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Abstract

Social rewards (e.g. smiles) powerfully shape human behavior, starting from early childhood.
Yet, the neural architecture that enables differential processing of social and nonsocial rewards
remains largely unknown. Few previous studies that directly compared social vs nonsocial
stimuli have used stimuli that have low ecological validity or are not matched on low-level
stimulus parameters – limiting the scope of inference. To address this gap in knowledge, social
and nonsocial reward images taken from the real world were matched on valence, arousal, and
key low-level stimulus properties and presented to 37 adults in a functional magnetic resonance
imaging (fMRI) study. Individual self-reported preference for social images was associated with
the functional connectivity between the left anterior insula (LAI) and medial orbitofrontal
cortex (mOFC), as well as that between the left Fusiform Gyrus (LFG) and the Anterior
Cingulate Cortex (ACC). Autistic traits negatively modulated LAI – mOFC connectivity and
LFG – ACC connectivity. Reduced functional connectivity between these regions may
contribute to the lower social reward responsivity in individuals with high autistic traits, as also
noted from their lower valence ratings to social rewards. This study provides evidence for a new
experimental paradigm to test social reward processing at a behavioral and neural level, which
can contribute to potential transdiagnostic biomarkers for social cognitive processes.

1. Introduction

Social rewards such as smiles are crucial components of social interactions, act as powerful
reinforcers, and help shape human behavior and create rapport. Studies in young infants have
shown how most children prefer to orient to a face/voice compared to comparable nonsocial
stimuli (Morton & Johnson, 1991; Vouloumanos et al., 2010). Studies in adults have shown a
similar preference for social over nonsocial rewards (Chakrabarti et al., 2017; Fletcher-Watson
et al., 2008). The preference for social over nonsocial rewards has been tested extensively using
behavioural and eye-tracking paradigms (Hedger et al., 2020; Frazier et al., 2017). In contrast,
comparatively few studies have directly investigated the neural processing of social vs nonsocial
rewards.

The reward system is one of the most-studied networks of brain regions. Insights from
electrophysiological studies in rodent and non-human primates as well as from functional
magnetic resonance imaging (fMRI) studies in humans have revealed the importance of a few
key nodes in this network, that include themedial orbitofrontal cortex (mOFC), ventral striatum
(VS), and amygdala (Haber & Knutson, 2010). There are fiber tracts between the VS and the
mOFC (Haber et al., 2006; Lehéricy et al., 2004). The VS also receives input from the amygdala
(Friedman et al., 2002; Fudge et al., 2002; Russchen et al., 1985) in primates, which plays a key
role in tagging salience of emotional (Anderson & Phelps, 2001) and rewarding stimuli (Mahler
& Berridge, 2009). The majority of studies on the neuroanatomy of reward processing comes
from the processing of nonsocial rewards such as food, chocolate, or money.

Studies that have explored social reward processing have found social rewards to activate a
similar set of regions to those described earlier (Fareri, Chang, & Delgado, 2012; Fareri, Chang, &
Delgado, 2015; Izuma et al., 2008; Lin, Adolphs, et al., 2012; Wake & Izuma, 2017; Zink et al.,
2008). The VS, mOFC, and amygdala have been shown to respond to social rewards, including
smiles (Scott-Van Zeeland et al., 2010), positive feedback (Izuma et al., 2008), cooperation (Elliott
et al., 2006), social status (Zink et al., 2008), charitable giving (Kuss et al., 2013), and interacting
with friends (Güroğlu et al., 2008). In an early study, mOFC activity in response to monetary
reward was increased by co-operation to win this money (Elliott et al., 2006), suggesting that this
activity could constitute a common neural currency for both social and nonsocial rewards
(Grabenhorst et al., 2010). More recently, the temporoparietal junction (TPJ) has been shown to
modulate social value processing in the ventromedial prefrontal cortex (Strombach et al. 2015). In
addition, the anterior cingulate cortex (ACC) responds to rewards and punishment for
conspecifics, supporting its role in social reward processing (Schneider et al., 2020).
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Most studies mentioned above presented social rewards in
isolation, which do not allow for a direct comparison of social and
nonsocial reward processing within the same experimental
paradigm (but see Rademacher et al., 2014; Scott-Van Zeeland
et al., 2010 for notable exceptions). In recent years, a class of
paradigms comparing social vs nonsocial rewards directly involves
the use of the monetary incentive delay and the social incentive
delay task. (Gu et al., 2019). This paradigm requires participants to
make and remember associations between shapes/ symbols with
reward outcomes and primarily indexes the anticipatory phase of
reward processing. In contrast, paradigms directly presenting
images of social and nonsocial rewards are likely to primarily index
the consummatory phase of reward processing. In the minority of
studies that formally compared responses to images of social vs
nonsocial rewards, the stimuli either have low ecological validity
(e.g. point-light figures) or are not matched for their low-level
stimulus properties – which poses challenges for interpretation
(Saygin et al., 2004; Sasson et al., 2008).

