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1. Introduction

Let G be a group of order 2" and x,yeG. We define the commutator [x, y]
as x~1y~1xy. Similarly, if X, Y are subsets of G, then [X, Y] denotes the sub-
group generated by all commutators of the form [x, y\ where x e X, y e Y. Using
this, we may define the lower central series of G inductively by

y2(G) = [G, G] , yi+1(G) = [yt(G), G] , (i ^ 2).

The following results are well known.

THEOREM 1.1. Let G be a group of order 2". Then

(a) there exists a positive integer c (known as the class of G) such that
Vi(G) = 1 (the identity group) if and only if i> c.

(b) c <n (and so we can speak of a group of maximal class in the case
c = n-1).

(c) If n> 3, there are precisely three groups of maximal class (to within
isomorphism). *

The purpose of this paper is to find all the groups of "almost maximal"
class, i.e. when the class is n—2. The main result is

THEOREM 1.2. The number of groups of order 2" and class n — 2 for n > 4 is :*
(a) 15 when n = 5
(b) 22 when n = 6
(c) 26 when n = 7
(d) 24 + 4(n, 2) when n>7, where (n, 2) = 1 for n odd and (n, 2) = 2 for

n even.
Incidentally, theorem 4.3 also lists the groups in the class ECF(m, n,2) of

groups described by Blackburn (1958).

* Throughout this paper, "number of groups" is to be understood to mean "number of
isomorphism classes of groups".
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2. Preliminaries

Most of the concepts and results of this paper may be found in the paper by
Blackburn (1958) and the interested reader is referred to that paper. All groups
in this paper will be assumed to be finite 2-groups (groups of order 2" for some
integer n).

The notation Cr will be used for the abstract cyclic group of order r and if
G, H are two groups G x H will denote the direct product of G and H. In parti-
cular, an elementary abelian 2-group is one of the form C2x C2x ••• x C2.

If G is a group, we will write | G | for the order G, H ^ G to denote that H is a
subgroup of G, H < G to denote that H is a proper subgroup of G (H i=- G) and
H <i G to denote that if is a proper normal subgroup of G. Also if x, y, xu x2, ••• xn

e G, X s G, H g, G and N<i G, then

xy = y~*xy = x[x, }>]

[x1,x2,—,xI>] = [[x1,x2,—,xn-1'],xn] for n > 2

<x1,x2,•••,*„> (or <X» is the subgroup generated by xux2,-~,xn (or X)

#(x) = {zeG|xz = zx} is the centralizer of x

«XX) = {zeG|xz = zx for all xeX}

G~X = {0e

|G:f/| = number of right cosets of H in G

GIN is the group whose elements are the cosets of N

Finally, O(G) denotes the Frattini subgroup of G (the intersection of the maximal
subgroups of G) and Z^G) denotes the i-th term of the upper central series de-
fined inductively by

Z,(G) = Z(G) = V(G), Zi+l(G)IZ;(G) = Z(GIZt(G)) i Z 1

The following results will be used throughout this paper.

THEOREM 2.1. Let G be a group generated by a set X of elements. Ij
= <Y,}'i+1(G)>, then yi+1(G) = <[X, Y],y,+2(G)> /or a// i ^ 1 (wftere

) is interpreted to mean G for this theorem only).

PROOF. See Hall (1933), Theorem 2.81.

THEOREM 2.2. Let G be a group and x, y, zeG. Then
(a) [x>>,z] = [x,z]y[y,z], [x,j;z] = [x,z][x,^] J

(b) Ix-t.y] = [y,x]'~1,[x,y-1] = [y.x-y1

(c) [x,y2] = lx,yYix,y,y\[x
(d) (x>>)2 = x2y2\y,x]{y,x,y\
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THEOREM 2.3. Let G be a group and x,y,zeG. Then

\_x,y,z] = [z,x]w[z,j;]IW[>,z]3'[>,z] where w = [x,y]

PROOF. [w,z] = [x'^^xw^] = \x~l,z~\xv>[y~1xyiz\

= [z,x]w|>-1,z]*'[x,z] 'I>,z]

= [z,x]w[z,y]»w[x,zp|>,z] by theorem 2.2. (b).

