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SUMMARY

The recent outbreak of H1N1 has provided the scientific community with a sad but timely

opportunity to understand the influence of socioeconomic determinants on H1N1 pandemic

mortality. To this end, we have used data collected from 341 US counties to model H1N1

deaths/1000 using 12 socioeconomic predictors to discover why certain counties reported fewer

H1N1 deaths compared to other counties. These predictors were then used to build a decision

tree. The decision tree developed was then used to predict H1N1 mortality for the whole of the

USA. Our estimate of 7667 H1N1 deaths are in accord with the lower bound of the CDC

estimate of 8870 deaths. In addition to the H1N1 death estimates, we have listed possible counties

to be targeted for health-related interventions. The respective state/county authorities can use

these results as the basis to target and optimize the distribution of public health resources.
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INTRODUCTION

The environment and its associated factors in which

people reside are as important for communicable

diseases as they are for non-communicable diseases

[1, 2]. Communicable diseases are essentially ‘eco-

bio-social ’ events influenced by ecological, biological

and social factors [3]. Social determinants strongly

influence both the onset and response to treatment of

major infectious diseases [4]. Hence, a social determi-

nant perspective is essential [1].

Traditionally, studies on infectious diseases have

focused, largely, on biological risk factors at the in-

dividual level [5]. However, social scientists emphasize

the need to incorporate socioeconomic determinants

like poverty, education and income in epidemiological

studies [6]. Evidence from the literature suggests that

the spread of communicable disease is influenced by

social heterogeneity that exist both within societies

and between countries [4]. A classic example is the

most often cited 1848 typhus epidemic in Upper

Silesia. The German physician Rudolf Virchow, the

chief investigator, cited factors like poverty, hunger,

lack of education, and political oppression liable for

the epidemic episode [7].

Studies in the literature have shown the effect of

socioeconomic status on disease incidence during the

1918 influenza pandemic [8, 9] and county-level socio-

demographic and economic factors associated with

the incidence of enteric diseases [10]. Excess mortality

data from27 countries during the 1918–1920 pandemic

was correlated with per capita income and absolute

values of latitude, generating two regression models

[8]. The primary use of the model was to serve as a

predictive tool for the estimation of global pandemic

mortality, if a pandemic were to occur in later years.
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The lowR2 values reported indicated a high possibility

that these models may possess unsatisfactory predic-

tive capabilities. In addition, pandemic mortality

rates may also be related to predictor variables other

than per capita income and absolute latitude [1, 3].

The recent outbreak of H1N1 has provided the

scientific community with a sad but timely oppor-

tunity to understand the influence of socioeconomic

determinants on pandemic mortality. To this end,

we have used data from different US counties and

analysed the socioeconomic determinants to discover

why certain counties reported fewer H1N1 deaths

compared to other counties. The aim of our work is to

identify the subgroups of the population whose mem-

bers share common characteristics that are barriers or

facilitators of health-related interventions.

Our study objectives, hence, were to: (1) understand

the relationship between each of the selected predictors

on the response variable, (2) develop a decision tree

using the selected predictors, (3) use the decision tree

to predict the total deaths due to H1N1 in the USA,

and (4) offer guidance to local health officials (at state

level and county level) to strategize community health

improvement planning. The decision tree method used

in our work has the potential to classify counties into

subgroups. This work provides a novel approach in

using H1N1 data collected by countries at local/state

level to quantify the heterogeneity in healthcare at each

level using socioeconomic determinants, subgroup,

the population to be targeted and to optimize the dis-

tribution of public health resources efficiently.

METHODS

Data mining can generally be viewed as a tool used for

the extraction of useful knowledge such as patterns,

Table 1. Summary characteristics of the variables used in the dataset*

No. Variable (units) Source#

Year of
data
collection Mean S.D.