Differences in individual responsivity to social rewards exist
across the population but can be particularly notable in conditions
such as autism. Autistic individuals often show reduced
responsivity to social rewards in lab-based assessments (Hedger
et al., 2020). Lower activity in reward-related brain regions such as
mOFC and VS to social rewards has also been reported in autistic
compared to non-autistic adults (Kohls, Schulte-Rüther, et al.,
2013; Scott-Van Zeeland et al., 2010) but see Dichter et al. (2012)
for an exception. A meta-analysis of neuroimaging studies
reported differential reward system responses to both social and
nonsocial rewards in autistic individuals (Clements et al., 2018).
Similar to the studies on non-autistic individuals, the majority of
studies included in this meta-analysis examined social or nonsocial
reward processing in isolation.

To address the gaps in the literature, the current study aimed to
develop and test a new stimuli set and paradigm to investigate
neural processing of social vs. nonsocial rewards, when these
different categories of stimuli are closely matched on stimulus
parameters. The stimuli were drawn from well-characterized real-
world images and hence have higher ecological validity than
schematic faces/ posed expressions. However, it is worth noting
that all the pictures may not evoke strong subjective feelings of
reward. To this end, our use of the term “reward” is more aligned
with the definition of emotion proposed by Ralph Adolphs – in
proposing that it is a functional state that can enable subjective
feelings of pleasure, as well as behavioral changes (Fox et al., 2018).
A secondary aim was to investigate if individual differences in
functional connectivity between key brain nodes involved
in reward and social processing was associated with autistic traits.
In light of the previous studies on autism and social rewards, we
hypothesized that individuals with high autistic traits will have
reduced preference for social rewards, and have reduced functional
connectivity between brain regions involved in social reward
processing (Chevallier et al., 2012)

2. Materials and methods

2.1. Participants

40 participants completed the study from the local population in
and around the university. Two participants were excluded from
the analysis due to a programming error and one participant was
removed due to excessive movement (see data analysis), leaving

37 participants (19 females; mean age= 22.89 years, S.D.= 5.02
years, min= 18, max = 40). All participants had normal or
corrected to normal vision and completed the 50-item Autism
Spectrum Quotient with binarized response format (AQ; Baron-
Cohen et al., 2001). The mean AQ score was 14.3 (SD = 7.74), the
scores ranged from 3–33 and a higher score reflects more autistic
traits. Participants were not asked about whether they had a clinical
diagnosis of any neurodevelopmental conditions, such as autism.
Autistic traits are continuously distributed between those with and
without a diagnosis (Robinson et al., 2011).