COROLLARY. / / y2(G) is abelian, [x,_v,z] = [z, y, x] [x, z, y]

THEOREM 2.4. Let G be a group of order 2" and class n - 1 . Then G has a
cyclic subgroup <st> of index 2 such that y^G) = (.s?'~'yfor all i > 1. Ifn > 3,
there are three choices for G with generators s^^ and the defining relations
(where u = si"'2):

(i) M2 = Si[s1;s] = s2 = 1, denoted Dn

(ii) u2 = Sifsj.s] = 1, s2 = «, denoted Qn

(ill) u2 = s2 = 1, sf[st,s] = u, denoted Sn

If n = 3, (iii) defines an abelian group and so there are only two choices for G
in this case.

PROOF. See Hall and Senior (1964), page 9.
For the next theorem, we need two more concepts. If G and H are two groups

whose centres are isomorphic, we may construct a group (called a central product
of G and H) consisting of all formal products gh with g eG, heH where elements
in Z(G) and Z(H) which correspond under the above isomorphism are regarded
as the same and where (gh) (g'h1) = (gg1) (hh1) for all g, g' e G and h, h' e H. Also
a 2-group G of class 2 with Gjy2(G) elementary abelian and | Z(G) | = | y2(G) | = 2
is called an extra-special 2-group.

THEOREM 2.5. (a) An extra-special 2-group is isomorphic to the central
product of several copies of D3 and at most one copy of Q3.

(b) A 2-group G of class c>2 with [Z(G)| = 2 is the central product of
an extra special 2-group and a group L with |Z(L)| = 2 and Z2(L) abelian.

PROOF. See Hall and Senior (1964), Theorems 4.1 and 4.2. Their proof of
(b) for c = 3 is easily adapted to the general case.

3. CF (m, n, 2)

A useful set of groups of order 2" is the set CF(m, n, 2) of groups G whose
class is m — 1 and
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If GeCF(m,n,2) and m > 3 we define a subgroup yx(G) of G by the property
that 7i(G)/y4(G) is the centraliser in G/y4(G) of y2(G)/y4(G).

THEOREM 3.1. (Blackburn (1958)). Let GeCF(m,«,2) and m>3. Then
(a) G>yi(G)>Zm_2(G) ^ y2(G) and \G:yi(G)\ = | 7 l (G):Zm_2(G)| = 2,
(b) / / r is the smallest positive integer such that there exists seG — y^G)

with s 2 r e y 2 ( G ) , then y2(G) can be generated by less than 2r elements.

If s is an element of G with s^y^G) and s$^{ym-2{Gj), and
— Zm_2(G), we may define elements inductively by

S;+i = [sbs] i = 1,2, •••

THEOREM 3.2. Let GeCF(m,n,2) with m ^ 5 and s,st as above. Then
y4(G) and yi(G) = <s,,yi+1(G)>, i = 2,3,4.

PROOF. By Theorem 2.1, y2(G) = <s2, 73((G)>, and, since [^(G),
^ y4(G), we get y3(G) = <s3,y4(G)y, [and so y4(G) = <[s3) yt(G)],

>. However, if uey^G) , then

Oa,"] = Is2,s,v\ = [s2)t>,s][>,s,s2] (mody5(G))

= [v,s,s2~] (mody5(G)) since [s2,t;]e74(G)

But [f,s]e<s2,)'3(G)> and so

Thus [s3,t;]ey5(G) and so y4(G) = <s4)y5(G)>. If m ^ 5, s4£y5(G) and so
s3$'tf{s), giving the results.

The above result may be improved if we assume a condition of commutativity
on

THEOREM 3.3. (Blackburn (1958)). Let G e CF(m, n, 2) with m > 3 and suppose
[y1(G),yi(G)] ^ y,+2(G) for i = l,2,---m —3. Ifs,Si are defined as above then

(a) y,(G) = <s;,yi+1(G)>, i = 2 , 3 , - m - l
(b)« ' (s)ny2(G) = ym_1(G)
(c) There exists a set T of elements ofc€{s) such that Zm_2(G) = <T,y2(G)>

and [f ,w]eym_1(G)/or all t,ueT.

COROLLARY 1. | # ( s ) | = 2 " " m + 2 .

COROLLARY 2. The conjugacy class containing s is sy2(G).
Since we will be assuming that Gjy2(G) has exponent 2 or 4, we shall consider

that case now.

THEOREM 3.4. Let GeCF(m,n,2) with m>3 and suppose G/y2(G) has
exponent 2r with r ^ 2. If s,st are defined as above, then
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(a) bi(G).ytff)l ^ 7i+2(G)for i odd
(b) y£(G) = <sJ,yl+1(G)>, i = 2 , 3 , - m - l
(c) *(s)ny2(G) = ym_1(G)
(d) Ify2(G) may be generated by 2 elements, G satisfies the conditions of

theorem 3.3.

