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Abstract

The generalized Gauss circle problem concerns the lattice point discrepancy of large spheres. We
study the Dirichlet series associated to Pk(n)2, where Pk(n) is the discrepancy between the volume
of the k-dimensional sphere of radius

√
n and the number of integer lattice points contained in

that sphere. We prove asymptotics with improved power-saving error terms for smoothed sums,
including

∑
Pk(n)2e−n/X and the Laplace transform

∫
∞

0 Pk(t)2e−t/X dt , in dimensions k > 3. We
also obtain main terms and power-saving error terms for the sharp sums

∑
n6X Pk(n)2, along with

similar results for the sharp integral
∫ X

0 P3(t)2 dt . This includes producing the first power-saving
error term in mean square for the dimension-3 Gauss circle problem.

2010 Mathematics Subject Classification: 11N37 (primary); 11F30 (secondary)

1. Introduction

Let rk(m) denote the number of integer k-tuples (n1, n2, . . . , nk) such that
n2

1 + · · · + n2
k = m, and let Sk(n) denote the sum of rk(m) for m 6 n,

Sk(n) =
∑

06m6n

rk(m).
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Geometrically, Sk(n) counts the number of lattice points in Zk contained within
Bk(
√

n), the k-dimensional sphere of radius
√

n. Let Vk denote the volume of
Bk(1), the k-sphere of radius 1. It is intuitively clear that Sk(n) ∼ Vol(Bk(

√
n)) =

Vknk/2 as n→∞.
To describe this asymptotic more precisely, set

Sk(n) = Vknk/2
+ Pk(n). (1.1)

In the k = 2 case, estimation of Pk(n) is the famous Gauss circle problem. Here,
Gauss established P2(n) = O(

√
n) by relating P2(n) to the area of a narrow

annulus enclosing the boundary of B2(
√

n) [IKKN06].
For general k > 2, the pursuit of a minimal exponent αk for which Pk(n) =

O(nαk+ε) for any ε > 0 is now known as the generalized Gauss circle problem.
Gauss’ geometric argument readily generalizes to show that αk 6 (k − 1)/2, but
Ω-type results (see [IKKN06] for a survey) support the conjecture that

αk =


1
4
, k = 2

k
2
− 1, k > 2

(1.2)

are the true sizes. For k > 4, this conjecture is known to be true, and for k > 5
the order of growth of Pk(n) is known (up to constants), as described in [Krä00].

Far less is known in the case k 6 3. In the case k = 2, the first improvement on
Gauss’ result is due to Sierpiński [Sie06], who established P2(n) = O(n1/3) using
Poisson summation and the theory of exponential sums. Incremental progress
has led to Huxley’s discrete Hardy–Littlewood method [Hux03] and the result
P2(n) = O(n131/416+ε). A recent preprint of Bourgain and Watt [BW17] proposes
an improvement of this result to P2(n) = O(n517/1648+ε).

Notable progress in dimension k = 3 includes Landau’s result P3(n) = O(n3/4)

[Lan19] and a long series of results due to Vinagradov culminating in P3(n) =
O(n2/3(log n)6) [Vin63]. The current best result is due to Heath-Brown [HB99],
who obtained

P3(n) = O(n21/32+ε).

Some of the best evidence for the conjectured exponents (1.2) in the generalized
Gauss circle problem is given by mean square results describing∫ X

0
(Pk(x))2 dx .

In dimension k = 2, the earliest result is due to Landau [Lan69, pages 250–263],
who showed that ∫ X

0
(P2(x))2 dx = c2 X 3/2

+ O(X 1+ε).
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The best result at present is due to Lau and Tsang [LT09], who proved∫ X

0
(P2(x))2 dx =

1
3π 2

∞∑
n=1

r 2
2 (n)
n3/2

X 3/2
+ O(X log X log log X).

In the case k = 3, a long-standing result of the above form was due to
Jarnı́k [Jar40], who established∫ X

0
(P3(x))2 dx = c3 X 2 log X + O(X 2(log X)1/2) (1.3)

for some c3 > 0 using the Hardy–Littlewood method. This error was more
recently improved to O(X 2) by Lau [Lau99]. For k > 4, Jarnı́k further proved
mean square results with power-savings error terms of the form∫ X

0
(Pk(x))2 dx = ck X k−1

+ O(g(X)), (1.4)

with

g(X) =


X 5/2 log X if k = 4,
X 3 log2 X if k = 5,
X k−2 if k > 5.

The relatively large error term in dimension 3 suggests that this case is the most
mysterious and least understood. For k > 5, these results are optimal, while for
k 6 5 these bounds may be improved and it may be possible to extract additional
lower order terms. More detail on progress towards the generalized Gauss circle
problem and its many cousins can be found in the excellent survey [IKKN06].

In this paper, we consider mean square estimates for the generalized Gauss
circle problem, focusing on the cases k > 2. Our first result is a mean square
estimate with exponential smoothing.

THEOREM 1.1. For k > 3 and any ε > 0,
∞∑

n=1

Pk(n)2e−n/X
= δ[k=3]C ′3 X k−1(log X + 1− γ )+ CkΓ (k − 1)X k−1

+ δ[k=4]C ′4Γ
(

k −
3
2

)
X k−3/2

+ Oε(X k−2+ε), (1.5)

where Ck , C ′3, and C ′4 are explicit constants, and

δ[k=n] =

{
0 if k 6= n,
1 if k = n

is a Kronecker delta indicator function.

https://doi.org/10.1017/fms.2018.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.26


Hulse, Kuan, Lowry-Duda and Walker 4

REMARK 1.2. The coefficients C ′3, C ′4, and Ck (k > 4) are given by

C ′3 =
π 2

3ζ (2)(3)
, C ′4 =

16(9
√

2− 8)ζ(1/2)ζ(3/2)2ζ(5/2)
7π 2ζ(3)

,

Ck =
k2

24
V 2

k +
π kζ(k − 2)

12Γ (k/2)2ζ (2)(k)
(1+ 23−k).

The size of the main term in this result matches Jarnı́k’s mean square
estimate (1.3) when k = 3, but by smoothing we expose an additional main
term and a significant separation between the main terms and error term. An
expression for the constant C3 involves coefficients from the Laurent expansion
of an L-function, and is harder to state exactly. Numerical approximation suggests
that C3 ≈ 10.6.

For k > 3, it is possible to reduce the error term to Oε(X k−2+(3−k)/2+ε), although
this introduces additional main terms with coefficients that are explicit but hard
to compute. Due to a line of spectral poles in the Dirichlet series D(s, Pk × Pk),
which we define below, we believe this result is the best smooth result possible.

The smoothed second moment in Theorem 1.1 can be thought of as a discrete
Laplace transform. In [Ivi01], Ivić proved that∫

∞

0
P2(t)2e−t/X dt = cX 3/2

− X + O(X 2/3+ε)

for a known constant c, which can be thought of as a normal continuous Laplace
transform of the lattice point discrepancy in dimension 2. As an application of
Theorem 1.1, we are able to prove a very strong result concerning the Laplace
transform for dimensions k > 3.

THEOREM 1.3. For any ε > 0, the smoothed second moment of the lattice point
discrepancy for dimension k > 3 is given by∫
∞

0
Pk(t)2e−t/X dt = δ[k=3]C ′3 X k−1(log X + 1− γ )+ δ[k=4]C ′4Γ

(
k −

3
2

)
X k−3/2

+CkΓ (k − 1)X k−1
−
Γ (k − 1)π k

6Γ (k/2)2
X k−1
+ O(X k−2+ε),

where the constants are the same as in Theorem 1.1.

REMARK 1.4. As in Theorem 1.1, the techniques of this paper can be used to
give further secondary terms and reduced error terms in dimensions k > 3.
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An application of Perron’s formula with another smoothed sum allows us to
prove our main result, an analogue of Theorem 1.1 with a sharp cutoff.

THEOREM 1.5. For each k > 3 there exists a λ > 0 such that∑
n6X

Pk(n)2 = δ[k=3]X k−1

(
C ′3
2

log X −
C ′3
4

)
+

Ck

k − 1
X k−1
+ Oλ(X k−1−λ),

where C ′3 and Ck (k > 3) are the same constants as in Theorem 1.1.

Theorem 1.5 resembles the smoothed result (Theorem 1.1) up to constants,
although the error bound is worse. Notice that in dimension k = 3, Theorem 1.5
exhibits a second main term and additional power savings in the error term.

The sum in Theorem 1.5 is closely related to the mean square results (1.3)
and (1.4). However, the two results differ in that Jarnı́k considers an integral
over [0, X ], while we consider a sum of Pk(n) over integral values up to X . For
arithmetic applications, we believe that the sum is a more natural object of study
than the integral. But as a corollary to Theorem 1.5, we are able to strengthen
Jarnı́k and Lau’s mean square estimates given in (1.3).

THEOREM 1.6. There exists λ > 0 such that∫ X

0
(P3(x))2 dx =

C ′3
2

X 2 log X +
(

C3

2
−

C ′3
4
−
π 2

3

)
X 2
+ Oλ(X 2−λ),

where C ′3 and C3 are the same constants as in Theorem 1.1.

Description of methodology and outline of paper

We approach this problem by understanding the analytic properties of the
Dirichlet series associated to Sk(n)2 and Pk(n)2, defined by

D(s, Sk × Sk) =

∞∑
n=1

Sk(n)2

ns+k
, D(s, Pk × Pk) =

∞∑
n=1

Pk(n)2

ns+k−2
.

Note that the k and k − 2 in the exponents serve to normalize the Dirichlet
series to converge absolutely for Re s > 1, based on known mean square
results. These two Dirichlet series are closely related to the series studied by the
authors in [HKLDW17b, HKLDW17c], in which meromorphic continuations
were given and studied for the Dirichlet series∑

n>1

S f (n)2

ns
,
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where S f (n) =
∑

m6n a(m) are partial sums of the coefficients of a GL(2) cusp
form f (z) =

∑
a(n)e(nz). Indeed, the techniques and analysis in this paper build

on the methodology introduced to study the cusp form case.
In Section 2, we show that the meromorphic properties of D(s, Pk × Pk) can

be understood from the properties of D(s, Sk × Sk), and vice versa. We then
decompose D(s, Sk × Sk) into diagonal and off-diagonal pieces. In Sections 3.3
and 4 we prove that the pieces of D(s, Sk × Sk) have meromorphic continuations
to the complex plane. This analysis culminates in Theorem 5.1, which states that
D(s, Sk × Sk) and D(s, Pk × Pk) have meromorphic continuation to the plane.

As in [HKLDW17b], the central challenge is determining the analytic
behaviour of the off-diagonal, which involves the shifted convolution sum

Zk(s, w) =
∑
h>1

∑
n>0

rk(n + h)rk(n)
(n + h)s+k/2−1hw

.

Heuristically, this multiple Dirichlet series can be obtained from a Petersson inner
product,

〈|θ k
|
2 Im(·)k/2, Ph(·, s)〉,

where Ph(z, s) is a Poincaré series and θ(z) =
∑

n∈Z e2π in2z is the standard theta
function. In contrast to the cusp form case, however, θ(z) has moderate growth,
complicating the spectral analysis of the inner product. Thus it is necessary
to modify |θ k

|
2 to remove this growth. In Section 3 we subtract appropriate

linear combinations of Eisenstein series evaluated at specific values such that the
resulting function is square-integrable.

With this modification, in Section 6 we are able to use an inverse Mellin
transform to extract information out of the meromorphic properties of
D(s, Sk × Sk) and to prove the asymptotic behaviour for the smoothed sum
in Theorem 1.1. In particular, we are able to show that D(s, Sk × Sk) has
polynomial growth in vertical strips.

Similar techniques are used to produce a sharp second moment in Section 7.
This is achieved by proving a weak short-interval estimate and using a Perron
integral.

In Section 8, we apply Theorem 1.1 to prove Theorem 1.3, our estimate for the
Laplace transform of Pk(t)2. The sum in Theorem 1.1 can be considered as an
integral of a step function, and we study the difference between this integral and
the continuous Laplace transform.

We apply similar techniques in Section 9 to prove our final result, a refinement
of Jarnı́k’s dimension-3 mean square result (1.3). Known bounds for P3(n)
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quickly reduce our study to bounds for the cross term∑
n6X

P3(n)n1/2.

We extract a main term and power-savings error for this sum using the
meromorphic properties of the Dirichlet series with coefficients P3(n) and
an integral transform.

Directions for further research

As presented here, Theorems 1.5 and 1.6 show that there are two main terms
and a power-saving error term in dimension-3 mean square estimates, but we do
not state the size of the power savings in the error. In forthcoming work, the
authors will analyse the growth properties of the Dirichlet series D(s, Sk × Sk)

and D(s, Pk × Pk) and identify the size of the power savings. In close analogy
to [HKLDW17c], the analysis is delicate and the largest obstacle is obtaining a
nuanced understanding of the growth properties of the Petersson inner product
〈|θ |2k yk/2, µ j 〉 for Maass forms µ j . Heuristically, the authors believe that a
careful analysis based on the methods of this paper would lead to λ = 1

5 − ε

in Theorem 1.5 (in dimension k = 3) and Theorem 1.6, for any ε > 0. Improved
techniques for handling the contributions from Maass forms would lead to better
bounds. It is not clear what the optimal error bound should be.