2.2. Design and materials

Forty pairs of social and nonsocial reward images (images can be
requested from the authors) were taken from the International
Affective Picture System (Lang et al., 1999) and downloaded from
the website Flickr. Social reward images included one or more
humans (e.g. happy individuals), while nonsocial reward images
included rewarding nonsocial objects (e.g. food and scenery). The
social images comprised happy children and adults in different
real-world contexts ranging from weddings, sports events, social
events, and family photographs. Half of the nonsocial images
included food, and the remaining images were of scenery, vehicles,
money, and one piece of jewellery.

The images were modified with ImageJ (Abràmoff, 2004) and
Adobe Photoshop to match them for size and multiple image
parameters (e.g. contrast and luminance). The Koch toolbox
(Walther & Koch, 2006) was used to calculate image saliency for
each pair of images in a previous paper, and there was no mean
difference in luminosity, root mean square (RMS) contrast (local
and global), as well as Koch toolbox metric of image saliency
between social and nonsocial images (Chakrabarti et al., 2017).
Previous studies using these stimuli have demonstrated greater
gaze fixation for social over nonsocial images using eye-tracking,
and quicker subjective awareness of social over nonsocial stimuli
using continuous flash suppression (Chakrabarti et al., 2017; Gray
et al., 2018; Hedger et al., 2018, 2020).

All stimuli were displayed using E-prime 2.0 (Psychology
Software Tools, PA, USA) on a ViewSonic VE510s monitor
(ViewSonic Corporation, California, USA).

2.3. Procedures

Participants performed a rating task outside the scanner and a
fMRI task. During the rating task, participants were presented with
an image to give a valence rating on a 9-point Likert scale using the
manikins from (Bradley & Lang, 1994). Participants were
instructed to rate how happy the images were by clicking one of
9manikins conveying a range of emotions from unhappy to happy.

During the fMRI task, the social and nonsocial images were
presented in pseudo-randomized blocks of four images of the same
condition (social/ nonsocial), followed by a block of four
subsequent fixation crosses. The order of presentation of social
and nonsocial images was randomized within these constraints.
Each image was presented for 4 seconds, fixation crosses for
3 seconds, followed by 1 second of blank screen. To maintain
attention to the task, participants were required to press a button
with their right index finger during each presentation of an image
or fixation cross. The 50-itemAutismQuotient questionnaire (AQ;
Baron-Cohen et al., 2001) was completed online after the scanning
session.
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2.4. Valence ratings

Across the whole sample, t-tests were used to test a) whether the
images are perceived as rewarding and b) that social images were
not significantly different in their reward value to nonsocial
images. At an individual level, mean valence ratings were
calculated separately for social reward images and nonsocial
reward images. Pearson’s r was computed for correlations between
AQ and these mean ratings to test whether autistic traits were
associated with diminished reward value for social rewards.
Additionally, a composite metric for quantifying individual
preference for social vs. nonsocial rewards (i.e. sociality bias)
was computed by subtracting nonsocial from social mean valence
ratings. Valence ratings that were 3 or more SDs away from the
mean across both social and nonsocial images were removed as
outliers for each participant.

2.5. Regions of interest

Based on our a priori hypotheses, we selected our specific regions of
interest (ROIs) based onmeta-analyses of sociality- (Atzil et al., 2023)
and reward-related (Liu, et al., 2011) brain regions. The masks for
sociality-related regions were defined functionally by the activation
maps of Atzil et al.’s multilevel peak kernel density analysis on the
contrast: [All social stimuli > No social stimuli] (bilateral amygdala,
bilateral FG, and right TPJ, Fig. 1A). The masks for reward-related
regions were defined functionally by making 10mm spheres centered
on coordinates of brain areas activated by reward outcome (bilateral
VS: [12, 10 −6] and [−10 8 −4], and one mask made of two
overlapping spheres of bilateral mOFC: [−2 56 −6] and [2 48 −14],
and ACC [8 24 32], Fig. 1B) reported in Liu et al.