PROOF. By theorem 3.1, y2(G) has at most three generators. Since
•DO^CG)) o G, Q>(y2(G)) = y2+d(G) where d is the number of generators of y2(G).

If d g 2, then by theorem 2 of Blackburn (1957), y3(G) g Z(y2(G)) and so
y2(G) is abelian. By the corollary to theorem 2.10 of Blackburn (1958), G then satis-
fies the conditions of theorem 3.3, proving all parts of this theorem for this case.

If d = 3, we have <J>(y2(G)) = y5(G) and so sl,sl,sleys(G). Writing G
for G/y6(G), theorem 3.2 tells us that G satisfies the condition for theorem 3.3
and so (b) is true for i g 5. Also since s2, s3

2e y5(G) and s4 e #(s) n y2(G) ^ y5(G),
we get (working modulo y6(G))

, 2 _ , 2 _ 1
S4 = S5 = X>

>3>S2] = S3S5

and, for vey^G), [sA,v] = [s3)s,t;]

= [y,s3]S4[t;,s]s'I4[s3,i;]s[s,t>]

i.e. S3 = [s3,s2~] s [s^St] = s5 (mod y6(G))

I if |>,
if [PfS]ey,(Gf)

We now prove (by induction) the following:

(0 O2J.S1] = s2 ; + 1(mody2 ; + 2(G)), [s2j-1,s1]ey2j+l(G) j ^ 2

(ii) s; = sf_2 (modyi

Since these results have been proved forj = 2 and i = 5, we will assume them
for 2£j' £ j , 5 ^ i' g i. Then s i + 1 = [s,,s] s [si2_2,s] = s?.^ (modyI+2(G)),
proving (ii). Also

f 2 = s = s 3 (mody2^+4(G))

and similarly [s2J+us1]ey2j+3(G), proving (i).
Using these results, we may show in a similar way that, for t?ey1(G),

[s2;+1,t;]ey2j.+3(G) yielding (a), and [>,s2j-] = s 2 i + 1 or 1 (mody 2 i + 2 ) . Thus,
if yi(G) = <si,yf+1(G)>, then
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proving (b).
Finally, (c) follows from (b) which tells us that [s^s] ^ 1 and so

for i = 2,3,•••m-2.

COROLLARY./ / s 2 e y2(G), ffcen <s, y2(G)> l s a group of maximal class for
m > 3 and s2s l + 1 = 1 /or i = 2,3, • • • m — 2.

PROOF. <s,y2(G)> has order 2"1"1 and class m - 2 . Clearly s2 e<£(s) ny2(G)
= y,B_1(G) ^ Z(G) and so 1 = [sj,s2] = [s,,s]2[X,.,s,s] = s^^j.+z for; = 1,2,
• • •m-2 .

4. ECF (m,«, 2)

Following Blackburn, we say that a group G belongs to the class ECF(m,n,2)
if GeCF(m,n,2) and Gly2(G) is elementary abelian. In this paragraph we will
determine all the groups of ECF(m, n,2) for any values of m, n with m > 2. In
particular, it is clear that ECF(n, n,2) consists of the groups of order 2" and max-
imal class and that the cyclic subgroup of index 2 in theorem 2.4 is the sub-
group v^G).

Since ECF(m,n,2)cCF(m,n,2), we may use the results of the previous
section. Thus if GeECF(m,n,2) then y2(G) is cyclic by Theorem 3.1 (b) and so
(by theorem 3.4(d)) there exist elements seG-y^G), st ey1(G)-Zm_2(G) and
a set Td£(s) such that G = <s,)-1(G)>, 7l(G) = <s1,Zm_2(G)>, Zm_2(G) =
<T,y2(G)> and yt(G) = <s,,y,+1(G)> where s, = [s|_,,s] for i = 2 , 3 , - m - l .
Also, ifwe write Gj for (s.Si) then it is clear that ^(Gi) = y;(G)fori = 2,3,--m —1,
and Gt is a group of order 2m and class m —1. By theorem 2.4, we can see that

(1) sfsl+1 = [sJ>Sj] = 1 for all / ^ 2, ; ^ 1

and that we may assume

(2) «2 = s i - i , sfs2 = sS,-l

where a, )9 = 0 or 1 and a,jS are not both equal to 1.

LEMMA. If m>3, Z2(G) = <T,7m_2(G)> and t2 eym^{G) for all teT.

