearly less than m if n> n0. 
Now we prove our theorem. First we note the following 

LEMMA. Let cx be sufficiently large. Then every integer 

/n\ 
(5) t < m - c ^ 3 ' 2 , t*l, t^3 

can be written in the form 

(6) ' ^ ^ ( ( î ) - 1 ) ' 2«i"i^n> nt>3 

where the ax are positive integers. 

Assume that our lemma has already been proved then we deduce our Theorem 
as follows: 

Put m= L) — t. Our Pn which determines exactly m lines is constructed in the 

following way: Pn has at lines /= 1, . . . each of which has nt points, otherwise the 
points are in general position, i.e. no three of them are on a line. It is clear by 
(6) that such a configuration exists and by (6) it determines 

0-?*(GH-
lines. Thus we only have to prove our lemma. 

Let «i be the largest integer for which I * J < t — 4. Clearly n± < Vit +1 < n — lOVn 
for sufficiently large cl9 also 

® < 3«x < 3n. 
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Let now n2 be the largest integer for which 

Clearly n2 < 3Vn and 

(7) 4 S , - ( * ) - ( * ) < * * 

By (7) we can write 

-&)+&MG)-M©->) 
where a 3 +a 4 <3V# . Thus (5) and (6) are satisfied and the proof of our lemma is 
complete. 

It might be possible to determine the smallest t which cannot be written in the 
form (6), but we do not discuss this question here. 

I would like to say a few words about possible generalizations of our theorem. 
The following result is well known [2]: 

Let *Sbe a set of « elements xl9..., xn. Suppose At<^S9 2< \At\ <n (\<i<k) and 
each pair (xr,xs) (\<r,s<ri) is contained in exactly one At. Then k>n. Here I 
can prove that if 

n+cn*>* < m < Q , m * Q - 1 , m # Q ~ 3 

then there are m sets A^S, 2< \A{\9 so that every pair (xr9 xs) is contained in one 
and only one Ak. Probably cn3,4: is best possible. 

A straightforward application of our method leads to the following 

THEOREM. Let cn2<m< L I, m^ L ) —at where ax runs through a finite set of 

numbers which could easily be determined explicitly. Then there is a Pn which deter­
mines exactly m circles. A recent result of Elliott [1] shows that the order of magnitude 
en2 is best possible. 
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