2.6. fMRI data acquisition and preprocessing

Scans were conducted using a 3T Siemens TIM Trio MRI scanner
with 12-channel head coil. One run of 322 volumes was measured
per participant using a T2*-weighted echo-planar sequence [slice
thickness: 3mm, no gap, 37 slices, repetition time (TR): 2s, echo time
(TE): 30ms, echo spacing: 0.53ms, generalized autocalibrating
partially parallel acquisitions (GRAPPA) acceleration factor: 2, flip
angle: 90°, matrix: 64 × 64, field of view (FOV): 192 mm, voxel size:
3.0 mm × 3.0 mm × 3.0 mm] and individual high-resolution T1-
weighted anatomical data (MPRAGE sequence) were acquired (TR:
2.2, TE: 2.9, FOV: 250, matrix: 256 × 256, sagittal plane, slice
thickness: 1mm, 176 slices, resolution: 1.0mm× 1.0mm× 1.0mm).
The phase and magnitude images for the construction of the field
map were collected with the same positions and dimensions as the
functional scans [slice thickness: 3mm, no gap, 32 slices, TR: 400ms,
TE: 5.19 and 7.65ms, flip angle: 60°, matrix: 64× 64, FOV: 192mm,
voxel size: 3.0 mm × 3.0 mm × 3.0 mm].

The data were then further preprocessed and analyzed using
MATLAB 2024b and the software package SPM25 (www.fil.ion.
ucl.ac.uk/spm). Preprocessing consisted of slice-timing correction,
realignment for motion correction, unwarping with the field map
in the first and second order for rotations along the x and y axis,
and coregistration of the structural image to the mean realigned
functional image. Structural images were segmented into gray
matter, white matter, cerebrospinal fluid, bone, soft tissue, and air/
background with the “New Segment” module (Ashburner &
Friston, 2005). A group anatomical template was created with
DARTEL (Diffeomorphic Anatomical Registration using
Exponentiated Lie algebra; Ashburner, 2007) toolbox from the
segmented gray and white matter images. Transformation

parameters for structural images were then applied to functional
images to normalize them to the brain template of the Montreal
Neurological Institute (MNI) supplied with Statistical Parametric
Mapping (SPM). Functional images were spatially smoothed
with a kernel of 6 mm full-width-at-half-maximum after
normalization.

2.7. fMRI mass univariate GLM analysis

Two participants were removed due to programming error: blocks
were presented in an entirely random order to the first two
participants, resulting in clusters of 5 blocks of the same stimulus
type in a row for both. The block order of the remaining
participants was pseudo-randomized so that half the participants
received one order of social and nonsocial blocks, whereas the
other received the reversed order. Due to the difference between
the block structure in the first two participants and the remaining
38, these two participants were not included in the analysis. One
further participant’s data was removed due to excessive movement,
having moved more than 3 mm between two volumes, leaving 37
participants.

Statistical parametric maps were calculated with multiple
regressions of the data onto a model of the hemodynamic response
(Friston et al., 1995). The first level general linear model analyses

Figure 1. Predefined regions of interest. A. Axial sections at MNI z = –18 (left) and
z= 7 (right) showing ROIs defined functionally by the activation maps of Atzil et al.’s
multilevel peak kernel density analysis: left amygdala (red), right amygdala (blue), left
FG (green), right FG (magenta), and right TPJ (yellow). B. Sections at MNI x = 0 (upper
right), y= 9 (upper left), and z= 32 (lower) showing ROIs defined functionally by
making 10 mm spheres centered on coordinates of brain areas activated by reward
outcome reported in Liu et al.: left VS (red) and right VS (blue)], mOFC (green), and ACC
(magenta).
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contained two psychological regressors of interest for “Social” and
“Nonsocial” conditions in the design matrix. Each block in each
condition lasted 16 seconds. Psychological regressors were
convolved with the canonical hemodynamic response function.
Six motion parameters were included as nuisance regressors. A
high-pass filter with a cut-off period of 128 s was applied, and the
temporal autocorrelation was accounted for with the AR(1) option.
For each ROI, the first eigenvariate of the contrast [social –
nonsocial] for each participant were extracted with MarsBaR
(version 0.45).