PROOF. Let teT. As in the case of Gt, we may show that <s, sxt} is a group
of maximal class and so for i > 2, 1 = [sf, stt] = [s,, (] [s;, Sj]. Since [s,-, st] = 1
and Tc'g'(s),

(3) [r,y2(G)] = [T,s-] = 1

To find [$!,*], we note that s\ey2{G) and so
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Since y2(G) is cyclic, ym-i(G) is the only subgroup of order 2 and so [t, st] e ym_1(G)
Using Theorem 3.3(c) and the fact that [t,s] = 1, we see that lT,G~\ <L ym-i(G)
^ Z(G), and so <T,ym_2(G)> S Z2(G). The equality follows from the facts that

Z2(G) ^ Zm_2(G) = <T,y2(G)> and Z2(G)ny2(G) ^ yra_2(G).

Finally, since G/y2(G) is elementary Abelian, t2 e y2(G) n 'g'(s) = ym_!(G).

If we write T = {tu t2,--- tn_m}, where the tt are independent, and

(4) t) = s^_ t , [Sl, rJ = s£L! (j = 1,2, •.. n - m)

then the groups G of ECFfm, «,2) will be determined by the equations (1) to (4),
the parameters a, p, yJt Sj and the commutators of elements of T. The argument
proceeds as in paragraph 4 of Blackburn (1958) or the paper by James and
Cannon (1969).

THEOREM 4.1. The number of groups G o/ECF(m, «,2) with Z2{G) abelian
and | Z(G) | =2 is 2 if n = m + 1 > 4, 3 if n = m ^ 3, and 0 otherwise.

PROOF. Since Z2(G) is abelian, we have

[M;] = [ M j = 1 i,j = 1,2, — n-m.

Since |Z(G)| = 2, we must have [s1)f] = sm_1 for all teT. However, if
[si>'i] = [si>*2] = 5m-i» then [sj ,*^] = 1 a nd so tlt2eZ(G) which is impos-
sible. Thus n = m or m + 1.

If n = m, then G has maximal class and so the result follows. If n = m + 1
then

G = (s,sut,y2(G)) where [sut] = sm.ut
2 = sZ-x.

By replacing s by ss\+1 and t by ts]^}2, we may suppose I2 = sm_x. Then,
by replacing s by sf% we may suppose s2 = 1. The two choices for SiS2 clearly
yield non-isomorphic groups.

If m = 3, there are no such groups since Z2(G) = G is not abelian.

THEOREM 4.2. The number of groups G of ECF(m,«,2) with \Z(G)\ = 2
is 2 if m = 3 and n — m even or m # 3 and n — m odd; 3 if mj&2> and n — m
even; and 0 if m = 3 and n — m odd.

PROOF. By Theorem 2.5, G is the central product of groups Gt and C where
Gt is a group of the previous theorem and C is extra special (in the case where
m * 3).

(a) If n — m is even, then Gj is a group of maximal class and C = <*!,••-,*„_„,>
where [<j,f2] = [>3,f4] = ••• = {tn_m_x, fB_J = sm_1( [*„*;] = 1 otherwise
and

,2 ^ *r
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By replacing ft by <iS*t2 and s by sty
2

+1, we may suppose t\ = sm-1. Since
(£(Z2(G)) = <s t) is characteristic in G, we may only replace st by a power of
itself and so the two values for sls2 yield non-isomorphic groups. If we replace
s by ss\t where ^ is a non-negative integer and teZ2{G) — Z(G), then we must
also replace t' by f'sm_2 (where t' is an element of Z2(G) — Z(G) with [<,<'] =
sm_x) thus changing the value of t'2. Hence, if the above values for t? (tteT)
are fixed, the only elements which may replace s are of the form ss\, yielding three
groups with the relations

= sffl_! 1 1

s2 = 1

' m - 1

(b) If n — m is odd, then Gt is the other group of theorem 4.1 and
C = <t2,t3, — tn-m> where

[*2,*3] = [<4,'5] = - = [*„-»-!, * , - J = Sm-j, [<,•,(,] = 1

otherwise, and

*2 = 5m-l» 1̂ = '3 = '4 = "• = 'n-m = s m - l

Again, by replacing t2 by f2
sm^2 and s by s<3+1, we may suppose x\ — sm_t

and it is again easy to show that the resultant two groups (with s2 = 1) are not
isomorphic.

If m = 3, G is extra-special and the result follows from theorem 2.5(a).