The methodology used to prove Theorem 1.5 focused on the dimension-3
case, as this is the least understood. It may be possible to use the meromorphic
properties of D(s, Sk × Sk) for k > 4 to prove improved estimates for higher
dimensions as well. This is especially interesting in dimension 4, as the smooth
second moment in Theorem 1.1 suggests the existence of a second main term in
the sharp second moment of P4(n) which we have not been able to verify.

It is possible to modify the techniques of this paper to approach the classical
Gauss circle problem in two dimensions, or to understand the lattice point
discrepancy problem for general ellipsoids. Studying the meromorphic properties
of D(s, P2 × P2) using the methodology of this paper should give new insight
on the Gauss circle problem. The authors examine D(s, P2 × P2) and how it
differs from the Dirichlet series associated to the Gauss circle problems in higher
dimensions in the forthcoming paper [HKLDW17a].

2. Decomposition of D(s, Sk × Sk)

Note that Pk(n)2 and Sk(n)2 are related by the formula

Pk(n)2 = Sk(n)2 − 2Vknk/2Sk(n)+ V 2
k nk . (2.1)
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This relationship induces a relationship between D(s, Pk× Pk) and D(s, Sk× Sk),
described explicitly in the following proposition.

PROPOSITION 2.1. The Dirichlet series D(s, Pk× Pk) is related to D(s, Sk× Sk)

through the equality

D(s, Pk × Pk) = D(s − 2, Sk × Sk)+ V 2
k ζ(s − 2)

− 2Vkζ

(
s +

k
2
− 2

)
− 2Vk L(s − 1, θ k)

+
iVk

π

∫
(σ )

L(s − 1− z, θ k)ζ(z)
Γ (z)Γ (s + k/2− 2− z)

Γ (s + k/2− 2)
dz,

(2.2)

when σ > 1 and Re s > σ , where L(s, θ k) is the normalized L-function

L(s, θ k) :=
∑
n>1

rk(n)
ns+k/2−1

associated to the kth power of the theta function θ(z) =
∑

n∈Z e2π in2z .

Here and throughout this paper, we use the common notation

1
2π i

∫
(σ )

f (z) dz =
1

2π

∫
∞

−∞

f (σ + i t) dt.

Proof. We begin with (2.1), divide each term by ns+k−2, and sum over n > 1.
The left-hand side and first term on the right-hand side are immediate from the
definitions of D(s, Pk × Pk) and D(s − 2, Sk × Sk), respectively. Similarly, the
third term on the right-hand side is immediately recognizable as V 2

k ζ(s − 2).
For the second term, note that

Sk(n) =
n∑

m=0

rk(m) = 1+ rk(n)+
n−1∑
m=1

rk(m).

Multiplying by nk/2, dividing by ns+k−2, and summing over n > 1 yields

ζ

(
s +

k
2
− 2

)
+

∑
n>1

rk(n)
ns+k/2−2

+

∑
n>1

0<m<n

rk(m)
ns+k/2−2

.

Swapping the order of summation in the final sum and writing n = m + h shows
that
∞∑

n=1

Sk(n)
ns+k/2−2

= ζ

(
s +

k
2
− 2

)
+ L(s − 1, θ k)+

∑
m,h>1

rk(m)
(h + m)s+k/2−2

. (2.3)
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We decouple m and h in the last sum with the identity

1
(m + h)s

=
1

2π i

∫
(σ )

1
ms−zhz

Γ (z)Γ (s − z)
Γ (s)

dz, (σ > 0,Re s > σ) (2.4)

which follows from the Barnes integral 6.422(3) of [GR15]. For σ > 1, the h sum
now converges absolutely and can be collected into a single ζ(z), and for Re s
sufficiently large the m sum can be collected into L(s− 1− z, θ k). Multiplication
by−2Vk identifies this with the second term in (2.1), and simplification completes
the proof.

Through (2.2) it is possible to pass analytic information from D(s, Sk × Sk)

to D(s, Pk × Pk), and vice versa. To understand the meromorphic continuation
of D(s, Sk × Sk), we first decompose the Dirichlet series D(s, Sk × Sk) into
a sum of simpler functions. Our methodology is a variant of the methodology
used in [HKLDW17b, proof of Proposition 3.1] and builds on the proof of the
previous proposition, albeit with the added wrinkle of including shifted sums in
the decomposition.

PROPOSITION 2.2. The Dirichlet series associated to Sk(n)2 decomposes into

D(s, Sk × Sk) = ζ(s + k)+Wk(s)

+
1

2π i

∫
(σ )

Wk(s − z)ζ(z)
Γ (z)Γ (s + k − z)

Γ (s + k)
dz (2.5)

for Re s > 2 and 1 < σ < Re(s − 1), in which

Wk(s) =
∞∑

n=1

rk(n)2

ns+k
+ 2Zk

(
s +

k
2
+ 1, 0

)
,

Zk(s, w) =
∑
h>1

∑
n>0

rk(n + h)rk(n)
(n + h)s+k/2−1hw

.

Here Zk(s, w) converges locally normally for Re s > 1+ k/2 and Rew > 0.

Proof. We may write

Sk(n)2 =
∑
m6n

∑
`6n

rk(m)rk(`) =
∑
m6n

rk(m)2 + 2
∑
`<m6n

rk(m)rk(`)

= 1+ rk(n)2 +
∑

0<m<n

rk(m)2 + 2
∑
m<n

rk(m)rk(n)+ 2
∑
`<m<n

rk(m)rk(`).

In the second line, we separated out the terms in which m = n.
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Dividing by ns+k and summing over n > 1 gives

D(s, Sk × Sk) =

∞∑
n=1

1
ns+k
+

 ∞∑
n=1

rk(n)2

ns+k
+ 2

∑
n>1
m<n

rk(m)rk(n)
ns+k


+

 ∑
n>1

0<m<n

rk(m)2

ns+k
+ 2

∑
n>1

`<m<n

rk(m)rk(`)

ns+k

 .
We recognize the first term as a zeta function. The second and third terms
represent the diagonal and off-diagonal (respectively) parts of a double
summation, and we analyse them together. Swapping the order of summation and
writing n = m + h allows us to write the third term as

2
∑
n>1
m<n

rk(m)rk(n)
ns+k

= 2
∑
m>0
h>1

rk(m + h)rk(m)
(m + h)s+k

.

We now recognize the second and third terms as Wk(s).
The fourth and fifth terms are also closely related. Writing n = m + h and

swapping the order of summation allows us to write∑
n>1

0<m<n

rk(m)2

ns+k
+ 2

∑
n>1

`<m<n

rk(m)rk(`)

ns+k
=

∑
h>1
m>1

rk(m)2

(m + h)s+k
+

∑
h>1
m>1
`<m

rk(m)rk(`)

(m + h)s+k
.

Notice that this pair of sums is exactly the same as the pair of sums in Wk(s),
except that the denominators are shifted by h and there is an additional h sum.
We decouple the h from m by using the Barnes integral identity (2.4) again. For
σ > 1, the h sum converges absolutely and can be collected into a zeta function.
Simplification completes the proof of (2.5).

To see that Zk(s, w) converges locally normally in the range specified, it
suffices to show that

Zk(s, 0) =
∑
h>1

∑
n>0

rk(n + h)rk(n)
(n + h)s+k/2−1

=

∑
m>1

rk(m)
ms+k/2−1

∑
`<m

rk(`)

which converges absolutely for Re s > 1 + k/2, following from the estimate
Sk(m) = O(mk/2) and absolute convergence of L(s, θ k) in Re s > 1. Indeed, by
positivity we have that Zk(σ1, 0) > Zk(σ2, 0) when σ2 > σ1 > 1 + k/2, and that
Zk(Re s, 0)> |Zk(s, 0)| and so we also have local normal convergence of Zk(s, 0)
for Re s > 1+ k/2.
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3. Meromorphic continuation of Zk(s,w)

In this section we follow a construction method analogous to that in [HH16,
HKLDW17b], and we adapt the notation there. We seek to understand

Zk(s, w) =
∑
h>1

∑
m>0

rk(m + h)rk(m)
(m + h)s+k/2−1hw

by first fixing a single h and recognizing the remaining sum over m as a Petersson
inner product of Poincaré series with an appropriate modular form, namely

〈|θ k(·)|2 Im(·)k/2, Ph(·, s)〉 =
∫
Γ0(4)\H

|θ k(z)|2 Im(z)k/2 Ph(z, s) dµ(z), (3.1)

in which dµ(z) = dx dy/y2 and Ph(z, s) is the Poincaré series

Ph(z, s) =
∑

γ∈Γ∞\Γ0(4)

Im(γ z)se2π ihγ z.

By expanding the inner product (3.1), we get

〈|θ k(·)|2 Im(·)k/2, Ph(·, s)〉 =
Γ (s + k/2− 1)
(4π)s+k/2−1

Dk(s; h),

where we define

Dk(s; h) =
∞∑

m=0

rk(m + h)rk(m)
(m + h)s+k/2−1

(3.2)

for Re s sufficiently large. Dividing by hw and summing over h > 1 recovers
Zk(s, w),

Zk(s, w) =
∑
h>1

Dk(s; h)
hw

=
(4π)s+k/2−1

Γ (s + k/2− 1)

∑
h>1

〈|θ k(·)|2 Im(·)k/2, Ph(·, s)〉
hw

.

We would like to understand Zk(s, w) by expressing 〈|θ k
|
2 Imk/2, Ph〉 in a

different way, by replacing Ph with its spectral expansion. However, this is
complicated by the fact that |θ k(z)|2 Im(z)k/2 is not in L2(Γ0(4)\H), so it is
necessary to modify |θ k(z)|2 Im(z)k/2 to be square-integrable. We accomplish this
by subtracting Eisenstein series associated to the cusps of Γ0(4), chosen to cancel
the polynomial growth of |θ k(z)|2 Im(z)k/2.
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3.1. Modifying |θ k(z)|2 Im(z)k/2 to be square-integrable. Let Ea(z, s)
denote the Eisenstein series attached to the cusp a for the group Γ0(4), given by

Ea(z, s) =
∑

γ∈Γa\Γ0(4)

Im(σ−1
a γ z)s,

where Γa ⊂ Γ0(4) is the stabilizer of the cusp a, and σa ∈ PSL2(R) satisfies
σa∞ = a and induces an isomorphism Γa

∼= Γ∞ via conjugation. These
Eisenstein series have Fourier expansions, which can be written in the form

Ea(σbz, s) = δ[a=b]ys
+ π 1/2Γ (s − 1/2)

Γ (s)
ϕab0(s)y1−s

+
2π s y1/2

Γ (s)

∑
n 6=0

|n|s−1/2ϕabn(s)Ks−1/2(2π |n|y)e(nx) (3.3)

with known coefficients ϕabn(s). When b = ∞ we often write these coefficients
as ϕan(s). From (3.3) and asymptotics of the K -Bessel function it is clear that

Ea

(
σbz,

k
2

)
= δ[a=b]yk/2

+ π 1/2Γ ((k − 1)/2)
Γ (k/2)

ϕab0

(
k
2

)
y1−k/2

+ Ok(e−2πy)

(3.4)
as Im z →∞. For k > 3, we conclude that Ea(σbz, k/2) vanishes as Im z →∞
except in the case a = b, where it converges polynomially fast to yk/2.

LEMMA 3.1. For k > 3, the function V(z) given by

V(z) := |θ k(z)|2 Im(z)k/2 − E∞

(
z,

k
2

)
− E0

(
z,

k
2

)
,

vanishes at each of the cusps of Γ0(4). Therefore V(z) ∈ L2(Γ0(4)\H).

Proof. We compute the growth of |θ k(z)|2 Im(z)k/2 at the three cusps 0, 1
2 , and∞

of Γ0(4) and compare to that of the Eisenstein series.
At the cusp∞, we observe directly from the Fourier expansion that

|θ k(z)|2 Im(z)k/2 = yk/2(1+ O(e−2πy))

as Im z→∞. Thus growth at the∞ cusp is exactly cancelled by subtracting the
Eisenstein series E∞(z, k/2).

At the cusp 0, we use σ0 =

(
0 − 1

2

2 0

)
to compute

θ |σ0(z) = (−2i z)−(1/2)θ
((

0 − 1
2

2 0

)
z
)
= (−2i z)−(1/2)θ

(
−

1
4z

)
= (−2i z)−1/2(−2i z)1/2θ(z) = θ(z),
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in which we have used the involution equation θ(−1/4z) = (−2i z)1/2θ(z) for the
theta function. Therefore |θ k(σ0(z))|2 Im(σ0z)k/2 = yk/2(1+O(e−2πy)) as z→∞,
hence subtracting E0(z, k/2) cancels the growth at the 0 cusp.

To address the cusp 1
2 , we first note that θ(z+ 1

2 )= 2θ(4z)−θ(z) by comparison
of Fourier expansions. The functional equation of θ(z) gives

θ

(
z +

1
2

)
= 2θ(4z)− θ(z) = (−2i z)−1/2

(
θ

(
−1
16z

)
− θ

(
−1
4z

))
,

which converges to 0 exponentially fast as z → 0 nonhorizontally in H. Thus
|θ k(z)|2 Im(z)k/2 → 0 as z → 1

2 and it is not necessary to mitigate any growth at
the cusp 1

2 .