2.8. fMRI mass univariate PPI analysis

In order to test whether the sociality-and reward-associated brain
activity in ROIs is functionally coupled, a generalized
Psychophysiological Interaction analysis (gPPI toolbox v13.1;
Friston et al., 1997; McLaren et al., 2012) was performed. ROI’s
from Atzil’s et al. (2023) were defined as the seed region, while
ROIs from Liu et al. (2011) others were defined as target regions.
The vector of neural response was estimated by deconvoluting the
first eigenvariate of the BOLD signal extracted from the seed
region. The interaction vector of each condition was calculated as
the product of the estimated neural response vector and the
condition vector’s ON times.We then performed the general linear
model analysis for the whole brain, including the interaction
vectors, the condition vectors, and the estimated neural response
vector of the seed region as regressors. For each target region, the
first eigenvariate of the univariate contrast between the interaction
term of the social condition and that of the nonsocial condition for
each participant were extracted with MarsBaR (version 0.45) and
used for the group-level one-sample t-test. To test whether autistic
traits modulated the functional connectivity between brain activity
associated with social stimuli processing and reward value
responsiveness, AQ was correlated with the contrast values of
the target regions in the gPPI analysis.

For the purposes of completeness, we provide whole-brain
analyses in the supplementary materials. Family-wise error
corrected p< 0.05 at the peak level, cluster size≧ 5, was used as
the significant threshold for whole-brain results.

Participants were identified as correlational outliers if their
Cook’s D value was greater than 4/35 (i.e. 4/(N-1-K)) and were
removed from the specific correlation that they were outliers for.

All analyses use 1-tailed p-values to reflect the directional
nature of the hypotheses that: autistic traits will be associated with
reduced sociality bias and reduced connectivity between social and
reward regions; sociality bias will be associated with increased
connectivity between social and reward regions. Bootstrapped
confidence intervals with replacement based on 10,000 repetitions
are included for all correlations to address concerns about small
sample sizes. Holm–Šidák corrections for multiple testing are
applied to correlations between sociality bias and connectivity for
each pair of regions (see supplementary materials 2).

3. Results

3.1. Rating task

T-tests of the mean ratings of the images were conducted to test the
assumption that the images were similarly pleasant to participants
in this sample. No significant difference between social and
nonsocial was found across the whole sample (t(36)= .47, p= .643,
95% CI [−0.3, 0.18], d = .08). One sample t-tests found that the
mean ratings for social (M = 6.47, SD=.69, t(36)= 13.01, p < .001,

95% CI [6.24, 6.69], d= 2.14) and nonsocial images (M=6.52,
SD=.63, t(36)= 14.66, p< .001, 95% CI [6.31, 6.73], d= 2.41) were
significantly above the neutral rating of 5, suggesting that the
participants found the images rewarding. Against expectations,
some participants rated some images as unpleasant (less than 5),
but this was only true for 5.45% of social images and 4% of
nonsocial images across all participants.

AQ correlated negatively with valence ratings of social rewards
(r(32) = −.49, p = .001; bootstrap CI: [−.68; −.3]) but no such
pattern was seen for valence ratings of nonsocial rewards (r(33) =
−.022, p= .901; bootstrap CI: [−.26; .23]). The negative association
between AQ with sociality bias was significant (r(35) = −.36,
p = .016; bootstrap CI: [−.54; −.19]), consistent with autistic traits
being associated with reduced preference for social than nonsocial
images (see Fig. 2).

3.2. Brain data

3.2.1. Whole-brain GLM results
At the whole brain level, the following regions showed significantly
stronger activity in the social than in the nonsocial condition:
bilateral amygdala, right fusiform gyrus, right medial orbitofrontal
cortex (gyrus rectus), and bilateral temporo-occipital junction.
Bilateral fusiform gyrus, visual cortex, and left lateral frontopolar
cortex were more active in the nonsocial than in the social
condition (Table 1). No significant result was found in the whole-
brain correlation of the social-nonsocial contrast values with AQ or
social bias.