Max
value

Min
value Skewness

1 Population density
(population per square mile)

1 2000 399.4
(232.5)

1222.5
(1680.8)

16 526.2
(66 834.6)

2.7
(0.1)

9.3
(27.0)

2 Per capita personal income

(US$)

1 2006 32 059.0

(28 680.3)

9206.0

(7249.4)

86 062.0

(110 292.0)

12 471.0

(12 471.0)

1.7

(2.7)
3 Median household income

(US$)
1 2007 47 241.0

(42 801.6)
12 585.0
(10 886.7)

101 098.0
(107 200.0)

17 488.0
(17 488.0)

0.9
(1.4)

4 Educational attainment

(persons aged o25 years),
percent high school graduate
or higher (%)

1 2000 79.3

(77.3)

8.4

(8.7)

96.3

(97.0)

42.1

(34.7)

x1.1

(x0.6)

5 Educational attainment
(persons aged o25 years),
percent bachelor’s degree

or higher (%)

1 2000 20.0
(16.5)

8.8
(7.7)

60.5
(60.5)

5.4
(4.9)

1.1
(1.7)

6 People of all ages in poverty
(%)

1 2007 14.2
(15.1)

6.8
(6.2)

50.3
(50.3)

3.1
(2.4)

1.6
(1.2)

7 Obesity, age adjusted

estimate (%)

2 2008 26.5

(28.3)

3.9

(3.7)

38.6

(43.7)

12.5

(12.4)

x0.1

(x0.5)
8 Resident population

aged <5 years (%)
1 2007 6.6

(6.3)
1.4
(1.3)

12.8
(13.3)

3.2
(1.7)

1.1
(0.7)

9 Resident population
aged <18 years (%)

1 2007 23.9
(23.4)

3.7
(3.2)

40.6
(41.1)

14.3
(12.1)

0.9
(0.6)

10 Resident population

aged o65 years (%)

1 2007 14.1

(15.1)

4.2

(4.1)

31.4

(36.4)

5.0

(3.2)

1.1

(0.6)
11 Resident population

white race (%)
1 2007 87.1

(86.4)
13.0
(15.9)

98.7
(99.6)

9.5
(5.8)

x3.0
(x1.9)

12 Resident population
black race (%)

1 2007 6.6
(9.2)

8.3
(14.5)

67.1
(85.8)

0.1
(0.1)

2.7
(2.2)

13 H1N1 deaths/1000 3 2011 0.0347 0.0556 0.4669 0.0003 4.60

* The corresponding summary characteristic of a variable for the whole of the USA is shown within parentheses.
# Source: 1, US census ; 2, CDC, USA; 3 State health websites.
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trends and the establishment of hypotheses from large

data collections and archives. Here, the objective of

data mining is to use the data collected from reliable

sources for the construction of valid models. These

models, built using a subset of US counties, were then

used to predict H1N1 mortality for the whole of the

USA.

Data collection

Data were collected from several public health web-

sites in the USA. Data on sociodemographic variables

and socioeconomic indicators were collected from

the US census and Centre for Disease Control and

Prevention (CDC, USA) websites [11, 12]. The re-

sponse variable of interest is the reported H1N1

deaths/1000 population, with final predictor variables

being socioeconomic variables believed to largely in-

fluence the spread of H1N1 and H1N1 mortalities.

The list of predictors used in the dataset is given in

Table 1. We collected the most up-to-date data for

each of the predictors and hence the difference in the

year of collection.

H1N1 deaths in the USA were reported from

July 2009 until June 2010. County-level H1N1 death-

related data were collected from the State Health

Department websites, obtained from the H1N1 web-

page of CDC [13]. The H1N1 weblinks of all the 50 US

states were browsed thoroughly for data availability.

Only 14 states out of the 50 that reported latest county

records of H1N1 deaths from July 2009 until June

2010 were selected. The primary reason for such a

selection is that only these states have consistent re-

porting and updating of H1N1 statistics. Here, the

phrase ‘consistent reporting and updating of H1N1

statistics ’ refers to the reporting standards met by

the state health websites at a level with the stan-

dards suggested by CDC, USA. Only these 14 states

reported county-wise statistics on H1N1 deaths/1000

and hence were included in the dataset. The rest of the

states had either reported the cumulative deaths for

the whole of the state or did not update the county-

level statistics in their health websites. The state-wise

details on the number of counties that reported H1N1

deaths and the corresponding web pages are shown

in Table 2. A choropleth map of the 341 counties is

shown in Figure 1. This dataset of 341 samples (shown

in Sheet 1 of the Supplementary material) was then

used to model the response variable using the pre-

dictors.

Data analysis

The following exploratory data analyses were per-

formed to gain insight on the relationship between the

predictors and the response variable.