We use V(z) in place of |θ k(z)|2 Im(z)k/2 to derive the analytic properties of
Zk(s, w). Replacing (3.1) with the inner product 〈V(·), Ph(·, s)〉 and performing
the calculations from the start of this section yields

(4π)s+k/2−1

Γ (s + k/2− 1)
〈V, Ph(·, s)〉

= Dk(s; h)−
(2π)kΓ (s − k/2)
Γ (k/2)Γ (s)

(ϕ∞h(k/2)+ ϕ0h(k/2))
hs−k/2

, (3.5)

where Dk(s; h) is as in (3.2). We note that we use [GR15, 6.621(3)] to evaluate
the y-integral involved in expanding the inner products concerning the Eisenstein
series. Dividing by hw, summing over h > 1, and rearranging yields

Zk(s, w) =
(4π)s+k/2−1

Γ (s + k/2− 1)

∑
h>1

〈V, Ph(·, s)〉
hw

+
(2π)kΓ (s − k/2)
Γ (k/2)Γ (s)

∑
h>1

(ϕ∞h(k/2)+ ϕ0h(k/2))
hs+w−k/2

. (3.6)

3.2. Spectral expansion. By Selberg’s Spectral Theorem (as in [IK04,
Theorem 15.5]), the Poincaré series Ph(z, s) has a spectral expansion of the form

Ph(z, s) =
∑

j

〈Ph(·, s), µ j 〉µ j(z)

+

∑
a

1
4π

∫
∞

−∞

〈
Ph(·, s), Ea

(
·,

1
2
+ i t

)〉
Ea

(
z,

1
2
+ i t

)
dt, (3.7)

where a ranges over the cusps of Γ0(4)\H, and {µ j } denotes an orthonormal
basis of the residual and cuspidal spaces, consisting of the constant form µ0 and
of Hecke–Maass forms µ j for L2(Γ0(4)\H) with associated types 1

2 + i t j . The
inner product of the Poincaré series against the constant term µ0 vanishes, so we

https://doi.org/10.1017/fms.2018.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.26


Hulse, Kuan, Lowry-Duda and Walker 14

omit further consideration of it. We think of the sum over j as the ‘discrete part
of the spectrum’ and the sum of integrals of Eisenstein series as the ‘continuous
part of the spectrum.’ Each Maass forms admits a Fourier expansion of the form

µ j(z) =
∑
n 6=0

ρ j(n)y1/2 Ki t j (2π |n|y)e(nx), (3.8)

where e(x) = e2π i x , and has an associated L-function of the form

L(s, µ j) =
∑
n>1

ρ j(n)
ns

.

In this section, we use the spectral expansion (3.7) in the inner product in (3.6)
to prove the following proposition.

PROPOSITION 3.2. For Re s sufficiently large, the shifted convolution sum
Zk(s, w) can be expressed as

Zk(s, w) =
(2π)kΓ (s − k/2)
Γ (k/2)Γ (s)

∞∑
h=1

(ϕ0h(k/2)+ ϕ∞h(k/2))
hw+s−k/2

+
(4π)k/2

2

∑
j

G(s, i t j)L
(

s + w −
1
2
, µ j

)
〈V, µ j 〉

+
(4π)k/2

4π i

∑
a

∫
(0)

G(s, z)π 1/2+z

Γ (1/2+ z)

∑
h>1

ϕah(1/2− z)
hs+w−1/2−z

×

〈
V, Ea

(
·,

1
2
− z

)〉
dz, (3.9)

in which G(s, z) denotes the collected gamma factors,

G(s, z) :=
Γ (s − 1/2+ z)Γ (s − 1/2− z)

Γ (s + k/2− 1)Γ (s)
.

We refer to the first line of (3.9) as the ‘nonspectral part,’ to the second line as the
‘discrete part of the spectrum,’ and to the third line as the ‘continuous part of the
spectrum.’

Proof. The automorphic invariance and Fourier expansion of Maass forms can be
used to expand the inner product of µ j against the Poincaré series via a standard
unfolding argument and the integral identity [GR15, 6.621(3)]. One obtains

〈Ph(·, s), µ j 〉 =
ρ j(h)

√
π

(4πh)s−1/2

Γ (s − 1/2− i t j)Γ (s − 1/2+ i t j)

Γ (s)
.
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It follows that the discrete part of the spectrum of Ph(z, s) can be written as
√
π

(4πh)s−1/2Γ (s)

∑
j

ρ j(h)Γ
(

s −
1
2
− i t j

)
Γ

(
s −

1
2
+ i t j

)
. (3.10)

We have sup j {| Im t j |} = 0 as a consequence of Huxley’s proof of the Selberg
Eigenvalue Conjecture for Maass forms of small level [Hux85], which we note
implies that (3.10) is analytic in the right half-plane Re s > 1

2 .
The inner product of the Poincaré series against the Eisenstein series Ea(z, w)

can similarly be computed to be

〈Ph(·, s), Ea(·, w)〉 =
2πw+1/2

(4πh)s−1/2
hw−1/2ϕah(w)

Γ (s + w − 1)Γ (s − w)
Γ (s)Γ (w)

,

provided that Re s > |Rew− 1
2 | +

1
2 . With t ∈ R and w = 1

2 + i t , this specializes
to 〈

Ph(·, s), Ea

(
·,

1
2
+ i t

)〉
=

2π 1−i tϕah(1/2− i t)
(4πh)s−1/2

Γ (s − 1/2− i t)Γ (s − 1/2+ i t)
hi tΓ (s)Γ (1/2− i t)

,

which is valid provided that Re s > 1
2 . Thus the continuous part of the spectrum

of Ph(z, s) takes the form

1
2

∑
a

∫
∞

−∞

ϕah(1/2− i t)Γ (s − 1/2− i t)Γ (s − 1/2+ i t)
(4πh)s−1/2(πh)i tΓ (s)Γ (1/2− i t)

Ea

(
z,

1
2
+ i t

)
dt.

(3.11)
Substituting the discrete part of the spectrum (3.10) and continuous part of the

spectrum (3.11) into the expansion of the Poincaré series (3.7) gives

〈V, Ph(·, s)〉

=

√
π

(4πh)s−1/2Γ (s)

∑
j

ρ j(h)Γ
(

s −
1
2
+ i t j

)
Γ

(
s −

1
2
− i t j

)
〈V, µ j 〉

+
1
2

∑
a

∫
∞

−∞

ϕah(1/2− i t)Γ (s − 1/2+ i t)Γ (s − 1/2− i t)
(4πh)s−1/2(πh)−i tΓ (s)Γ (1/2+ i t)

×

〈
V, Ea

(
·,

1
2
+ i t

)〉
dt.

Finally, substituting into (3.6) and simplifying completes the proof.
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3.3. Meromorphic continuation. In order to provide the meromorphic
continuation of Zk(s, w), we give the meromorphic continuation of each part
of (3.9). We prove the following lemma as a step towards understanding the
analytic behaviour of Wk(s), which we study in Section 4.

LEMMA 3.3. The shifted convolution Zk(s, w) has meromorphic continuation
to C2. In particular, the specialized convolution sum Zk(s, 0) has meromorphic
continuation to the plane. For Re s > − 1

2 , all poles of Zk(s, 0) come from the
nonspectral part (which has poles at s = 1 + k/2 − j for j ∈ Z>0) and the
continuous part of the spectrum (whose poles appear within the residual terms
R±j , as defined in Section 3.3.3).

3.3.1. Nonspectral part. When b =∞ and the cusp a is represented in the form
a = u/v with (u, v) = 1, the exact definition of the coefficients ϕabh(s) in (3.3) is
given in [DI83, page 247] by the formula

ϕah(s) =
(
(v, 4/v)

4v

)s ∞∑
(γ,4/v)=1

γ −2s
∑
δ(γ v)∗

γ δv≡uv mod (v2,4)

e
(

hδ
γ v

)
.

REMARK 3.4. The formula in [DI83] has a minor error in the congruence
condition in the sum. It is missing a factor of v on the left (where our v is w
in their notation).

We represent the three inequivalent cusps 0, 1
2 , and∞ of Γ0(4) as 1, 1

2 , and 1
4 ,

respectively. It is a standard exercise to compute these coefficients (see [Gol15,
Section 3.1] for a similar calculation), and we find that

ϕ0h(s) =
σ
(2)
1−2s(h)

4sζ (2)(2s)
, ϕ(1/2)h(s) =

(−1)hσ (2)1−2s(h)
4sζ (2)(2s)

,

ϕ∞h(s) =
22−4sσ1−2s(h/4)− 21−4sσ1−2s(h/2)

ζ (2)(2s)
.

in which ζ (2)(s) is the Riemann zeta function with its 2-factor removed, σν(h)
is the sum of divisors function, and σ (2)ν (h) is the sum of odd-divisors function.
Dividing by hw and summing over h, we compute
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∑
h>1

ϕ0h(s)
hw
=
ζ(w)ζ (2)(w − 1+ 2s)

4tζ (2)(2s)
,

∑
h>1

ϕ(1/2)h(s)
hw

=
(21−w

− 1)ζ(w)ζ (2)(w − 1+ 2s)
4sζ (2)(2s)

,

∑
h>1

ϕ∞h(s)
hw

=
ζ(w)ζ(w − 1+ 2s)

24sζ (2)(2s)

(
1

4w−1
−

1
2w−1

)
.

(3.12)

Applying these expressions to the spectral decomposition from Proposition 3.2,
we rewrite the nonspectral part as

π kΓ (s − k/2)ζ(s + w − k/2)ζ(s + w + k/2− 1)
Γ (k/2)Γ (s)ζ (2)(k)

(
1+

4
22s+2w

−
4

2k/2+s+w

)
.

This expression is analytic in the region Re s > k/2 and Re(s + w) > 1 + k/2,
and extends meromorphically to all of C2 with polar lines at s + w = 1 + k/2,
s +w = 2− k/2, and poles in s at poles of Γ (s − k/2)/Γ (s). Specializing to the
case w = 0, we note potential poles at s = 1+ k/2− j for each integer j > 0.

3.3.2. Discrete part of the spectrum. The discrete part of the spectrum
from (3.9) has clear meromorphic continuation induced by the meromorphic
continuations of the individual L(s, µ j). We note that for any fixed s, the
gamma functions in G(s, i t j) give exponential decay so that the sum converges
absolutely.

Note also that 〈V, µ j 〉 = 0 when µ j is odd. Indeed, |θ k(z)|2 Im(z)k/2 is even
and Eisenstein series are orthogonal to cusp forms. Otherwise, if µ j is even, we
note by the functional equation of L-functions of even Maass forms that

L(−2m ± i t j , µ j) = 0

for any m ∈ Z>0. Specializing now to w = 0, these two observations combine to
indicate that the apparent poles at s = 1

2 ± i t j do not exist. Therefore the discrete
part of the spectrum is analytic for Re s > − 1

2 and has poles at s − 1
2 ± i t j = −m

for m odd, m ∈ Z>0.

3.3.3. Continuous part of the spectrum. The continuous part of the spectrum
from (3.9) requires more nuanced analysis than the discrete part or nonspectral
part, due to the interaction of independent complex variables.

For notational simplicity, we write the continuous part in the form

(4π)k/2

4π i

∑
a

∫
(0)

G(s, z)π 1/2+z

Γ (1/2+ z)
ζa(s + w, z)

〈
V, Ea

(
·,

1
2
− z

)〉
dz, (3.13)
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in which ζa(s, z) is defined by

ζa(s, z) =
∑
h>1

ϕah(1/2− z)
hs−1/2−z

.

It is quickly verified using (3.12) that

ζ0(s, z) =
ζ(s − 1/2− z)ζ (2)(s − 1/2+ z)

21+2zζ (2)(1+ 2z)
.

(The expressions associated to the other cusps are very similar.) It is now clear
that the continuous part of the spectrum is analytic in the region Re(s + w) > 3

2
and Re s > 1

2 , and that the integrand has apparent poles when s +w − 1
2 ± z = 1

and s = 1
2 ± z − j for j ∈ Z>0. It is now necessary to disentangle these poles

from the integration variable.
Arguing as in [HKLDW17b, Section 4.4.2] and [HH16], we iteratively extend

the meromorphic continuation of the continuous part of the spectrum by carefully
shifting lines of integration and collecting residual terms.

For small ε > 0, let Re s lie in the interval ( 3
2 − Rew, 3

2 − Rew + ε) and
furthermore suppose s is at least a distance of 2ε from the potential poles of G(s,
z). We shift the z-contour to the right, along a contour C which bends to remain in
the zero-free region of ζ(1−2z) and thus avoids potential poles contributed by the
inner product, 〈V, Ea(·,

1
2 − z)〉. In so doing, we pass a pole at s +w− 1

2 − z = 1
with residue

R−1 :=
(4π)k/2

2
Res

z=s+w−3/2

G(s, z)π 1/2+z

Γ (1/2+ z)

∑
a

ζa(s + w, z)
〈
V, Ea

(
·,

1
2
− z

)〉
.