THEOREM 4.3. The number of groups in ECF(m, n,2) is

[i(3n - 5)] for m = 3, n k 3

3 ( n - m + l) + [Kn-w»)] /or m > 3, n ^ m

w/iere [^r] = ir for r even and \_\r~\ = %(r—l) for r odd.

PROOF. Let G be a group in ECF(m, n,2) and use the notation above. Then

Z2(G) = <*1,»2, •••*._.,, ym_2(G)>

and, by suitably ordering the tt, we may write

Z(G) = <(,+ 1,--,fn_m,sm_1> and so

G = <G2, tl+1,---tn.my

where G2eECF(m,m + 1,2) and |Z(G2)| = 2 . Thus G2 is one of groups of
theorem 4.2.

If Z{G) has an element of order 4, we may take tf+1 = sm-x. By replacing s
by sfl+1, st by s^f+t and tj by tjtJlL (j = I + 2, •••, n - m), we may suppose
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and

.2 _ t2 _ _ t2 _
Tt + 2 — tl+3 — ••• — fB_m —

t2 — t2 — — t2 — «' i — t2 — - h — sm_!

yielding one group for each value of/ = 0,1, ••• n — m — 1 (none for m = 3
and / odd).

If Z{G) does not have an element of order 4, it is elementary abelian, and

G = G2 X Ol+iy X •"' X On-m)

yielding three groups (two for m = 3) for each even value of Z = 0,2, —,n — m
and two groups (none for m = 3) for each odd value of / = 1,3, •••,« — m.

5. Groups of order 2" and class n — 2

In this paragraph, we will use the preceding results to obtain the 2-groups
of almost maximal class. The following lemma (the proof of which may be found
in Blackburn (1958), page 74) and its corollary will be useful in what follows.

LEMMA. / / G is a 2-group with | G: y2(G) | = 4 , then G is a group of maximal
class.

COROLLARY. 7/G is a group of order 2n and class n—2, then GeCF(n — l,n,2).

PROOF. Since \yi(G):yi+1(G) | S; 2 for i = 2,3, ••• n—2, we must have
and so |G:y2(G)| ^ 8. By the lemma, |G:y2(G)| # 4 and so

7 2 ( G )

= 2"~3. Thus |y;(G):yj+1(G)| = 2 for each i, forcing G to be in C F ( n - l , n , 2 ) .
Since the groups of order 2" (n ^ 4) are well known, we will consider only

the groups G of order 2" and class n—2 with n > 4. In such a group, | yi(G): y2(G) |
= 4 and G/y2(G) is either of the form C2x C2x C2 or C^x C2. In the first
case, G e E C F ( n - l , H , 2 ) and so Theorem 4.3 yields:

THEOREM 5.1. There are precisely 6 groups G of order 2" and class n—2
(n > 4) with G/y2(G) elementary abelian.

In the second case, we have two possibilities depending on whether yi(G)/y2(G)
is cyclic or elementary abelian.

THEOREM 5.2. The number of groups G of order 2" and class n—2 with
y1(G)/y2(G) cyclic is 3 if n = 5 and 6 ifn>5.

PROOF. Since GeCF(n — 1, n, 2), we may use the results of paragraph 3 and
so we may write G = (s,Siy where Vi(G) = <s1)y2(G)> s\£y2(G) and s\ey2{G).
Since G/y2(G) is of the form CA x C2, we may choose s £ yi(G) such that s2 e y2(G).
By theorem 3.4 and its corollary, we have y;(G) = <si,yi+1(G)) where

(1) s>+1 = [Si,s] = sf2 for i = 2 , 3 , - 1 1 - 2
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To evaluate [sx, s,], we note that [s1; s2] e yjfi). If r is an integer with r ^ 4
such that [ s^s^ey/G) — yP+1(G), then [ s ^ s j = sr(modyr+1(G)) and so

I>i>s3] = [si>s22] = s72 = sr+1(modyr+2(G)).