Table 2. State-wise details of the data collected

State

Total
no. of

counties

No. of
counties that
reported

H1N1 deaths Source

California 58 44 http://www.cdph.ca.gov/data/statistics/Pages/H1N1FluDataTables.aspx
Connecticut 8 8 http://www.ct.gov/ctfluwatch/cwp/view.asp?a=2533&q=439218

Florida 67 43 http://www.doh.state.fl.us/Disease_ctrl/epi/swineflu/Reports/
reports.htm#Deaths

Illinois 102 30 http://www.idph.state.il.us/h1n1_flu/sf_statistics.htm
Iowa 99 24 http://www.idph.state.ia.us/IDPHChannelsService/file.ashx?file=

A8571D61-3BF3-45DE-9E0A-C5C76E62E8A6
Kentucky 120 27 http://healthalerts.ky.gov/Pages/FluActivity.aspx
Mississippi 82 11 http://www.msdh.state.ms.us/msdhsite/_static/resources/3546.pdf

Nevada 17 3 http://flu.nv.gov/Swine_Flu/Reports/2010-01-08_PHP_Health_Info_Report.pdf
New Mexico 33 22 http://nmhealth.org/H1N1/ILI/ILI_deaths.shtml
Oregon 36 18 http://www.oregon.gov/DHS/ph/acd/swineflu_investigation.shtml#current

Pennsylvania 67 32 http://www.h1n1inpa.com/newsroom/pa-situation-update/
South Dakota 66 14 http://doh.sd.gov/Flu/PDF/Week13.pdf
Texas 254 37 http://www.dshs.state.tx.us/txflu/TX-cumulative-county20100522.pdf
Wisconsin 72 28 http://pandemic.wisconsin.gov/docview.asp?docid=17660&locid=106

http://pandemic.wisconsin.gov/docview.asp?docid=18898&locid=106
http://pandemic.wisconsin.gov/docview.asp?docid=18569&locid=106
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Correlation analysis. This was performed in order

to understand the relationship between each of the

selected predictors and the response variable [14].

Decision trees. Modelling with decision trees results

in a pictorial representation comprising of a series

of if-then rules to predict H1N1 deaths/1000.

Construction of decision trees can aid in the illus-

tration of certain ‘rules ’ governing the spread of

H1N1 and H1N1-related deaths. Policy makers can

use these rules as the basis to target and optimize the

distribution of public health resources. Decision tree

analysis is a non-parametric methodology that has

the ability to classify populations into subgroups

[15]. Recently, decision tree methodology has been

extensively applied in public health analyses [16], e.g.

in studies assessing risk factors for mortality and

morbidity from specific diseases [17–21], identifying

patients hospitalized with community-acquired pneu-

monia [22], and influenza treatment strategies [23–25].

The three basic steps of building a decision tree are:

(1) The overall study group is divided into two sub-

groups using the most dominant predictor of the

response variable. (2) This division into two groups

is repeated within the subgroups until no further sig-

nificant splits are found. At this point, a terminal node

is created. (3) The results are then presented in the form

of a binary tree structure, which can be pruned to ob-

tain the optimal tree with the least misclassification.

The response variable can be either categorical (i.e.

classification tree) or continuous (i.e. regression tree).

The predictors can be a mix of categorical and con-

tinuous variables. In a classification tree, the prob-

ability of having the response measure is estimated

among those within each node. In regression trees, the

mean value of the response variable is estimated

among those within each node.

Here, we have used H1N1 deaths/1000 as the target

variable and built a regression tree using the 12

selected predictors. The entire sample was used to

develop the regression tree and a tenfold cross-

validation method was used as the tree testing option

to select the best tree [15]. Pruning was done to avoid

over-fitting and the optimal tree was chosen based on

the cost of the tree. The procedure described here was

coded in Matlab 7.8.0 (R2009a). The regression tree

developed using data from 341 counties was then used

to predict H1N1 mortality for the whole of the USA.

The predictor variables for all US counties were

collected from the US census website. The decision

rule obtained from the regression tree was used as the

basis to determine H1N1 deaths/1000 for each county

depending upon its input variables. These predictions

were then converted to total H1N1 deaths predicted

for each county. The state-wise H1N1 deaths were

then obtained from the county totals. H1N1 mortality

for the whole of the USA was then obtained from the

summation of state-wise H1N1 deaths.

Fig. 1. US counties included in the dataset.
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RESULTS

Table 1 summarizes the distributions of all 12 vari-

ables included in the dataset, along with the variable

H1N1 deaths/1000.