The 2-factors in ζ∞(s +w, z) and ζ1/2(s +w, z) create zeros that cancel the pole,
so the only cusp that gives a polar contribution at z = s + w − 3

2 is the 0 cusp.
Simplifying, we find that

R−1 = −
(4π)k/2

2π 1−s−w

Γ (1− w)Γ (2s + w − 2)〈V, E0(·, 2− s − w)〉
22s+2w−2Γ (s)Γ (s + k/2− 1)Γ (s + w − 1)

. (3.14)

The residue R−1 = R−1 (s, w) has a straightforward meromorphic continuation
to all C2. Our deformation of the contour integral (3.13) is analytic for s to the
right of the contour 3

2−Rew−C and to the left of the line 3
2−Rew+ε. When s is

moved just to the left of the 3
2−Rew line in this region, we can shift the contour of

z integration back to Re z = 0. This passes over the other pole at s+w− 1
2+z = 1
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from the other zeta function and introduces a residue

R+1 :=
(4π)k/2

2
Res

z=3/2−s−w

G(s, z)π 1/2+z

Γ (1/2+ z)

∑
a

ζa(s + w, z)
〈
V, Ea

(
·,

1
2
− z

)〉
.

(3.15)
The residue R+1 also has a straightforward meromorphic continuation. We note

that the shifted contour integral has no further poles with Re(s + w) > 1
2 and

Re s > 1
2 . Therefore the continuous part of the spectrum, originally defined for

Re(s +w) > 3
2 and Re s > 1

2 , has meromorphic extension to Re(s +w) > 1
2 and

Re s > 1
2 , given by

(4π)k/2

4π i

∑
a

∫
(0)

G(s, z)π 1/2+z

Γ (1/2+ z)
ζa(s + w, z)

〈
V, Ea

(
·,

1
2
− z

)〉
dz +R+1 −R−1 ,

where by a slight abuse of notation we claim that the two residual terms R±1 (s, w)
appear in the continuation only when Re(s + w) < 3

2 , and with a slight variation
when Re(s + w) = 3

2 .
We now iterate this argument to push the meromorphic continuation of the

continuous part past additional polar lines, as in [HH16, Section 4, pages 481–
483] or [HKLDW17b, Section 4]. That is, for Re s near 1

2 − j with j ∈ Z>0, we
shift the line of integration in z past a pole due to a gamma factor in the numerator
of G(s, z), move s left past the polar line, and shift the line of integration back to
the imaginary axis, passing a pole from the other gamma factor in the numerator
of G(s, z). Each iteration contributes two additional residual terms with opposite
signs, denoted by R+

− j −R−
− j , in which

R+
− j =

(4π)k/2

2

∑
a

Res
z=1/2− j−s

G(s, z)π 1/2+z

Γ (1/2+ z)
ζa(s + w, z)

〈
V, Ea

(
·,

1
2
− z

)〉
,

R−
− j =

(4π)k/2

2

∑
a

Res
z=s+ j−1/2

G(s, z)π 1/2+z

Γ (1/2+ z)
ζa(s + w, z)

〈
V, Ea

(
·,

1
2
− z

)〉
.

Note that the notation R±
− j resembles the notation for R±1 , but the source of the

poles for R±
− j are the gamma functions in G(s, z) instead of the zeta functions

in ζa(s + w, z). Thus the locations of the poles in R±1 depend on w while the
locations of the poles in R±

− j do not. Each of these residual terms has an easily
understood meromorphic continuation. In this way, we obtain the meromorphic
continuation of Zk(s, w) to the entire complex plane.
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4. Analytic behaviour of Wk(s)

In this section, we outline some of the analytic properties of Wk(s). These
properties will be used in Section 5 to understand D(s, Pk × Pk).

Recall from Proposition 2.2 that

Wk(s) =
∑
n>1

rk(n)2

ns+k
+ 2Zk

(
s +

k
2
+ 1, 0

)
. (4.1)

We refer to the sum in (4.1) as the diagonal part. The second term, Zk(s, w), is
the off-diagonal part, which we recall decomposes into three terms we have called
the nonspectral, discrete, and continuous parts.

THEOREM 4.1. The function Wk(s) has meromorphic continuation to all s ∈ C.
In the half-plane Re s > −(k + 3)/2, all but one of the poles of Wk(s) occur at
nonpositive even integers and come from the nonspectral part

Ek(s) =
2π kΓ (s + 1)ζ(s + 1)ζ(s + k)
Γ (k/2)Γ (s + k/2+ 1)ζ (2)(k)

(
1+

1
22s+k

−
1

2s+k−1

)
.

The function Wk(s) has an additional pole at s = −(k + 1)/2. When k > 3,
this pole is simple and has residue

Res
s=−(k+1)/2

Wk(s) = (4π)k/2
〈V, E0(·, 3/2)〉
π 3/2Γ ((k − 1)/2)

.

When k = 3, this pole is a double pole, and the Laurent series of W3(s) about
s = −2 has principal part

−
π 2

3ζ (2)(3)(s + 2)2
+

24a0ζ
(2)(3)− π 2γ − π 2 log(4π)

3ζ (2)(3)(s + 2)
,

where a0 is the constant term in the Laurent series for the meromorphic
continuation of 〈V, E0(·, s)〉 at s = 3

2 .

We prove this theorem in the remainder of this section. We address the
meromorphic behaviour of each part of Wk(s) in turn, and produce Theorem 4.1
by assembling and showing cancellation between these parts.

4.1. Diagonal part. We recognize the diagonal part in terms of the Rankin–
Selberg L-function associated to θ k

× θ k , written L(s, θ k
× θ k) and defined by

L(s, θ k
× θ k) = ζ(2s)

∑
n>1

rk(n)2

ns+k/2−1
.
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As yk/2
|θ k(z)|2 is not of rapid decay, we interpret this L-function through

Gupta’s generalization of the Zagier regularization method to congruence
subgroups [DG00b, Zag81].

Zagier’s original argument shows how to recognize the diagonal sum as an inner
product of the form 〈V, E∞(·, s)〉. This step does not appear explicitly in Gupta’s
generalization. In Corollary A.4 of Appendix A, we extend Gupta’s argument to
prove that

Γ (s + k/2− 1)
(4π)s+k/2−1

L(s, θ k
× θ k)

ζ(2s)
= 〈V, E∞(·, s)〉 = 〈V(σ0·), E0(·, s)〉

for s in the vertical strip 1− k/2 < Re(s) < k/2. We also show that this function
is analytic away from s = k/2, 1, 0, 1− k/2, and the zeros of ζ(2s).

This function relates to the diagonal part of Wk(s) by a shift of variable. Thus
the diagonal part of Wk(s) has potential poles at s = −1,−k/2,−k/2 − 1, −k,
and at zeros of ζ(2s + k + 2).

For the leading pole at s = −1, we evaluate directly

Res
s=−1

∞∑
m=1

rk(m)2

ms+k
= lim

X→∞

k − 1
X k−1

∑
m6X

rk(m)2 =
π kζ(k − 1)

ζ (2)(k)Γ (k/2)2
. (4.2)

The second equality is the subject of [CKO05], which applies a general method
for evaluating sums of positive definite quadratic forms due to Müller [Mül92].
The second pole occurs at s =−k/2 and can be understood through Corollary A.4
to give the residue

(4π)k/2

Γ (k/2)
Res
s=1
〈V, E0(·, s)〉. (4.3)

The poles from zeros of the zeta function and the two remaining poles in the
diagonal part can be analysed using the functional equation for L(s, θ k

× θ k), but
these details will not be necessary as we show that the diagonal part identically
cancels with R+0 −R−0 in a region containing these poles.

4.2. Discrete part. As discussed in Section 3.3.2, the discrete part of Wk(s)
is meromorphic in C and analytic for Re s > −(k + 3)/2, where we focus our
analysis. The boundary of this region, the line Re s = −(k + 3)/2, hosts a line of
poles coming from the eigenvalues t j of the Maass forms.

4.3. Continuous part. We now discuss the analytic properties of the
continuous part of Wk(s) in the right half-plane Re s > −(k + 3)/2. As shown
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in Section 3.3.3, Wk(s) has a meromorphic continuation to the entire complex
plane which incorporates many residual terms R±

− j as Re s decreases. However,
the only residual terms present in Re s > −(k + 3)/2 are R±1 and R±0 .

In analogy with [HKLDW17b], we expect that R+1 = −R−1 when w = 0. This
is correct, but is harder to prove in our current situation because the level, 4, is not
square-free.

LEMMA 4.2. With the notation of Section 3.3, we have

R+1 (s, 0) = −R−1 (s, 0).

Proof. Beginning with the formula for R−1 given in (3.14), set w = 0 and apply
the Gauss duplication formula to obtain

R−1 (s, 0) = −
(4π)k/2

2
·
Γ (s − 1/2)π s−3/2

〈V, E0(·, 2− s)〉
2Γ (s)Γ (s + k/2− 1)

.

Let EE(z, s) = (Ea(z, s))a. Following Iwaniec [Iwa02], we have

EE(z, s) = Φ(s) EE(z, 1− s),

in which Φ(s) is the symmetric scattering matrix

Φ(s) = π 1/2Γ (s − 1/2)
Γ (s)

(ϕab0(s))a,b (4.4)

composed of the constant Fourier coefficients of the various Eisenstein series
Ea(σbz, s). In particular, we have that

E0(z, s) =
√
πΓ (s − 1/2)
Γ (s)ζ (2)(2s)

(
ζ (2)(2s − 1)E∞(z, 1− s)

4s

+
ζ (2)(2s − 1)E1/2(z, 1− s)

4s
+
ζ(2s − 1)E0(z, 1− s)

24s−1

)
.

We apply the Gauss duplication formula and the functional equations of E0(z, s)
and the Riemann zeta function to transform R−1 into

−
(4π)k/2Γ (2s − 2)π 2−sζ(2s − 2)

2Γ (s)Γ (s + k/2− 1)Γ (2− s)ζ (2)(4− 2s)
×

(
〈V, E0(·, s − 1)〉

25−2s

+
(43−2s

− 23−2s)〈V, E∞(·, s − 1)〉
28−4s

+
(23−2s

− 1)〈V, E1/2(·, s − 1)〉
25−2s

)
.
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We compute the residue of −R+1 given in (3.15) as we did for (3.14) for R−1 ,
although this time none of the cuspidal contributions vanish. Then after replacing
the zeta functions with the expansions given in (3.12), term-by-term comparison
shows R−1 is equal to −R+1 .

The contribution from R+1 (s, 0) − R−1 (s, 0), written with arguments as they
appear within the term 2Zk(s + k/2+ 1, 0), thus takes the form

4R+1 (s + k/2+ 1, 0)

= (4π)k/2
Γ (s + k/2+ 1/2)π s+(k−1)/2

〈V, E0(·, 1− k/2− s)〉
Γ (s + k/2+ 1)Γ (s + k)

.

This term has infinitely many poles (at least, when k is even), of which at most
two lie in the right half-plane Re s > −(k + 3)/2. There is a pole at s = −k/2
coming from the Eisenstein series, with residue

Res
s=−k/2

4R+1
(

s +
k
2
+ 1, 0

)
= −

(4π)k/2

Γ (k/2)
Res
s=1
〈V, E0(·, s)〉.

A second pole appears at s = 1− k from the inner product (although not from
the Eisenstein series), which is relevant to our study in the cases k 6 4. In the
case k = 4, the pole at s = 1 − k in the inner product is cancelled by a zero in
Γ (s + k/2 + 1)−1, and does not appear. In the remaining case, k = 3, this pole
collides with a pole at s = −(k + 1)/2 coming from the gamma factor, creating a
double pole with principal part

−
π 2

3ζ (2)(3)(s + 2)2
+

24a0ζ
(2)(3)− π 2γ − π 2 log(4π)

3ζ (2)(3)(s + 2)
,

in which γ is the Euler–Mascheroni constant and a0 is the constant coefficient of
the Laurent expansion of 〈V, E0(·, s)〉 about s = 3

2 .
For k > 4, the gamma factor pole at s = −(k + 1)/2 is simple, with residue

Res
s=−(k+1)/2

4R+1
(

s +
k
2
+ 1, 0

)
= (4π)k/2

〈V, E0(·, 3/2)〉
π 3/2Γ ((k − 1)/2)

.

Further analogy with [HKLDW17b] leads us to expect that R+0 (s, 0) =
−R−0 (s, 0) and that 2R+0 (s, 0) shows significant cancellation with the diagonal
term. A computation very similar to that performed in Lemma 4.2 shows that this
is indeed the case.

LEMMA 4.3. With the notation of Section 3.3, we have

R+0 (s, 0) = −R−0 (s, 0).
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Simplifying 2R+0 (s, 0) gives

2R+0 (s, 0) = −
1
2
·

(4π)s+k/2−1

Γ (s + k/2− 1)
〈V, E∞(·, s)〉.

As in Section 4.1, Zagier regularization identifies this expression with a Rankin–
Selberg L-function,

R+0 −R−0 = −
1
2

L(s, θ k
× θ k)

ζ(2s)
,

and we conclude that the second residual pair in the meromorphic continuation
of 2Zk(s + k/2 + 1, 0) exactly cancels with the diagonal part. This cancellation
can only occur in the half-plane Re s < −(k + 1)/2 and allows us to ignore R±0
as soon as it appears.