3.2.2. Brain-behavior relationship
After applying Holm–Šidák corrections to alpha thresholds to
address multiple testing, sociality bias was positively associated with
functional connectivity from the LFG to ACC (r(30) = .64,
p< .001; bootstrap CI: [.36; .78]) and the LAI tomOFC (r(34)= .52,
p < .001; bootstrap CI: [.35; .66]). AQ was significantly associated

Figure 2. Scatterplot of associations between autistic traits measured using the
Autism Spectrum Quotient (AQ) and social and nonsocial valence ratings. Note: These
results visualize how autistic traits (AQ) are negatively associated with valence ratings
for social (r(32) = –.49, p = .001) but not nonsocial images (r(33) = –.02, p = .9).
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with both LFG to ACC (r(31) = −.3, p = .04; bootstrap CI: [−.54;
−.05]) and LAI to mOFC connectivity (r(32) = −.45, p = .004;
bootstrap CI: [−.67; −.15]).

Mediation analysis found that LFG to ACC connectivity fully
mediated the association between AQ and sociality bias as the
indirect effect was significant (b = −.015, p = .044, 95%
bootstrapped confidence interval lower limit/LL = −.035, 95%
bootstrapped confidence interval upper limit/UL < −.001) but the
direct effect was not significant (b = −.005, p = .689, bootstrapped
LL = −.035, UL = .019; See Fig.3). Mediation analysis found that
LAI to mOFC connectivity fully mediated the association between

AQ and sociality bias as the indirect effect was significant
(b = − .022, p = .031, bootstrapped LL = −.049, UL = −.002) but
the direct effect was not significant (b=−.01, p= .551, LL=−.056,
UL = .022; See Fig.4).

4. Discussion

We compared response to social vs nonsocial rewards in a sample
of young adults using self-report and fMRI. We found that
behavioral preference for social over nonsocial rewards
(i.e. sociality bias) was positively associated with functional

Table 1. Whole brain results of Social vs. Nonsocial conditions

H Regions Cluster size p (FWE-corr)* T B.A. [x, y, z]

Social > Nonsocial

R Inferior occipital 404 <.001 15.56 37 51, –72, 3

Middle temporal <.001 12.13 37 48, –63, 12

L Middle occipital 285 <.001 11.31 19 –45, –75, 9

Middle occipital <.001 10.97 19 –51, –78, 0

R Fusiform 53 <.001 9.63 37 39, –48, –18

R Amygdala 13 <.001 7.31 – 18, –6, –15

R Superior temporal 18 0.001 7.17 21 51, –9, –15

R Gyrus rectus 11 0.001 7.16 11 3, 54, –21

R Temporal pole 10 0.001 7.07 20 42, 12, –36

L Amygdala 3 0.004 6.49 – –18, –6, –15

Nonsocial > Social

L Fusiform 88 <.001 11.37 37 –27, –48, –18

L Middle occipital 61 <.001 8.12 19 –30, –87, 12

R Fusiform 59 <.001 8.00 37 27, –48, –15

R Middle occipital 27 0.001 7.11 18 30, –81, 9

L Anterior orbital gyrus 9 0.001 7.05 11 –24, 39, –15

* Voxel level FWE-corrected for the whole brain.
Abbreviations: H = hemisphere; L = left; R = right; p = p-value; T = T-value; B.A. = Brodmann area; x, y, z = MNI coordinates.

Figure 3. Grid of scatterplots summarizing the
associations between AQ, LFG to ACC connec-
tivity and sociality bias (in blue), with the indirect
and direct from mediation analysis (in red).
Note: all correlations are significant under non-
parametric Spearman’s rank correlation (see
supplementary analysis 1).
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connectivity of LFG-ACC and LAI-mOFC. We further found that
the relationship between autistic traits and sociality bias is fully
mediated by the functional connectivity of LFG-ACC and
LAI-mOFC.