Correlation analysis

The independent variables, population per square

mile, percent resident population black race and

the response variable, H1N1 deaths/1000 were highly

skewed and hence, log transformed. The correlation

coefficient (r) of the predictors with respect to the

response variable, 95% confidence intervals and

the associated P values are shown in Table 3. From

Table 3, it is evident that of the 12 predictors, ten are

statistically significant (P<0.05). Percent resident

population aged <18 years and percent resident

population white race are statistically insignificant.

Population density, income, education and percent

resident population black race show a negative cor-

relation. Poverty, obesity, percent resident population

aged <5 years and percent resident population aged

o65 years show a positive correlation. All the 12 sel-

ected predictors were then used to construct the re-

gression tree and develop decision rules using the

most significant splitting variables. Here it should be

noted that the actual values of the 12 selected predic-

tors were used for construction of the regression tree.

Regression tree

The best regression tree generated using the procedure

described in the Methods section is shown in Figure 2.

Of the 12 predictors used for constructing the tree,

only six of them showed up as splitting variables in

the decision tree. These six predictors include : popu-

lation density, percent with bachelor’s degree edu-

cation, percent in poverty, percent population black

race, percent agedo65 years, and percent population

white race. This tree contains 14 terminal nodes.

H1N1 deaths/1000 estimated from the regression tree

ranged from 0.0125 to 0.3779. The first variable

selected for splitting was population density. Of those

counties which had a population density (measured in

population per square mile)>30.7, a further split was

observed for those which had a population density

greater (or less) than 53.05. Counties that had a

population density >145.4 and percent population

black race >1.25 reported the least number (0.0125)

of H1N1 deaths/1000 people. Of the counties that had

a population density >145.4 and percent population

black race <1.25, a further split was observed for

those which had a population density greater (or less)

than 400.3. Counties that had a population density in

the range of 145.4–400.3 and percent population

black race <1.25, reported 0.0130 H1N1 deaths/

1000. However, counties that had a population

density >400.3 and percent population black race

<1.25 reported 0.1989 H1N1 deaths/1000. Thus, for

counties with similar percent of population of black

race and a population density >145.4, a much higher

population density has resulted in H1N1 deaths

14 times higher than the second least number of

H1N1deaths/1000.Countieswith apopulationdensity

<30.7 reported H1N1 deaths/1000 ranging from

Table 3. Correlation coefficient of the potential predictors with respect to H1N1 deaths/1000 population

No. Predictors r

r

P valueLower Higher

1 Natural logarithm (population per square mile) x0.55 x0.62 x0.47 <0.001
2 Per capita personal income x0.35 x0.44 x0.25 <0.001
3 Median household income x0.44 x0.52 x0.35 <0.001

4 Educational attainment (persons aged o25 years),
percent high school graduate or higher

x0.37 x0.46 x0.27 <0.001

5 Educational attainment (persons aged o25 years),
percent bachelor’s degree or higher

x0.34 x0.43 x0.24 <0.001

6 People of all ages in poverty (%) 0.44 0.35 0.52 <0.001
7 Obesity, age adjusted estimate (%) 0.24 0.13 0.34 <0.001
8 Percent resident population aged <5 years 0.10 0.00 0.21 0.05

9 Percent resident population aged <18 years 0.08 x0.03 0.18 0.14
10 Percent resident population aged o65 0.17 0.07 0.27 0.001
11 Percent resident population white race x0.05 x0.16 0.05 0.33

12 Natural logarithm (percent resident population black race) x0.19 x0.29 x0.09 <0.001
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0.0461 to 0.3779. The group that had a population

density <30.7 was further split according to edu-

cational attainment (bachelor’s degree or higher).

Counties with educational attainment <8.8 reported

0.3314 H1N1 deaths/1000. A further split in the group

with higher educationwas based on percent in poverty,

population density, education, percent agedo65 years

and percent population white race. Counties with low

population density, low educational attainment, high

percent of population aged o65 years and with a

combination of low population density, high edu-

cation and low poverty reported higher H1N1 deaths/

1000 compared to their counterparts.

The developed decision tree was then used to predict

H1N1 mortality for the whole of the USA. A choro-

pleth map with the county-wise predictions of H1N1

deaths/1000 is shown in Figure 3. The light grey shad-

ing in the figure corresponds to 0.0125 H1N1 deaths/

1000 and black corresponds to 0.3779 H1N1 deaths/

1000. The values in between are highlighted using

various gradations of shading between light grey and

black.