4.4. Nonspectral part. We conclude this section with a few remarks on the
polar behaviour of the nonspectral part. As it appears in 2Zk(s + k/2+ 1, 0), this
term takes the form

Ek(s) =
2π kΓ (s + 1)ζ(s + 1)ζ(s + k)
Γ (k/2)Γ (s + k/2+ 1)ζ (2)(k)

(
1+

1
22s+k

−
1

2s+k−1

)
. (4.5)

This expression is analytic in the region Re s > 0 and extends meromorphically to
all of C with poles s = 0 and s =−1. Potential poles at negative odd integers 6−3
are cancelled by trivial zeta zeros, while the existence of the poles at negative even
integers depends on k.

When k is odd, Ek(s) has poles at negative even integers and a double pole at
s = 1− k coming from Γ (s + 1)ζ(s + k). When k is even, zeros from

ζ(s + 1)ζ(s + k)/Γ
(

s +
k
2
+ 1

)
cancel all but bk/4c of these additional poles, leaving only poles at 0, −1, and
each negative even integer greater than −1− k/2.

We compute the residue at s = −1 to be

Res
s=−1

Ek(s) = −
π kζ(k − 1)

ζ (2)(k)Γ (k/2)2
,

which perfectly cancels the corresponding pole from the diagonal part in (4.2).
This completes the proof of Theorem 4.1.
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5. Analysis of D(s, Pk × Pk)

We now analyse D(s, Pk × Pk). Through the decomposition in (2.2), we
relate D(s, Pk × Pk) to D(s, Sk × Sk), which further decomposes in terms of
Wk(s) from (2.5). Building on the analysis from the previous sections, we show
surprising amounts of cancellation in the poles and residues of D(s, Pk × Pk).

It is helpful to combine the two decompositions (2.2) and (2.5) into the
following unified formula for D(s, Pk × Pk):

D(s, Pk × Pk) = ζ(s + k − 2)+Wk(s − 2)+ V 2
k ζ(s − 2) (5.1)

− 2Vkζ(s + k/2− 2)− 2Vk L(s − 1, θ k) (5.2)

+
1

2π i

∫
(σ )

Wk(s − 2− z)ζ(z)
Γ (z)Γ (s + k − 2− z)

Γ (s + k − 2)
dz (5.3)

−
2Vk

2π i

∫
(σ )

L(s − 1− z, θ k)ζ(z)
Γ (z)Γ (s + k/2− 2− z)

Γ (s + k/2− 2)
dz, (5.4)

initially valid with Re s � 1 and σ ∈ (1,Re s − 3).
Since the discrete part of Wk(s−3) has a line of poles where Re s = (3− k)/2,

we necessarily restrict our analysis of D(s, Pk × Pk) to the half-plane Re s >
(3− k)/2. For ease of exposition, we further restrict ourselves to the half-plane
Re s > 0.

We investigate the analytic properties of D(s, Pk×Pk) by expounding each part
of the decomposition given in (5.1)–(5.4). For easy reference, a summary of the
locations and residues of the poles of D(s, Pk × Pk) in the half-plane Re s > 0 is
provided in Table 1.

Poles from terms in (5.1) and (5.2). The terms occurring in the first two lines
include Wk(s−2) and a collection of functions of classical interest. The poles and
residues of these terms are therefore given by Theorem 4.1 or are otherwise well
known.

The Wk(s) integral in (5.3). To understand the integral, we shift σ to −3 + ε
for some small ε > 0 and understand the resulting residues. There are residues at
z = 1 from ζ(z), and at z = 0 and z = −1 from Γ (z). By Cauchy’s Theorem, the
Wk(s) integral in (5.3) is equal to

1
2π i

∫
(−3+ε)

Wk(s − 2− z)ζ(z)
Γ (z)Γ (s + k − 2− z)

Γ (s + k − 2)
dz

+
Wk(s − 3)
s + k − 3

−
Wk(s − 2)

2
+

Wk(s − 1)(s + k − 2)
12

.
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Table 1. Summary of Polar Data of D(s, Pk × Pk) in the Half-Plane Re s > 0.

POLE LOCATION LINE CONTRIBUTING TERM RESIDUE

s = 3 (5.1) V 2
k ζ(s − 2) V 2

k

s = 3 (5.3)
Ek(s − 3)
s + k − 3

, from
Wk(s − 3)
s + k − 3

V 2
k

s = 3 (5.4) −2Vk
L(s − 2, θ k)

s + k/2− 3
−2V 2

k

s = 2 (5.1) Ek(s − 2), from Wk(s − 2) kV 2
k

s = 2 (5.2) −2Vk L(s − 1, θ k) −kV 2
k

s = 2 (5.3) −
Ek(s − 2)

2
, −

k
2

V 2
k

from −
Wk(s − 2)

2

s = 2 (5.4) 2Vk
L(s − 1, θ k)

2
k
2

V 2
k

s = 3−
k
2

(5.2) −2Vkζ

(
s +

k
2
− 2

)
−2Vk

s = 3−
k
2

(5.4) −2Vk
L(s − 2, θ k)

s + k/2− 3
−2Vk L

(
1−

k
2
, θ k

)
s = 1, if k 6= 3 (5.3)

Ek(s − 3)
s + k − 3

, from
Wk(s − 3)
s + k − 3

π kζ(k − 2)(1+ 23−k)

12Γ (k/2)2ζ (2)(k)

s = 1 (5.3)
Ek(s − 1)(s + k − 2)

12
V 2

k k(k − 1)
12

s = 1 (5.4) −2Vk
L(s, θ k)(s + k/2− 2)

12
−Vk

π k/2(k/2− 1)
6Γ (k/2)

s = 4− k, if k odd (5.3)
Ek(s − 3)
s + k − 3

, from
Wk(s − 3)
s + k − 3

Double pole, see (5.7)

s = 3−
k + 1

2
, (5.3)

2R+1 (s + k/2− 2, 0)
s + k − 3

,
(4π)k/2〈V, E0(·, 3/2)〉
π 3/2Γ ((k + 1)/2)

k 6= 3 from
Wk(s − 3)
s + k − 3

s = 3−
k + 1

2
, (5.3)

2R+1 (s + k/2− 2, 0)
s + k − 3

, Double pole, see (5.6)

k = 3 from
Wk(s − 3)
s + k − 3

See Proposition 2.2 for the definition of Wk , (3.15) for R+1 , and (4.5) for Ek .
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The integrand is now analytic for Re s > −1+ε, and the poles from the z-residues
can be interpreted using Theorem 4.1.

The L(s, θ k) integral in (5.4). As with the previous integral, we shift σ to
−3+ ε for some small ε > 0 and understand the resulting residues. By Cauchy’s
Theorem, the L(s, θ k) integral in (5.4) is equal to

−2Vk

2π i

∫
(−3+ε)

L(s − 1− z, θ k)ζ(z)
Γ (z)Γ (s + k/2− 2− z)

Γ (s + k/2− 2)
dz

− 2Vk

(
L(s − 2, θ k)

s + k/2− 3
−

L(s − 1, θ k)

2
+

L(s, θ k)(s + k/2− 2)
12

)
.

The integrand is analytic for Re s > −1 + ε. As L(s, θ k) is analytic except for
a simple pole at s = 1, it is easy to recognize the poles with Re s > 0 in the
expression above. Note that there is an additional pole at s = 3 − k/2 coming
from the denominator of L(s − 2, θ k)(s + k/2− 3)−1.

5.1. Examination of poles and their cancellation. We now begin a polar
analysis of D(s, Pk × Pk) in the half-plane Re s > 0. With reference to Table 1,
we see at once that the residues of D(s, Pk × Pk) at s = 3 and s = 2 both vanish,
hence neither of these potential poles occur.

We now address the contribution of the poles at s = 3 − k/2, which are the
rightmost potential poles in the k = 3 case. These poles occur in the terms
−2Vkζ(s + k/2 − 2) and L(s − 2, θ k)(s + k/2 − 3)−1, and combine to give
the residue

Res
s=3−k/2

(
−2Vkζ

(
s +

k
2
− 2

)
+

L(s − 2, θ k)

s + k/2− 3

)
= −2Vk

(
1+ L

(
1−

k
2
, θ k

))
.

We evaluate L(1− k/2, θ k) using the functional equation of L(s, θ k),

π−s−k/2+1Γ

(
s +

k
2
− 1

)
L(s, θ k) = π s−1Γ (1− s)L

(
2−

k
2
− s, θ k

)
,

and conclude that

L
(

1−
k
2
, θ k

)
=
Γ (k/2)
π k/2

lim
s→0

L(1− s, θ k)

Γ (s)
= −

Γ (k/2)
π k/2

Res
s=1

L(s, θ k) = −1.

Therefore, the residue at s = 3− k/2 is exactly 0, and so this pole also cancels.
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There is a simple pole at s = 3− (k + 1)/2 in the case k > 4, with residue

Res
s=3−(k+1)/2

2R+1 (s + k/2− 2, 0)
s + k − 3

=
(4π)k/2

π 3/2Γ ((k + 1)/2)

〈
V, E0

(
·,

3
2

)〉
. (5.5)

When k = 3, this term is a double pole at s = 1, with principal part

−
π 2

3ζ (2)(3)(s − 1)2
+
π 2(1− γ − log(4π))

3ζ (2)(3)(s − 1)
+

8a0

(s − 1)
, (5.6)

in which a0 is the constant term in the Laurent series for the meromorphic
continuation of 〈V, E0(·, s)〉 at s = 3

2 .
In general, the poles at s = 1 do not cancel, and constitute the leading polar

term. There are always simple poles coming from Ek(s − 1)(s + k − 2)/12 and
−2Vk L(s, θ k)(s + k/2− 2)/12, which jointly contribute the residue

1
24 k2V 2

k .

There is also a pole at s = 1 coming from Ek(s − 3)(s + k − 3)−1, but the nature
of this pole depends on k. There are two cases. If k > 3, there is a simple pole
with residue

π kζ(k − 2)
12Γ (k/2)2ζ (2)(k)

(1+ 23−k).

If k = 3, then there is a double pole with principal part

2π 2

3ζ (2)(3)(s − 1)2
+
π 2(2γ + log 2− 24ζ ′(−1))

3ζ (2)(3)(s − 1)
, (5.7)

Altogether, the analysis of Section 5.1 leads to the following theorem.

THEOREM 5.1. The Dirichlet series D(s, Pk× Pk), defined originally in the right
half-plane Re s > 3 by the series

∞∑
m=1

Pk(m)2

ms+k−2
,

has a meromorphic continuation to C given by (5.1)–(5.4) and is analytic in the
right half-plane Re s > 1, with a pole at s = 1. In the case k > 4 this pole is
simple, with residue

k2

24
V 2

k +
π kζ(k − 2)

12Γ (k/2)2ζ (2)(k)
(1+ 23−k).
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In the case k = 3 this is a double pole, with principal part given by

π 2

3ζ (2)(3)(s − 1)2
+
π 2(1+ γ − log(2π)− 24ζ ′(−1)+ 2ζ (2)(3))+ 24a0ζ

(2)(3)
3ζ (2)(3)(s − 1)

.

The function D(s, Pk × Pk) is otherwise analytic in the right half-plane Re s >
(3− k)/2 save for finitely many poles at nonpositive integers and, for k > 3, an
additional simple pole at s = (5− k)/2 with residue given by (5.5).

REMARK 5.2. In the process of proving this theorem, we have also shown that
D(s, Sk × Sk) has a meromorphic continuation to C. The poles and residues
of D(s, Sk × Sk) can be recovered from the analysis of D(s, Pk × Pk) and the
decomposition (2.2).

REMARK 5.3. The simple pole at s = (5− k)/2 is particularly interesting in the
case k = 4, when it appears in the right half-plane Re s > 0. In this case, noting
that r4(m)/8 is multiplicative and comparing Euler products shows that

1
64

∞∑
m=1

r4(m)2

ms
=
(26−3s

− 5 · 23−2s
+ 21−s

+ 1)ζ(s − 2)ζ 2(s − 1)ζ(s)
(1+ 21−s)ζ(2s − 2)

,

which can be used to evaluate the inner product 〈V, E0(·,
3
2 )〉 appearing in (5.5)

via (4.3). The residue of D(s, P4 × P4) at s = 1
2 is given by

C ′4 :=
16(9
√

2− 8)ζ(1/2)ζ(3/2)2ζ(5/2)
7π 2ζ(3)

.