A large number of behavioral and eye-tracking studies have
previously compared processing of social vs nonsocial stimuli
(Hedger et al., 2020; Frazier et al., 2017). Most of these studies have
been conducted in young children, and included both rewarding
and neutral stimuli. The few studies that have directly compared
social and nonsocial reward processing within a single paradigm
have tested the anticipatory component of reward processing
rather than the consummatory component of it (Ait Oumeziane
et al., 2017; Lin, Adolphs, et al., 2012; Lin, Rangel, et al., 2012;
Spreckelmeyer et al., 2009; Wake & Izuma, 2017; although see
Rademacher et al., 2010). The current study focuses on the
consummatory component of reward processing, by presenting the
social and nonsocial reward stimuli to the participants without
them having to perform any action. The current design thus allows
us to infer the differential neural response to receipt of these
different types of reward, without the impact of trade-offs between
effort minimization and value maximization. Additionally, the
close matching of the social and nonsocial reward stimuli allows us
to make inferences that are less subject to confounds due to
stimulus features such as contrast, luminosity, and saliency.

We found that even when social reward images are matched
on basic stimulus properties, and rated as equally rewarding to
nonsocial reward images across the full sample, autistic traits
were coupled with individual preference for social rewards both
behaviorally and neurally. At a behavioral level, autistic traits
were inversely proportional to the valence ratings for social
reward images. This relationship was not seen for nonsocial
rewards. This observation is consistent with earlier empirical
reports showing a reduced rating of social stimuli or situations by
autistic individuals in lab-based studies (Chevallier et al., 2012;
Sasson et al., 2012). At the neural level, we found that the
functional coupling of LFG-ACC and LAI-mOFC was weaker in
individuals with higher autistic traits. While the role of the
fusiform gyrus in conspecific face and body processing is well
established, a recent study has also identified it as a hub of
expression for genes involved in synaptic transmission as well as

autism (Chen et al., 2022). Neurochemically, an earlier study
reported reduced GABAB receptors in both fusiform gyrus as well
as the ACC – which are involved both in maintaining synapses
and the excitation-inhibition balance in the brain (Oblak et al.,
2010). Functionally, a weaker coupling between fusiform gyrus
and anterior cingulate cortex corresponds to reduced links
between social perceptual encoding and value encoding.
Assuming a certain degree of functional specialization in the
brain, the fusiform gyrus and nearby areas are more involved in
perceptual encoding of stimuli (Naspi et al., 2021) – while the
ACC is arguably involved more in encoding stimulus value (Cai
and Padoa-Schioppa, 2012). This observation is also consistent
with earlier accounts of reduced links between reward and social
processing in autism (Neufeld et al., 2019; Sims et al., 2014).

The LAI-mOFC functional coupling represented another link
between social perceptual and value encoding, which we found to
be negatively modulated by autistic traits and further modulate
social bias. Anterior insula receives interoceptive and nociceptive
afferent input from inner organs and skin (Craig, 2009), and has
long been associated with pain empathy (Lamm et al., 2007, 2009,
Bernhardt and Singer, 2012) and social norm compliance (Bellucci
et al., 2018). Previous studies have investigated the role of
interoception in social cognition (Arnold et al., 2019). For example,
higher interoceptive awareness is associated with less negative
affect after challenging social situations, due to the ability to
properly attribute the physiological response as resulting from the
external social situation, resulting in better emotional regulation in
social situations (Werner et al., 2013). The mOFC is associated
with reward value encoding (Kringelbach, 2005; Rolls et al., 2020).
In mammals, there is direct projection from anterior insula to
orbitofrontal cortex (Mathiasen et al., 2023). In humans, the
coactivation of LAI and mOFC has been associated with the pro-
social behavior of self-impression/reputation management when
being observed by others (Yoon et al., 2021), which was said to be a
behavioral manifestation of allostatic regulatory process, to
prevent homeostatic disturbances accompanied by social threat/
stress/punishment (Slavich et al., 2010). In the present study,
participants showing preference for social rewards had enhanced
functional coupling when viewing social stimuli with human
figures, which might be associated with stronger incentive or