However [s\,s\ = [ s^sP l j^s^ i ] s sfs,. = s3 (mody4(G)) and so [s*,s] =
[s\,s~\\s\,s,sf] ~sl = s4 (modys(G)). But s*ey2{G) and so s* s s3 (mod y4(G)).
Combining these result,

which is impossible unless r ^ n—2. Thus

(2) Oi ,s 2 ] = 5n_2 or 1, O I A ] = 1 for i > 2

Finally, using this result in the above, we get [s?,s] = s4 and so
sts;1e^(s)ny2(G) = yB_2(G), and so

(3) s2 = sn_2 or 1 , st = s3sn_2 or s3

The equations (1), (2) and (3) are the defining relations for G and it is easy
to check (when n > 4) that a group of order 2" exists with the given defining
relations (with [sj,s2] = 1 for n = 5). If s^1 = s,,_2[si,s2] and s2 = sn_2

then (by replacing s by ss%) we may suppose s2 = 1. Since (ss2)2 = s2Sj[s2,s]
= s2$*S21[s1,s2], we may write the defining relations:

rs s "j _ i i i s s _2 s

_ * c ~ l 1 1 c 1 ,, o

o^t33 — X x jn_2 • » • n — 2 n — 2

S2 = 1 Sn_2 1 1 1 Sn_2

(Sslf = 1 Sn_2 S n _ 2 SB_2 1 5 n _ 2

In the first three cases j Z(G) | = 4 whereas in the last three cases | Z(G) | = 2
and so none of the first three is isomorphic to any of the last three. In fact, by
counting the number of elements of order 2, we can see that each of the above
cases yields a distinct group. Thus we obtain three groups for n = 5 (the groups
FgCj, F8c2 and F8e of Hall and Senior (1964)) and six groups for n > 5.

THEOREM 5.3. The number of groups G of order 2" and class n—2 with
G(y2{G) of exponent 4, }>i(G)/7>2(G) elementary abelian and with y%{G) having
I or 2 generators is 6 for n = 5, 8 for n = 6 and 10 for n> 6.

PROOF. Again we use the notation of paragraph 3, noting that 7X(G) =
<sus

2,y2(G)). By Theorem 3.4(d), Theorem 3.3 applies and y,(G) = <s,-,yI+1(G)>
for i = 2,3,---,n-2 and s*e«?(s)ny2(G) = r , . 2 (G)gZ(G).
(a) Suppose y2(G) is cyclic and so y2(G) = (s2}. If s\ey3(G),sf = [sf,s]ey4(G)
contradicting our assumption and so s2 = s\ (mody3(G)). Thus s~1sls = s*
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w h e r e a s 3(mod4). Since s4
 BZ{G),S1 = s~4s1s

4 = s f and s o a 4 = I(mod2"~2).
Solving these congruences, we get a = 3 or 7 (mod 8) when n = 5 and a — — 1,

2n-3 _ x ^ 2 » - 4 _ i or 2""4 + 2"~3 - 1 (mod2"~2) for n > 5. Again it is easy to
check that groups of order 2" exist with defining relations s4 = 1 or sn_2,
s~1s1s = s" (a as above). The latter may be written:

S1S2 = 1 Sn-2 Sn-3 Sn-3Sn-2

|>1 ,S 2 ]= 1 1 SB_2 Sn_2

where only the first two cases exist for n = 5. In the last case, by replacing s
by s~l, we may suppose s\s2 = s~l3s~}2 = sn_3; also if s4 = sn_2 we may sup-
pose (by replacing s by sst) that s4 = 1. Thus the last two cases yield one group
which is not isomorphic to those defined by the first two cases since it has no
abelian subgroup of index 2. In the second case, if s4 = sB_2 we may suppose
(by replacing st by sts

2) that s2
ls2 = 1, and this group is not isomorphic to those

with s4 = 1 since it has only one normal subgroup of order 2. Finally, in the case
where s4 = 1 and s2s2eyn_2(G), if we replace st by sf we do not affect the
value of sls2, showing that the two groups are not isomorphic. Thus we obtain
three groups for n = 5 and four groups for n > 5.

(b) Suppose y2(G) has 2 generators and so s2, s2 e y4(G). If s2 = s4 (mod ys(G))>
then the above argument for s2 shows that s2 = s3 (mody4(G)) and so y2(G)
is cyclic. Thus we must suppose s2 = s4 (mody5(G)). Proceeding by induction,
we obtain

(1) sf = si+2 (i = 2,3, ••• n - 4 ) , sn
2_3 = s2_2 = 1

In particular, if xeyt(G), then x 2 ey i + 2 (G) .