6. Smooth second moment

In this section, we use the meromorphic properties of D(s, Pk × Pk) to prove
our main smoothed result regarding estimates for

∑
Pk(n)2e−n/X . Key to this

approach is the exponential cutoff transform

1
2π i

∫
(4)

D(s, Pk × Pk)X s+k−2Γ (s + k − 2) ds =
∑
n>1

Pk(n)2e−n/X . (6.1)

We may evaluate the left-hand side of the inverse Mellin transform in (6.1)
by decomposing D(s, Pk × Pk) as in (5.1)–(5.4) and then shifting the lines of
integration from Re s = 4 to Re s = ε. From Theorem 5.1, we understand that
these integration shifts pass by a pole at s = 1 (which is a double pole for k = 3)
and a pole at s = 1

2 (if k = 4).
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Provided that the integral in (6.1) converges away from poles on each abscissa
(σ ) for σ ∈ (0, 4), we would have∑

n>1

Pk(n)2e−n/X
= δ[k=3]C ′3 X k−1(log X + 1− γ )+ CkΓ (k − 1)X k−1

+ δ[k=4]Γ

(
5
2

)
C ′4 X k−3/2

+
1

2π i

∫
(ε)

D(s, Pk × Pk)X s+k−2Γ (s + k − 2) ds. (6.2)

Here, the constants Ck , C ′3, and C ′4 are given explicitly by the Laurent coefficients
of D(s, Pk × Pk) about its singular points, as described in Remark 1.2 and
Theorem 5.1.

Since Γ (s) experiences exponential decay as |Im s| → ∞, it suffices to show
that D(s, Pk × Pk) grows at most polynomially in |Im s|. We accomplish this
through a series of lemmas.

LEMMA 6.1. The function Wk(s) is bounded polynomially in |Im s| away from
poles in vertical strips.

Proof. We prove this by showing that the diagonal, nonspectral, discrete, and
continuous parts of Wk(s) grow at most polynomially in |Im s|.

For the diagonal part this is a consequence of the Phragmén–Lindelöf principle
and the existence of a functional equation to give bounds for L(s, θ k

× θ k) in a
left half-plane. (See Section 4.1.)

For the nonspectral part Ek(s), we obtain at most polynomial growth in |Im s|
as a consequence of polynomial bounds on ζ(s) and Stirling’s approximation for
the gamma ratio Γ (s + 1)/Γ (s + k/2+ 1).

In the continuous part, we must address the growth of R±
− j as well as the

integral (3.13). To bound

2R+1
(

s +
k
2
+ 1, 0

)
= (4π)k/2

Γ (s + k/2+ 1/2)π s+(k−1)/2
〈V, E0(·, 1− k/2− s)〉

Γ (s + k/2+ 1)Γ (s + k)
,

we recall that 〈V, E0(·, 1 − k/2 − s)〉 may be identified with an L-function
through Corollary A.4 and therefore grows like a gamma function multiplied by
an L-function of polynomial growth. Via Stirling’s approximation we see that the
exponential contributions within R±1 cancel, so R±1 grows at most polynomially
in |Im s|. Further terms R±

− j may be treated in the same way.
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To complete our analysis of the continuous part of Wk(s) we need only
estimate (3.13) in various vertical strips. To do so, we note that〈

V, Ea

(
·, 1

2 − z
)〉
/Γ

(
1
2 + z

)
and ζa(s, z) experience at most polynomial growth in |Im z| and |Im s|, and that
Stirling’s approximation gives

G(s, z) =
Γ (s − 1/2+ z)Γ (s − 1/2− z)

Γ (s + k/2− 1)Γ (s)
� |Im(s − z)|Re s

|Im(s + z)|Re s
|Im s|Ae−π max(|Im s|,|Im z|)+π |Im s|

when Re z = 0, for some constant A.
In the z-interval of length 2|Im s|1+ε where |Im z| < |Im s|1+ε , the exponential

factors cancel and the integrand experiences polynomial growth in |Im s|. If
|Im z| > |Im s|1+ε , the integrand decays exponentially. In total, the integral
contributes only polynomial growth.

Finally, we address the discrete part of Wk(s). For this, [Kır15, Proposition 13]
shows that the inner products 〈V, µ j 〉 decay exponentially in |t j |; namely,∑

T6|t j |62T

|〈V, µ j 〉|
2
� T 4k+2e−πT .

This exponential decay is balanced by exponential growth within the Fourier
coefficients ρ j(h). We have the estimate∑

T6|t j |62T

|ρ j(h)|2e−π t j � h2ηT 2

given in [HH16, (4.3)], where η is the best-known progress towards the
(nonarchimedean) Ramanujan conjecture. Using this with the Cauchy–Schwarz
inequality we get that ∑

T6|t j |62T

|ρ j(h)ρ j(m)|e−π t j � (hm)ηT 2.

So for Re(s) > 2, we have that∑
T6|t j |62T

|L(s, µ j)|
2e−π t j � T 2, (6.3)

and from Stirling’s approximation and the functional equation, we similarly get
that, when restricted to vertical strips A < Re(s) < −1,∑

T6|t j |62T

|L(s, µ j)|
2e−π t j �A T 4−2σ (1+ | Im(s)|)2−2σ . (6.4)
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Since each L(s, µ j) is entire, from the Phragmén–Lindelöf convexity argument
we have that

∑
T6|t j |62T |L(s, µ j)|

2e−π t j has at most polynomial growth in T and
Im(s) when s is confined to any vertical strip in C. Using this along with our
previous bound on G(s, z), we bound the discrete part of Wk(s) polynomially in
|Im s| via partial summation.

A second lemma will be used to bound the growth of the two Mellin–
Barnes integrals (5.3) and (5.4) that appear in the meromorphic continuation of
D(s, Pk × Pk).

LEMMA 6.2. Let F(s) be a function of polynomial growth in |Im s| on fixed
vertical lines and let c be fixed. There exists M > 0 such that

1
2π i

∫
(σ )

F(s − z)ζ(z)
Γ (z)Γ (s + c − z)

Γ (s + c)
dz � |Im s|M ,

in which σ is chosen to avoid poles in the integrand and the implicit constant does
not depend on |Im s|.

Proof. By Stirling’s approximation and polynomial growth in vertical strips for
both F(s − z) and ζ(z), we bound our integrand by

|Im(s − z)|A|Im z|B |Im s|C e−π/2|Im z|−(π/2)|Im(s−z)|+(π/2)|Im s|

for some A, B,C independent of |Im s| and |Im z|. Growth and decay of the
integrand depends on the relative sizes of Im s, Im z, and Im(s − z). By casework
we conclude that the integrand has exponential decay in |Im z| everywhere except
when |Im z| 6 |Im s|, in which case the exponentials cancel. Thus the integrand
is polynomially bounded and effectively supported on an interval of length
2|Im s|1+ε , leading to a polynomial bound in |Im s| overall.

Combining our lemmas, we bound D(s, Pk × Pk) in vertical strips and prove
the following theorem.

THEOREM 6.3. For k > 3 and any ε > 0,

∞∑
n=1

Pk(n)2e−n/X
= δ[k=3]C ′3 X k−1(log X + 1− γ )+ CkΓ (k − 1)X k−1

+ δ[k=4]C ′4Γ
(
k − 3

2

)
X k−3/2

+ Oε(X k−2+ε),

where Ck , C ′3, and C ′4 are the explicit constants described in Remark 1.2.
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Proof. As described at the start of this section, it suffices to shift the line of
integration as in (6.2). To justify this contour shift, we bound D(s, Pk × Pk)

polynomially in |Im s| in vertical strips. We do so by showing a contribution of at
most polynomial growth for each term in (5.1)–(5.4).

In (5.1) these bounds follow from Lemma 6.1 and polynomial estimates for
the Riemann zeta function in vertical strips. For (5.2) we require a polynomial
bound on L(s, θ k) in vertical strips as well, which follows from the functional
equation of L(s, θ k) and the Phragmén–Lindelöf Principle. Finally, since Wk(s)
and L(s, θ k) experience polynomial growth in vertical strips, Lemma 6.2 gives a
polynomial bound in |Im s| in (5.3) and (5.4).

REMARK 6.4. The leading constants C ′3 and Ck (k > 4) are described explicitly
in Remark 1.2. In particular, we may verify that they are positive.

For small k > 3 it is not difficult to list the precise locations of the poles of
D(s, Pk × Pk) in the right half-plane Re s > (3− k)/2 and derive additional
main terms and improved error estimates in Theorem 6.3. For example, there
exist constants D4 and D5 for which∑

n>1

P4(n)2e−n/X
= 2C4 X 3

+ C ′4Γ
(

5
2

)
X 5/2
+ D4 X 2

+ O(X 3/2+ε),

∑
n>1

P5(n)2e−n/X
= 6C5 X 4

+ D5 X 3
+ O(X 2+ε).

The existence of infinitely many poles for D(s, Pk × Pk) on the line Re s =
(3− k)/2 suggests that these are essentially the best smooth results possible.

7. Sharp second moment

We now prove a second moment result without smoothing. The key observation
is that by Lemmas 6.1 and 6.2, the Dirichlet series D(s, Pk × Pk) has polynomial
growth in vertical strips (away from poles). Using this polynomial growth,
applying Perron’s formula yields a sharp moment. In this section, we prove the
following theorem.

THEOREM 7.1. For each k > 3 there exists a λ > 0 such that∑
n6X

Pk(n)2 = δ[k=3]X k−1

(
C ′3
2

log X −
C ′3
4

)
+

Ck

k − 1
X k−1
+ Oλ(X k−1−λ).

The constants C ′3 and Ck are the same constants as in Remark 1.2.
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Applying the statement of Perron’s formula from [MV06, Theorem 5.2 and
Corollary 5.3] with an = Pk(n)2 and σ0 = k − 1+ 1/ log X , we find that

∑
n6X

Pk(n)2 =
1

2π i

∫ σ0+iT

σ0−iT
D(s − k + 2, Pk × Pk)

X s

s
ds +R, (7.1)

where the remainder term is bounded by

R�
∑

X/2<n<2X
n 6=X

Pk(n)2 min
(

1,
X

T |X − n|

)
+

Xσ0

T

∑
n>1

Pk(n)2

nσ0
. (7.2)

Shifting the line of integration in (7.1) to k − 1− 1
4 passes a pole at s = k − 1,

and the residue gives the main term in the Theorem. There exists an M such that
D(s, Pk × Pk)s−1

� |Im s|M when Re s > (k − 1− 1
4 ), and thus letting T = X δ

for a small δ > 0, the shifted integral (as well as the integrals along the top and
bottom of the rectangular contour) is bounded by O(X k−5/4+Mδ

+ X k−1−δ).
Now consider the remainder term R. The last term in the bound of R is itself

bounded by Oε(X k−1−δ+ε) for any ε > 0. For k > 3, the bound Pk(n)2 �
nk−2 log4/3 n (see [IKKN06, Section 2] for a survey of these results) is enough
to bound the first term by Oε(X k−1−δ+ε) for any ε > 0.

When k = 3, individual bounds for Pk(n)2 are too weak, but we can use the
following short-interval estimate.

LEMMA 7.2. There exists M > 0 such that

1
2π i

∫
(k)

D(s − k + 2, Pk × Pk)X s exp
(
πs2

y2

)
ds
y
�

X k−1 log X
y

+ X k−5/4 yM .

Correspondingly, there exists 0 < β < 1 such that∑
|n−X |�Xβ

Pk(n)2 � X k−2+β log X.

Proof. Shift the contour left to (k − 1− 1
4 ). This passes a pole at s = k − 1 with

residue bounded by O(X k−1(log X)/y). Recalling that D(s, Pk × Pk)� |Im s|M

when Re s > (k − 1− 1
4 ), the shifted integral is bounded by

X k−1−1/4

y

∫
∞

−∞

(1+ |t |)M exp
(
−
π t2

y2

)
dt � X k−1−1/4 yM .
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For the second statement in the lemma, let

VX,y(n) = (2π)−1 exp
(
−

y2 log2(X/n)
4π

)
denote the inverse Mellin transform of exp(πs2/y2). Then∑

|X−n|<X/y

Pk(n)2 �
∑

|X−n|<X/y

Pk(n)2VX,y(n)�
∑
n>1

Pk(n)2VX,y(n),

and this last sum is exactly equal to the integral in the statement of the lemma.
Choosing y = X 1/4(M+1) in the integral bound proves the short-interval result on
intervals of length Xβ with β = 1− 1/4(M + 1).

Let β be as in the lemma, and split the first sum in (7.2) over the intervals [X/2,
X−Xβ

], [X−Xβ, X+Xβ
], and [X+Xβ, 2X ]. On the middle interval, Lemma 7.2

directly gives the bound O(X k−2+β log X). On the first and last intervals, Abel
summation and the lemma imply the bound O(X k−1−δ log2 X). Choosing δ such
that δ < 1 − β, and ε such that ε < (1 − β)/2 proves the theorem with λ =
(1− β)/2.

8. Laplace transform

Theorem 6.3 may be considered as a discrete Laplace transform of the mean
square of the lattice point discrepancy. Building upon this result, one can obtain
asymptotics for the continuous Laplace transform∫

∞

0
Pk(t)2e−t/X dt. (8.1)

In this section, we prove the following estimate for the continuous Laplace
transform of Pk(t)2.

THEOREM 8.1. The Laplace transform of the second moment of the lattice point
discrepancy in dimensions k > 3 satisfies∫
∞

0
Pk(t)2e−t/X dt = δ[k=3]C ′3 X k−1(log X + 1− γ )+ δ[k=4]C ′4Γ

(
k −

3
2

)
X k−3/2

+CkΓ (k − 1)X k−1
−
Γ (k − 1)π k

6Γ (k/2)2
X k−1
+ O(X k−2+ε),

where the constants are the same constants as in Remark 1.2.
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REMARK 8.2. It is possible to adapt the method of the proof of Theorem 8.1 to
obtain further secondary terms and decrease the error to O(X (k−1)/2+ε).