Figure 4. Grid of scatterplots summarizing the associ-
ations between AQ, LAI to mOFC connectivity and
sociality bias (in blue), with the indirect and direct from
mediation analysis (in red). Note: all correlations are
significant under non-parametric Spearman’s rank
correlation (see supplementary analysis 1).
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preparedness for self-impression/reputation management and the
consequential social rewards (Tennie et al., 2010).

Interestingly, the functional coupling of LFG-ACC and LAI-
mOFC fully mediated the association between AQ and the
behavioral preference for social over nonsocial rewards (i.e.
sociality bias). While autism has been associated with reduced
preference for social rewards in several prior studies (Frazier et al.,
2017; and specifically using these stimuli by Hedger et al., 2018),
direct investigations of underlying mechanisms linking neural and
behavioral data have been rare. To this end, the mediation analysis
suggests an indicative neural mechanism to explain the behavioral
observation of reduced preference for social rewards in individuals
with high autistic traits. However, similar to correlations, claims
about causality from mediation in cross-sectional data are more
vulnerable to overlooking causal covariates or confounds than
experimental or longitudinal designs (Rohrer et al., 2022).

Finally, we discuss the results of the whole-brain univariate
contrast for the sake of completeness. These analyses (Table 1)
showed that social condition more specifically activated the right
fusiform gyrus and bilateral amygdala, both of which were
reported as brain regions consistently activated for social stimuli
(Atzil et al., 2023). In addition, the rightmedial orbitofrontal cortex
(gyrus rectus) was more active in the social condition, which meta-
analyses have reported as related to monitoring, learning, and
memory of reward reinforcers (Kringelbach, 2005; Liu et al., 2011).
The results also confirmed the validity of our social reward stimuli
at a neural level.

Some caveats need to be considered while interpreting these
results. First, even though the social reward images are real-world
images – and offer more ecological validity than point light figures
or isolated faces – they are still unrelated to the participant’s
current context. The participant does not interact with these
stimuli. Future studies should aim to improve further on the
ecological validity of social reward conditions by maximizing
sensory richness of stimuli and participant engagement (Stijovic
et al., 2024). Second, the measure of autistic traits used in this study
is a self-report measure, which renders it likely to be influenced by
a number of sociological factors including gender, and culture.
Future studies could consider moving beyond self-report to index
autism-related phenotypic variation in the general population, e.g.
through the use of simple behavioral tasks that pertain to different
domains of the autistic phenotype (Dubey et al., 2024). Third,
larger samples in which there are enough autistic participants
would allow analysis of whether patterns are found equally in both
diagnosed and non-diagnosed samples, or could highlight if there
are qualitative differences in how autistic traits relate to social
reward value between these groups. Finally, the limited sample size
in the current study did not allow for a meaningful examination of
potential sex differences. Future studies with larger, balanced
samples should test the impact of sex and its interaction with
autistic traits on the reported variables.

In conclusion, we compared the consummatory aspect of social
and nonsocial reward processing within a single paradigm in a
sample of young adults, using behavioral and fMRI measures. We
found that greater functional coupling between the LFG and the
ACC was associated with a significantly higher behavioral
preference for social over nonsocial rewards. We further found
that LFG to ACC connectivity fully mediated the association
between autistic traits and the behavioral preference for social over
nonsocial rewards. This result points to a potential neural
mechanism underlying the observation that individuals with high
autistic traits often find social stimuli less rewarding in lab-based

tasks, compared to those with low autistic traits. Future work
should test the generalisability of this mechanism by probing it
further in larger samples and with clinically diagnosed autistic
adults and children.
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