Of the 3141 counties included in our predictions,

586 counties were predicted to have encountered

0.0125 H1N1 deaths/1000. Fourteen counties were

predicted to have encountered the maximum (0.3779)

H1N1 deaths/1000. H1N1 deaths/1000 predictions

for each state are shown in Figure 4. From our pre-

dictions, the top five worst affected states during the

recent H1N1 pandemic would be Wyoming, North

Dakota, South Dakota, Montana and Alaska. Simi-

larly, the bottom five least affected states would be

Delaware, New Jersey, Connecticut, Massachusetts

and Maryland. Total H1N1 deaths predicted for each

state are shown in Figure 5. H1N1 deaths predicted

using our work for the whole of the USA sums up to

7667. From the predictions, we sorted the counties

of each state in the order of H1N1 deaths/1000. The

results are highlighted in the map shown in Figure 6.

For each state, we have highlighted (in black) the

counties which were predicted to have encountered

maximum H1N1 deaths/1000 among all the counties

of that particular state (shown in Sheet 2 of the Sup-

plementary material). Similarly, the counties that

were predicted to have encountered minimum H1N1

deaths/1000 among all the counties are highlighted

in light grey. If these results were used as the basis

for decision-making, it could be concluded that

larger differences exist in H1N1 deaths in the counties

due to socioeconomic variables. If health authorities

intend to target only a few of the counties due to

resource constraints, these decision rules will be

Fig. 2. Regression tree.
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of assistance. For example, according to these results,

resources could be allocated to counties with low

population density, low educational attainment, and

high percent of population agedo65 years to counties

with a combination of low population density, high

education and low poverty. In addition, the health

authorities of these counties can organize awareness

programmes and hence nullify the heterogeneity

effect. The respective state authorities can use these

results as the basis to strategize health-related inter-

ventions for future epidemics as well as for influenza

seasons. The Matlab source codes used to develop the

Fig. 3. County-wise predictions of H1N1 deaths/1000.

Fig. 4. H1N1 deaths/1000 predictions for each state of USA.
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regression tree and choropleth map used in this work

are available upon request.

DISCUSSION

Epidemiology involves the understanding of factors

affecting the health of populations and serves as

the basis for interventions made in the interest of

public health. The decision tree methodology used

here is a non-parametric approach that identifies the

subgroups of a population whose members share

common characteristics that influence the response

variable of interest. In addition, the regression tree

produces a visual output and simple rules that are

easy to understand and interpret.

Our results indicate that H1N1 deaths would be

concentrated in counties with low population density,

low educational attainment, and high percent of popu-

lation aged o65 years and to counties with a com-

bination of low population density, high education

and low poverty. Socioeconomic indicators are be-

lieved to introduce health heterogeneity in the sub-

groups of the population and our results quantify the

impact of these indicators on H1N1 mortality in the

USA.Most of the strong relationship that we observed

between the predictors and the response variable may

be attributed to factors such as awareness about the

symptoms of the disease, healthcare access, and timely

hospitalization. These factors contribute to better

symptomatic medical management [2]. Increased level

of awareness of the need to report to the relevant

authorities and to seek medical attention early in

protecting oneself against the virus can also originate

from an individual’s higher education level. Higher

income can also be associated with the increased

probability of visiting medical facilities on exhibiting

disease-related symptoms. Higher educational at-

tainment and income results in acquisition of skills

related to positive attitude about health, and access

to preventive health service membership in peer

groups [2].

Influence of per capita income on pandemic mor-

tality has been studied in the past [8]. However, a

study of this magnitude with as many as 12 predictors

is a rarity. Previous studies in the literature could

only explain half the variance in pandemic mortality,

whereas, in our work we improved the predictive

ability of the models by using decision trees and

12 predictors. The recently released county health

rankings [26] offer the potential to extend the pro-

posed approach for many more predictors such

as access to care, quality of care, etc. One of the lim-

itations of our work is that the counties which were

updated with zero deaths were excluded from the

analysis. The details on whether the counties reported

zero deaths or had a poor infrastructure for reporting

deaths were not available in the state health web-

sites. For example, California, Connecticut, Florida,

Fig. 5. H1N1 deaths, predictions for each state of USA.
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Kentucky, Pennsylvania and Wisconsin updated the