Our proof of Theorem 8.1 begins with the identity

Pk(t) = Sk(t)− Vk t k/2
= Sk(btc)− Vk t k/2

= Pk(btc)+ Vkbtck/2 − Vk t k/2.

It follows that

Pk(t)2 = Pk(btc)2 + V 2
k (btc

k/2
− t k/2)2 + 2Vk Pk(btc)(btck/2 − t k/2). (8.2)

We compute the Laplace transform (8.1) by computing it separately for each
term in (8.2). We begin with the first term in (8.2), which is very nearly equivalent
to the sum studied in Theorem 6.3.

LEMMA 8.3 (First term in the Laplace transform of (8.2)). We have∫
∞

0
Pk(btc)2e−t/X dt = δ[k=3]C ′3 X k−1(log X + 1− γ )+ CkΓ (k − 1)X k−1

+ δ[k=4]C ′4Γ
(

k −
3
2

)
X k−3/2

+ Oε(X k−2+ε),

Proof. We note that

e−1/X
∑
n>0

Pk(n)2e−n/X 6
∫
∞

0
Pk(btc)2e−t/X dt 6

∑
n>0

Pk(n)2e−n/X .

As e−1/X
= 1+ O(1/X), the lemma follows from Theorem 6.3.

The second term in (8.2) can be understood through Abel summation.

LEMMA 8.4 (Second term in the Laplace transform of (8.2)). We have

V 2
k

∫
∞

0
(btck/2 − t k/2)2e−t/X dt =

k2V 2
k Γ (k − 1)

12
X k−1
+ O(X k−2+ε).

Proof. Expanding the integral and estimating the integrand, we compute∫
∞

0
(btck/2 − t k/2)2e−t/X dt

=

∑
n>1

nke−n/X
∫ 1

0

((
1+

t
n

)k/2

− 1

)2

e−t/X dt + O(1)

https://doi.org/10.1017/fms.2018.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.26


Second moments in the generalized Gauss circle problem 37

=
k2

4

∑
n>1

nke−n/X
∫ 1

0

(
t
n
+ O

(
t2

n2

))2 (
1+ O

(
1
X

))
dt + O(1)

=
k2

4

∑
n>1

nk−2e−n/X
∫ 1

0
t2

(
1+ O

(
1
n
+

1
X

))
dt + O(1)

=
k2

4

∑
n>1

nk−2e−n/X

(
1
3
+ O

(
1
n
+

1
X

))
+ O(1). (8.3)

The O(1) term above comes from the part of the integral corresponding to [0, 1].
For σ > m + 1 with m > 0, we note that∑

n>1

nme−n/X
=

1
2π i

∫
(σ )

ζ(s − m)X sΓ (s) ds = Γ (m + 1)Xm+1
+ O(X).

The last equality is obtained by moving the line of integration to σ = 1, picking
up the residue at s = m + 1 and bounding the leftover integral. Combining this
statement with (8.3) gives us the lemma.

Finally, we address the last term in (8.2).

LEMMA 8.5 (Third term in the Laplace transform of (8.2)). We have

2Vk

∫
∞

0
Pk(btc)(btck/2− t k/2)e−t/X dt = −

π k/2kΓ (k − 1)Vk

4Γ (k/2)
X k−1
+ O(X k−2+ε).

Proof. Our approach here is analogous to that of the previous lemma. We compute∫
∞

0
Pk(btc)(btck/2 − t k/2)e−t/X dt

= −

∑
n>1

Pk(n)nk/2e−n/X
∫ 1

0

((
1+

t
n

)k/2

− 1

)
e−t/X dt + O(1)

= −
k
2

∑
n>1

Pk(n)nk/2e−n/X
∫ 1

0

(
t
n
+ O

(
t2

n2

))(
1+ O

(
1
X

))
dt + O(1)

= −
k
2

∑
n>1

Pk(n)nk/2−1e−n/X
∫ 1

0
t
(

1+ O
(

1
n
+

1
X

))
dt + O(1)

= −
k
2

∑
n>1

Pk(n)nk/2−1e−n/X

(
1
2
+ O

(
1
n
+

1
X

))
+ O(1). (8.4)
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At this point, we transform the sum above into an inverse Mellin transform,

∞∑
n=1

Pk(n)nk/2−1e−n/X
=

1
2π i

∫
(σ )

D
(

s −
k
2
+ 1, Pk

)
Γ (s)X s ds, (8.5)

in which D(s, Pk) :=
∑

n>1 Pk(n)n−s denotes the nonnormalized Dirichlet series
associated to Pk . By modifying the analysis of

∑
Sk(n)n−(s+k/2−2) from (2.3) and

recalling that Pk(n) = Sk(n)− Vknk/2, we see that

D(s, Pk) = ζ(s)+ L
(

s −
k
2
+ 1, θ k

)
− Vkζ

(
s −

k
2

)
+

1
2π i

∫
(σ )

L
(

s −
k
2
+ 1− z, θ k

)
ζ(z)

Γ (z)Γ (s − z)
Γ (s)

dz, (8.6)

in which L(s, θ k) is defined as in Proposition 2.1.
The function D(s, Pk) admits potential poles at s = k/2 + 1 (coming from

a zeta function and the Mellin–Barnes integral, visible after shifting the line of
integration past the pole at z = 1), at s = k/2 (coming from L(s − k/2 + 1, θ k)

and the Mellin–Barnes integral), and at s = k/2 − 1 (coming from the Mellin–
Barnes integral), with no other poles for Re s > k/2 − 2. The potential pole at
s = k/2+ 1 cancels, while the poles at s = k/2 and s = k/2− 1 have residues

Res
s=k/2
=

π k/2

2Γ (k/2)
and Res

s=k/2−1
=

π k/2

12Γ (k/2− 1)
.

The integrand in (8.6) has exponential decay in vertical strips from the gamma
function. Shifting the line of integration in (8.5) to k − 2 + ε for a small ε > 0
shows that
∞∑

n=1

Pk(n)nk/2−1e−n/X
=
π k/2Γ (k − 1)

2Γ (k/2)
X k−1
+
π k/2Γ (k − 2)
12Γ (k/2− 1)

X k−2
+O(X k−3+ε).

Plugging this back into (8.4) completes the proof.

Our proof of Theorem 8.1 now follows from the three-term decomposition of
Pk(t)2 given in (8.2) and Lemmas 8.3, 8.4, and 8.5.

9. Improving the integrated mean square estimate

As our second application of the main results of this paper, we translate
Theorem 7.1 into the same language as the mean square estimate for the lattice
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point discrepancy on the sphere. Recall that Lau [Lau99] showed that∫ X

0
(P3(t))2 dt =

C ′3
2

X 2 log X + O(X 2),

and note that the leading constant agrees with the constant in Theorem 7.1.
We prove the following refinement of this mean square estimate as a corollary

to Theorem 7.1.

THEOREM 9.1. There exists λ > 0 such that∫ X

0
P3(t)2 dt =

C ′3
2

X 2 log X +
(

C3

2
−

C ′3
4
−
π 2

3

)
X 2
+ Oλ(X 2−λ),

where C ′3 and C3 are the same constants as in Remark 1.2.

Proof. It suffices to prove Theorem 9.1 for integer X as a consequence of Heath-
Brown’s estimate P3(n) = O(n21/32+ε) [HB99]. Indeed, the contribution of the
integral of (P3(x))2 over [X, X + 1] is O(X 21/16+ε), which is sufficiently small.

Rewrite Theorem 7.1 in the form∫ X

0
P3(btc)2 dt =

C ′3
2

X 2 log X +
(

C3

2
−

C ′3
4

)
X 2
+ Oλ(X 2−λ). (9.1)

As a special case of (8.2) we have

P3(t)2 − P3(btc)2 = 2V3 P3(btc)(btc3/2 − t3/2)+ V 2
3 (btc

3/2
− t3/2)2.

The difference between (9.1) and
∫ X

0 P3(t)2 dt can therefore be written as

2V3

∫ X

0
P3(btc)(btc3/2 − t3/2) dt + V 2

3

∫ X

0
(btc3/2 − t3/2)2 dt. (9.2)

The second integral in (9.2) admits the approximation

V 2
3

X−1∑
n=0

∫ n+1

n
(n3/2
− t3/2)2 dt = V 2

3

X−1∑
n=0

(
3n
4
+ O(1)

)
,

obtained by integrating each summand and then performing a series expansion in
n term by term. Summing over n 6 X − 1, we see that

V 2
3

X−1∑
n=0

∫ n+1

n
(n3/2
− t3/2)2 dt =

3V 2
3

8
X 2
+ O(X).
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Now consider the first integral in (9.2). The contribution of the integral over the
range [0, 1] is O(1). For the rest, we again break up the integral at discontinuities
and integrate termwise to obtain

2V3

X−1∑
n=1

P3(n)
∫ n+1

n
(n3/2
− t3/2) dt = −2V3

X−1∑
n=1

P3(n)
(

3
√

n
4
+ O

(
1

n1/2

))
.

Again using Heath-Brown’s bound, P3(n) � n21/32+ε , we estimate the
contribution of the error term in the series expansion above by O(X 1/2+21/32+ε).

Rearranging, we write the difference between
∫ X

0 P3(t)2 dt and (9.1) as

∫ X

0
P3(t)2 dt−

∑
n6X

P3(n)2 =
3V 2

3 X 2

8
−

3V3

2

X−1∑
n=1

P3(n)n1/2
+O(X 37/32+ε). (9.3)

It remains to estimate the partial sum
∑

n6X P3(n)
√

n.
To estimate this series, we again use Perron’s formula (in the form given in

[MV06, Theorem 5.2 and Corollary 5.3]), giving

∑
n6X

P3(n)
√

n =
∫ σ0+iT

σ0−iT
D
(

s −
1
2
, P3

)
X s

s
ds +R (9.4)

where σ0 = 2+ 5
32 + ε for a small ε > 0, T = X δ for a small δ > 0 to be specified

later, and where the remainder term can be estimated by

R�
∑

X/2<n<2X
n 6=X

P3(n)
√

n min
(

1,
X

T |X − n|

)
+

Xσ0

T

∑
n>1

P3(n)
√

n
nσ0

.

By Heath-Brown’s estimate, we can trivially bound the remainder term by R �
X 2+5/32+ε−δ log X .

It follows from the decomposition (8.6) that shifting the line of integration
in (9.4) to Re(s) = (1 + 2ε) passes a pole at s = 2 with residue πX 2/2 and
no other poles. It only remains to bound the growth of the shifted integral.

From (8.6), it is clear that D(s, P3) has polynomial growth in vertical strips. But
unlike in Section 7, we must explicitly understand the rate of polynomial growth.
We do this by bounding each term in the decomposition (8.6).

First, we estimate the integral

1
2π i

∫
(−1+ε)

L(s − 1− z, θ 3)ζ(z)
Γ (z)Γ (s − 1/2− z)

Γ (s − 1/2)
dz
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for Re s = 1 + 2ε. Note that L(s, θ 3) is uniformly bounded in its convergent
half-plane. By the functional equation for ζ(z) and Stirling’s approximation, we
estimate the integrand to be bounded by

(1+ |s|)−2ε(1+ |s − z|)1+εe−(π/2)(|z|+|s−z|−|s|).

When |z| < |s|, there is no exponential contribution and the integrand is bounded
by (1+|s|)1−ε on an interval of length O(|s|). When |z| > |s|, there is exponential
decay in the integrand and so the contribution to the integral from this domain is
O((1+ |s|)1−ε). Therefore

1
2π i

∫
(−1+ε)

L(s − 1− z, θ 3)ζ(z)
Γ (z)Γ (s − 1/2− z)

Γ (s − 1/2)
dz �ε (1+ |s|)2−ε .

Coupled with the Phragmén–Lindelöf convexity estimates

ζ
(

1
2 + 2ε + i t

)
� (1+ |t |)1/4, ζ(−1+ 2ε + i t)� (1+ |t |)3/2,

L(2ε + i t, θ 3)� (1+ |t |)1, L(−1+ 2ε + i t, θ 3)� (1+ |t |)5/2,

this implies that D(s − 1
2 , P3)� (1+ |s|)2−ε on the line Re s = 1+ 2ε.

Thus the shifted integral satisfies the bound

1
2π i

∫ 1+2ε+iT

1+2ε−iT
D
(

s −
1
2
, P3

)
X s

s
ds � X 1+2δ+2ε log X

and the integrals over the top and bottom portions of the rectangular contour are
bounded by O(X 2+5/32+ε−δ

+ X 1+2δ+2ε+δε).
Assembling the terms from Perron’s formula, we find that∑

n6X

P3(n)
√

n =
π

2
X 2
+ O(X 2+5/32−δ+ε log X)+ O(X 1+2δ+2ε−δε).

Choosing δ = 37/96 shows that∑
n6X

P3(n)
√

n =
π

2
X 2
+ O(X 2−11/48+2ε)

for any ε > 0.
The theorem now follows from Theorem 7.1.
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Appendix A. Gupta and Zagier

To understand the diagonal part of Wk(s), we must apply a Rankin–Selberg
integral to a function which is not of rapid decay. For level one forms,
Zagier [Zag81] showed that one can make some sense of Rankin–Selberg
integrals with functions not of rapid decay by truncating the standard fundamental
domain at height T , a technique now referred to as Zagier regularization. This
paper requires an analogue of Equation (19) of [Zag81], which gives conditions
under which the normalized Rankin–Selberg integral can be recognized as an
inner product of the form 〈F, E(·, s)〉.