Write s2 = s4s5x and so s3 = [s4s5x, s] = s5s6[x, s ] . Since

s4eZ(G), l = [s1 ;s
4] = [ s ^ s 2 ] 2 ^ ^ 2 ^ 2 ] = s4

2s
6
3sts5

= (s4s5x)2s5s6[x,s]s3s4s5 = stsls4s6x
2[x, s]

and so xeyn_2(G). Proceeding by induction, we get

(2) s2, = s4s5s'n-2, sf = si+2si+3 (i = 3,4,---n-4)

To find s2 and [ s^ s , ] , we note that

[s2, sts
2] = [s2, s2] Is 2, s j s 2 = s4[s2, s j (mod ys(G))

and so (by replacing st by s^2 if necessary) we may suppose that [s2, Sj] = s4

(mody5(G)) and similarly [ s ^ s j = si+2(modyi+3(G)) for i ^ 2 . Thus, if
s2 = sr(modyr+1(G)), then
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sr + 2 = [ s ^ ] = [ s ^ ] = 1 (modyr+3(G))

and so r ^ n - 3 . Noting that s4e)>n_2(G), we get

(3) s* = fH_2, Sl
2 = sn

p_3sn
r-2

Thus [s2)s1]52 = \_sl,s] = sJJ_2 and again, by induction, we get

(4) [«i>s2] = s4s5s£+f, Isi^f'] = sf+2si+3 for i = 3,4, — n - 4

The equations (1) to (4), together with the fact that y2(G) is abelian, are the
defining relations for G and it is easy to check that (for n 2: 5) a group of order
2" with the given defining relations does exist.

When n = 5, s2 = [sus2] = 1 and so p = 5 = 0. If s4 = 1, then (s^2)2 =
s2s4s2s3 = s2s3 and so we may suppose s2 = 1, yielding the 3 stem groups of
F7 (see Hall and Senior (1964)).

When n = 6, s2 = s4 and so <5 = 0. Replacing sx by SxS2p, we may suppose
Si = s\ and [s!,s2] = 1> yielding the 4 stem groups of F2 3 in Hall .and Senior
(1964).

When n S; 7, replace Sj by s^s'^s and s2 by S2Sd
n-4.. Since (s2

sf-4)2 = S2S*-2J

we may suppose 5 = 0. To find the isomorphism classes for these groups, we
replace s by s* = s1+2*s[u and sx by s* = s^v (as in Theorem 5.2) where
u,ve y2(G). Thus

= «2 (mody3(G)).

[sj.sj] = [slS
2^,s2] = [S l )s2]sl = s i + " (mody5(G))

As we have supposed that [s1;s2] ^y5(G), we must take 17 = 0. Also

(mod?n_2(G))

By Corollary 2 of Theorem 3.3, s* is conjugate to s1+2fsj; and so

Similarly, since "^(sj) = <s1,yn_3(G)> has order 8, the conjugacy class of st is

Sly2(G) and so s?2 = (s^)2 = (s*)2 = (s?)* for some xeG. If s2€yB_2(G), then
clearly s*2 = s2 yielding 4 groups. If s2 = sn_3s^_2, take x = sYand so we may
suppose s2 = sn_3, yielding 2 groups.

THEOREM 5.4. The number of groups G of order 2" and class n — 2 with
G/y2(G) of exponent 4 and 7i(G)/y2(G) elementary abelian is 6 when n = 5,
10 w/icn n = 6, 14 w/ien n = 7, 16 w/ien n > 7 and n odd, a«d 20 when n > 7
and n is euen.
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PROOF. Once again, we use the notation of paragraph 3. By theorem 3.4.
y.(G) = <s,-,yI+1(G)>for i = 2 , 3 , - - n - 2 a n d s 4 e # ( s ) Hy2(G) = yn-2{G) ^ Z(G).
By theorem 3.1, y2(G) may be generated by 3 elements and, since the groups G
where y2(G) has 1 or 2 generators were considered in theorem 5.3, we will assume
here that O(y2(G)) = y5(G).

As in the reasoning for Theorem 3.4, we can show that st = sf-2

(modyf+1(G)) for i > 5 and so Gt = (s,y2(G)y is a group of order 2""1 which

satisfies the conditions of theorem 5.3 with yj(Gx) = y(+i(G) for i = 1,2, ••• n — 3.

By noting that, since siey5(G), 1 = [s2
2,s] s s3

2 [s^s^ = s^s^s^ (mod y6(G))

and so [s3 )s2] = s5 (mody5(G!)), we may use that theorem to obtain

~ Sn-2> S2 ~ Sn-3sn-2> LS2> S3J ~ s 5 5 6 S n-2

Cs2.si] = sf = •S, + 2Si + 3 0" > 3), sf = S5S6

Also (as in theorem 3.4) we may show that

l>2,->si] = S2J+i(mody2j+2(G)), [s2j-1,s1]ey2j+1(G) for j ^ 2 .