statistics for all the counties in the state health web-

sites, whereas, the rest of the states updated the stat-

istics of only those counties that reported at least one

death. Thus, for the former list of states, we were

unable to conclude whether the zero reporting of the

deaths by the counties of these states was due to better

healthcare or due to poor reporting. Hence, we had to

exclude the counties that reported zero deaths from

our sample and conduct the analysis only for counties

that reported non-zero deaths. This limitation can

be addressed by constructing a decision tree with the

counties that reported zero deaths as well. Hence,

we developed the decision tree by including all the

counties that reported zero deaths along with the 341

counties that reported non-zero deaths. This selection

resulted in 637 counties. The choropleth map of the

counties included in the dataset, the results and dis-

cussion are available in the online Supplementary

material. Counties that had a per capita personal

income higher than US$16138.5, population density

in the range of 8.9–26.75, population of white race

<98.15% and percent in poverty <16.15% reported

the least number of H1N1 deaths/1000. The lower

value of H1N1 deaths/1000 reported in these counties

may be due to poor reporting. However, further

analysis is required to arrive at proper conclusions.

The discrepancies in the predictions between the

approaches using only non-zero-death reporting

counties and both zero- and non-zero-death reporting

counties highlight the impact of data quality on the

estimates. In addition, the theoretical background or

assumptions about the virulence of the virus, case-

fatality rates, etc., were not considered in our current

approach. Hence, our work suffers the limitation of

its inability to forecast the absolute death count for

future epidemic events (wherein the virulence of the

virus, case-fatality ratio may be different). A possible

alternative to counter this limitation is to use dyna-

mic data mining to build time-series decision trees

[27]. Time-series data on H1N1 cases and deaths are

available online for the counties of California,

Connecticut, Florida, Mississippi, South Carolina,

South Dakota, Texas and Wisconsin. These data can

be used to understand how social determinants influ-

ence the spread of the disease with respect to time.

However, irrespective of the virulence of the virus, our

work can be used as a basis to understand the relative

effect in the counties based on social determinants.

Our predictions are strictly based on mortality data

collected from 341 counties. Although this constitutes

11% of the total counties of the USA and the dataset

used in our work has similar characteristics to USA as

a whole (Table 1), the predictive ability of the decision

tree can be improved by using additional data from

other counties. In addition, our approach assumes

that there was no under- or overreporting of H1N1

deaths by certain counties. Quality of data used and

Fig. 6. Worst affected and least affected counties for each state of USA.
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reporting bias will influence the predictive ability of

the model and hence, future efforts need to address

this limitation as well.

This paper is the first study in which county-level

data from the recent H1N1 pandemic was used to

understand the effect of socioeconomic determinants

on H1N1 deaths. We estimated that the recent H1N1

could have killed 7667 individuals in the USA. This

estimate is in accord with the lower bound of the CDC

estimates of 8870 deaths [28]. CDC estimated the

prevalence of H1N1 pandemic using a probabilistic

multiplier model that adjusted for sources of under-

ascertainment. The number of deaths was not directly

estimated from the model. The ratio of deaths to

hospitalizations was found to be 6% using the lab-

oratory-confirmed cases. With the assumption that

deaths and hospitalizations were underreported to

the same extent, this fraction was used to estimate

the bounds for H1N1 deaths using the number of

hospitalizations. In addition to the death estimates,

we have listed the possible counties to be targeted

for health-related interventions. The respective state/

county authorities can use these results as the basis

to target and optimize the distribution of public

health resources.

Our results suggest that deaths due to H1N1 were

influenced by social heterogeneity that exists both

between counties and states. As Paul Farmer quotes,

‘ inequality itself constitutes our modern plague’ [4].

H1N1 2009 provided the opportunity to understand

the health heterogeneity that prevails at county level

in the USA. Deaths due to infectious disease are but

a symptom of a crisis with the marginalization of a

subgroup of the population [1, 3]. Our work provides

the additional evidence towards the quantification of

this marginalization and provides the opportunity to

locate the subgroups and nullify the heterogeneity

effect with necessary health-related interventions.

H1N1 death-related data have been documented at

local, county, province, regional, and state level in

many countries. This work provides a novel approach

to use the collected data effectively to quantify the

marginalization at each level, subgroup, the popu-

lation to be targeted and optimize the distribution of

public health resources efficiently.

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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