Performing Zagier’s argument over a congruence subgroup is tedious.
In [DG00b, DG00a], Gupta shows how to generalize Zagier’s results to
congruence subgroups without using Zagier normalization. Instead, Gupta
decomposes the Rankin–Selberg integral into pieces and gives direct
meromorphic continuation to the decomposition. However, Gupta does not
provide a set of conditions under which one can recognize the Rankin–Selberg
integral directly as an inner product of the form 〈F, E(·, s)〉.

In this appendix, we show how to prove the analogous statement to [Zag81,
Equation (19)] for functions not of rapid decay over congruence subgroups, using
the methods of Gupta. We first give a brief description of the primary ingredients
in Gupta’s proof. We then show how to modify Gupta’s proof in order to recognize
the inner product against an Eisenstein series. For completeness, we state this for
a general congruence subgroup and adapt our notation in place of the notation
of [DG00b]. Note that Gupta issued a corrigendum [DG00a] affecting some of
the argument and notation.
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Let a1 = ∞, a2, . . . , ah denote the inequivalent cusps of a congruence
subgroup Γ . As above, let Γai denote the stabilizer of the cusp ai . For each
cusp ai , fix a matrix σi ∈ SL2(Q) which induces an isomorphism Γai

∼= Γ∞ via
conjugation and satisfies σi∞ = ai . Just as in Γ0(4), to each cusp we associate
an Eisenstein series

Eai (z, s) =
∑

γ∈Γai \Γ

Im(σ−1
i γ z)s .

Assemble the Eisenstein series into the vector EE(z, s) = (Ea1, . . . , Eah )
T . The

Eisenstein series satisfy a functional equation EE(z, s) = Φ(s) EE(z, 1− s), where
Φ(s) = (φi j(s))h×h is the scattering matrix consistent with the formula (4.4).
Additional details concerning EE(z, s) and Φ(s) can be found in the discussion
leading up to in [Kub73, Theorem 4.4.2].

Let F(z) denote a continuous function invariant under the action of Γ , and let
fai (z) denote the Fourier expansion of F at the cusp ai , given by

fai (z) = F(σi z) =
∑
m∈Z

a(ai )
m (y)e(mx).

Further, suppose that

fai (z) = ψai (y)+ O(y−N ) (for all N as Im(z)→∞),

where ψai is a function of the form

ψai (y) =
`∑

j=1

ci j

ni j !
yαi j logni j y.

(We note that the corresponding equation [DG00b, (3)] omits the factorial.)
Denote the largest exponent of polynomial contribution byΘ = max(αi j). Finally,
define the Rankin–Selberg transform of F at ai as

Rai (F, s) =
∫
∞

0
(a(ai )

0 (y)− ψai (y))y
s−2 dy

=

∫
∞

0

∫ 1

0
(F(σi z)− ψai (y))y

s dx dy
y2

.

The main theorem of [DG00b] states that Rai (F, s) has a meromorphic
continuation to all s in which the only potential poles are at s = 0, 1, αi j ,

1 − αi j , and ρ/2, where αi j ranges over i and the 1 6 j 6 ` in the definition
of ψai (y), and ρ ranges over the nontrivial zeros of the Riemann zeta function.
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Further, Rai (F, s) satisfies a functional equation relating it to the Rankin–Selberg
transforms at the other cusps.

To prove this for a fixed cusp a, Gupta decomposes Ra into the sum

Ra(F, s) = Ia,K (s)+ Ia,F(s)+ Ia,F,ψ(s)+ Ia,ψ(s), (A.1)

in which

Ia,K (s) =
∫∫

K
F(z)Ea(z, s)

dx dy
y2

Ia,F(s) =
h∑

i=1

∫∫
D

F(σi z)(Ea(σi z, s)− eia(y, s))
dx dy

y2

Ia,F,ψ(s) =
h∑

i=1

∫∫
D
(F(σi z)− ψai (y))eia(y, s)

dx dy
y2

Ia,ψ(s) =
h∑

i=1

∫∫
D
ψaiφia(s)y1−s dx dy

y2
−

∫∫
D̃
ψays dx dy

y2
,

where D is the typical fundamental domain for SL2(Z), D̃ is the complement of
D in the vertical strip, {x + iy ∈ H : |x | 6 1/2, |z| < 1}, K is a compact set
such that the fundamental domain DΓ = K

⋃
σiD, and eia(y, s) is the constant

Fourier coefficient of Ea(σi z, s). (The corrigendum [DG00a] to the original paper
mainly concerns the compact set K in the decomposition and the corresponding
integral term Ia,K ).

Most of Gupta’s argument goes into proving (A.1). As Ia,F(s) and Ia,F,ψ(s)
are chosen to converge locally normally for all s and Ia,K (s) is a well-behaved
integral over a compact region save for isolated poles due to the Eisenstein
series, it is straightforward to see that the remainder of the polar behaviour (and
meromorphic continuation) of Ra(F, s) can be understood through Ia,ψ . However,
when max(αi j) <

1
2 , the individual components of Ia,F and Ia,F,ψ(s) converge, and

it is possible to exploit cancellation by rearranging these terms. We now deviate
from Gupta’s proof.

LEMMA A.1. The following are equivalent.

(1)
∑h

i=1

∫∫
D F(σi z)Ea(σi z, s)(dx dy/y2) converges.

(2)
∑h

i=1

∫∫
D F(σi z)eia(y, s)(dx dy/y2) converges.

(3)
∑h

i=1

∫∫
D ψai (y)eia(y, s)(dx dy/y2) converges.

Convergence refers to local normal convergence.
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Proof. The equivalence (1) ⇐⇒ (2) follows from the fact that Ia,F(s) converges
for all s away from isolated poles of Ea. Similarly, (2) ⇐⇒ (3) follows from
the convergence of Ia,F,ψ(s) for all s away from isolated poles of Ea.

LEMMA A.2. Define Θ = max(αi j) and suppose that Θ < 1
2 . Then the integrals

h∑
i=1

∫∫
D
ψai (y)eia(y, s)

dx dy
y2

converge locally normally if Θ < Re(s) < 1 − Θ and if s is not a pole of any
entry φia of the scattering matrix.

Proof. In terms of the entries of the scattering matrix Φ(s), the constant
coefficient of the Eisenstein series can be written as

eia(y, s) = δ[ai=a]y
s
+ φia(s)y1−s . (A.2)

Therefore it suffices to consider the convergence of the integrals

I1 =

∫∫
D
ψa(y)ys dx dy

y2
, I2 = φia(s)

∫∫
D
ψai (y)y

1−s dx dy
y2

.

The scattering matrix element φia(s) is independent of y and can be taken outside
of the integral. Since poles of φia(s) give poles of I2, we suppose for the remainder
of the proof that s is not a pole of any φia(s).

The fundamental domain D can be split into the region [−1/2, 1/2] × [1,∞)
and the compact region

Ω := {x + iy : |x | 6 1/2; y 6 1; |z| > 1}. (A.3)

Since the integrands of I1 and I2 are continuous and bounded, both integrals
converge on Ω . Further, the integrands are independent of x . Thus it suffices to
consider convergence of the integrands over the halfline y > 1.

Expanding and substituting ψa shows that I1 converges if and only if the
integrals ∫

∞

1

`∑
j=1

ci j

ni j !
ys+αi j−1 logni j y

dy
y
=

`∑
j=1

ci j

(s + αi j − 1)ni j+1

converge (where i in this expression is chosen so that ai = a). The j th integral
converges exactly when Re(s) < 1 − αi j , so that for Re(s) < 1 − Θ the above
equality holds. Similarly, expanding ψai in I2 shows that I2 converges absolutely
when Θ < Re(s) (and has poles of order ni j at s = αi j ).
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Suppose now that the ψai satisfy Θ := max(αi j) <
1
2 , and note that

〈F, Ea(·, s)〉 =
∫∫

K
F(z)Ea(z, s)

dx dy
y2
+

∫∫
D

h∑
i=1

F(σi z)Ea(σi z, s)
dx dy

y2
.

Then for all s away from poles of entries of the scattering matrix Φ(s) and
satisfying Θ < Re s < 1−Θ , we can simplify the decomposition in (A.1) using
Lemmas A.1 and A.2. After collecting 〈F, Ea〉 from Ia,K and the first term in Ia,F ,
and cancelling the second term from Ia,F with the first term of Ia,F,ψ , it follows
that

Ia,K + Ia,F + Ia,F,ψ = 〈F, Ea〉 −

h∑
i=1

∫∫
D
ψa(y)eia(y, s)

dx dy
y2

.

Using (A.2) to expand eia(y, s) and adding Ik,ψ shows that

Ra(F, s) = 〈F, Ea〉 −

∫∫
D
ψa(y)ys dx dy

y2
−

∫∫
D̃
ψa(y)ys dx dy

y2
.

Note that in this expression, the integral over D̃ is not in the region of convergence,
and we are referring to the analytic continuation of the integral there.

The integrals over D and D̃ cancel completely. To see this, letΩ be as in (A.3).
For the first integral, we see from the evaluation of I1 in Lemma A.2 that∫∫

D
ψa(y)ys dx dy

y2
=

`∑
j=1

ci j

(s + αi j − 1)ni j+1
+

∫∫
Ω

ψa(y)ys dx dy
y2

.

On the other hand,∫∫
D̃
ψa(y)ys dx dy

y2
=

∫ 1

0

∫ 1/2

−1/2
ψa(y)ys−1 dx

dy
y
−

∫∫
Ω

ψa(y)ys dx dy
y2

= −

`∑
j=1

ci j

(s + αi j − 1)ni j+1
−

∫∫
Ω

ψa(y)ys dx dy
y2

.

Thus the two integrals cancel. The same proof applies to F at each cusp a, and
we have proved the following proposition.

PROPOSITION A.3. Continuing with the notation above, for s satisfying Θ <

Re(s) < 1−Θ , we have that

Ra(F, s) = 〈F(σa·), Ea(·, s)〉.
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For our application, we take F = V on Γ0(4). Recalling the proof of Lemma 3.1,
we have that ψ∞(y) and ψ0(y) consist only of constant multiples of y1−k/2, and
thus Θ = 1− k/2. A short computation (very similar to the classic Rankin–
Selberg computation) shows that

R∞(V, s) = R0(V, s) =
Γ (s + k/2− 1)
(4π)s+k/2−1

∞∑
m=1

rk(m)2

ms+k/2−1
. (A.4)

Note that one should expect that R∞(V, s) = R0(V, s), since θ |σ0(z) = θ(z).
Applying Proposition A.3 gives the following corollary.

COROLLARY A.4. For s satisfying 1− k/2 < Re(s) < k/2, we have

Γ (s + k/2− 1)
(4π)s+k/2−1

∞∑
m=1

rk(m)2

ms+k/2−1
= 〈V, E∞(·, s)〉 = 〈V(σ0·), E0(·, s)〉.

This function has meromorphic continuation to the plane with potential poles at
s = k/2, 1, 0, 1 − k/2, and at zeros of ζ(2s), and satisfies a functional equation
of shape s 7→ 1− s.

REMARK A.5. It also follows that

Γ (s + k/2− 1)
(4π)s+k/2−1

L(s, θ k
× θ k) = ζ(2s)〈V, E∞(·, s)〉,

analogous to the relation for a typical Rankin–Selberg convolution L(s, f × g)
between cusp forms. For this reason, we call L(s, θ k

× θ k) the Rankin–Selberg
convolution of θ k and θ k .
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[Sie06] W. Sierpiński, ‘O pewnem zagadnieniu z rachunku funckcyi asymptotycnych’,
Prace mat.-fiz (1906), 77–118.

[Vin63] I. M. Vinogradov, ‘On the number of integer points in a sphere’, Izv. Akad. Nauk
SSSR Ser. Mat. 27 (1963), 957–968.

[Zag81] D. Zagier, ‘The Rankin–Selberg method for automorphic functions which are not
of rapid decay’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1982), 415–437.
1981.

https://doi.org/10.1017/fms.2018.26 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.26

	Introduction
	Decomposition of D(s,Sk ×Sk)
	Meromorphic continuation of Zk(s,w)
	Modifying 69640972 θk(z) 86418188 2 Im(z)k/2 to be square-integrable
	Spectral expansion
	Meromorphic continuation
	Nonspectral part.
	Discrete part of the spectrum.
	Continuous part of the spectrum.


	Analytic behaviour of Wk(s)
	Diagonal part
	Discrete part
	Continuous part
	Nonspectral part

	Analysis of D(s, Pk ×Pk)
	Examination of poles and their cancellation

	Smooth second moment
	Sharp second moment
	Laplace transform
	Improving the integrated mean square estimate
	Gupta and Zagier
	References