Thus s2]$'£(s1) and so s2 = s2 r + 1(mody2 r + 2(G)) for some r. However, since

(s2Si)2 = s^ i f s j ^ 2 ] = s2s3(mody4and ( s S l ) = 5 s [ S l '

(Sl«2r)2 =S^22r[s2r.Sl] = Sl«2r+1 (mod y2r + 2(G)) for T > 2,

we may suppose s\ eyn_2(G), and so

(2) sj = s*_2 (where 5 = 0 if « is odd)

To find [SJ,Sj], we note that s*eZ(G) and so

1 = Oi.s] = sl[s2,s1}ls2,s1,s2']
s [S2»«i][s2.si,s2] (modyB_3(G))

Thus ^.sJeyn-aCG) and so [s2,slss2] = 1 , yielding

(3) [52>Sj] = S2
2 = Sn

P_3^-2

By theorem 2.3 [sa.sj = [sL^ps^.SaSaHsa.sJ 'sJ1

= •Sn-3Sn-2S2'S5S6Si>-3SB-2S2

- 2 -i ( -. — 2 •
5^6,S 2 S2J — SSS^(SSS^) — S;

Similarly, by repeated application of theorem 2.3, we obtain

(A\ \ LS4i'-l)SlJ ~ s4j + ls4/' + 2 > LS4/>slJ — S4j
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Once again the equations (1) to (4), together with the fact that y3(G) is
Abelian, may be shown to define a group of order 2" when n > 5.

When n = 6, we have s2 = s2 = s^ = 1, [s;,Sj~\ = 1 for i,j = 1,2,3,4,
s4 = s4 and s2 = s4 . Since (ssx)4 = s4sl[s2,s

2] = s*s4 we may suppose (by re-
placing s by ssj that a = 0 giving the 2 stem groups of T22 in Hall and Senior(1964).

When n = 7, we must have s2ey5(G), and so

s4 = S5, s2 = si = s2 = 1 , s2 = [s2> s t ] = s?,

S3 = l>3>s2] = [s3,Si] = [s^Si] = s5.

By theorem 5.3, we cannot reduce this any further unless we replace s by sstt
where te(s2,y2(G)} = K. However (sstt)

2 = s2(s1t)
2[s1t,s']

= s2s^2[«,Si]s2[s2)r] [t,s] = s2s
2 (mod y3(G))

Since 73(G)2 and [y3(G),K] g ys(G), this yields (S S l0
4 = s4s2[s2,s2] s s4

(mod75(G)), contradicting (1) and so we may not replace s by ssxt. Thus there
are 4 isomorphism classes of groups in this case.

When n > 1, we may show (as in Theorem 5.3) that s2 may be taken to be
sn_3,sn_2 or 1, and (as in the case when n = 7) that different values of s4 yield
non-isomorphic groups. In the case where s\ = sn_3, by replacing Sj by s ^ s ^ ,
we may replace s\ by SiS35[s3,s2]* = 1. In the case where s\eyn_2(G) and n is
even, we have sf = sn_2(<5 = Oorl) . If we replace st bys* = sxw with we y3(G),
then s*2 = (SiW)2 = slw^w^^. Since y3(G) is generated by s3s4 and s3, we may
write w = (53s4)

ms3 for some co,x and so w2 = Ssa + Zsl, [w,sx] = s7ts6~tand
s j 2 = slsj™. Since s*2eyn_2(G), co = 0 and so s*2 = s2. If we replace st by
s* = s^^, then

2|>.SiS2] = s?S2[s2,s1]w2[wJs2][w,s1][w,s1)s2]

= s2[w,s1][w,s1,s2] by (3) and (4)

= s^Iw.Si] since [w,s1]e7n_2(G)

— S1SS S6

Again s*2 e yn-2{G) => T = 0 => s*2 = s2 and so the two values for <5 give non-iso-
morphic groups.

Thus, when n > 1 and n is odd the six groups are given by s* = sn^2

or 1, s2 = 1 and s2 = sn_3, sn_2 or 1; when n > 7 and n is even the ten groups
are given by s4 = sn_2 or 1 and

s\ = Sn_3 Sn-2 Sn_2 1 1

s2 = 1 sn_2 1 sn_2 1

The results of theorems 5.1 (0 5.4 y/eW the results of theorem 1.2.
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