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1. Introduction. Ogasawara and Yoshinaga [9] have shown that a jB*-algebra is weakly
completely continuous (w.c.c.) if and only if it is *-isomorphic to the 2?*(oo)-sum of algebras
LC(HX), where each LC(HX) is the algebra of all compact linear operators on the Hilbert
space Hx. As Kaplansky [5] has shown that a 5*-algebra is "-isomorphic to the 2?*(oo)-sum
of algebras LC(HX) if and only if it is dual, it follows that a 5*-algebra A is w.c.c. if and only
if it is dual. We have observed that, if only certain key elements of a 2?*-algebra A are w.c.c,
then A is already dual. This observation constitutes our main theorem which goes as follows.
A B*-algebra A is dual if and only if for every maximal modular left ideal M there exists a
right identity modulo M that is w.c.c.

To prove our main theorem we use the fact that every closed left (right) ideal of a B*-
algebra A that contains a nonzero w.c.c. element contains a self-adjoint minimal idempotent.
In order to prove the existence of minimal idempotents in such ideals we use a group theoretic
argument from [2] to show first that every closed left (right) ideal of A that contains a nonzero
w.c.c. element contains a w.c.c. self-adjoint idempotent (Lemma 3.1). We next show that a
w.c.c. commutative 5*-algebra with identity is finite dimensional (Theorem 3.2). As a
consequence of this observation we have the following result due to Ogasawara [8]: A w.c.c.
2?*-algebra with identity is finite dimensional. From this and Lemma 3.1 we obtain the
existence of self-adjoint minimal idempotents in closed left (right) ideals that contain nonzero
w.c.c. elements. We also make use of Theorem 3.2 to give a proof of the following proposition
found in [11]: A weakly sequentially complete 2?*-algebra is finite dimensional. All of these
results are contained in §3. In §4 we prove the main theorem and state some consequences
of it.

We are grateful to the referee for suggesting a shorter proof of Theorem 3.2 and for his
many comments which have contributed so very much to the presentation of this article.

2. Preliminaries. All algebras and vector spaces under consideration are over the
complex field C. A Banach algebra A with involution is called a 5*-algebra if, for any xeA,
I JC*JC I = || x ||2. By [3, p. 48, Theoreme (2.9.5) (iii)], every proper closed left (right) ideal of
a 5*-algebra A is the intersection of all maximal modular left (right) ideals containing it; in
particular, every maximal closed left (right) ideal of A is modular.

Let A be a Banach algebra and A' its conjugate space. An element aeA is called weakly
completely continuous (w.c.c.) if its left and right multiplication operators are weakly com-
pletely continuous, i.e., if they take bounded sets in A into sets that are relatively compact
in the weak topology o(A, A') of A. The set of all w.c.c. elements in A is a closed two-sided
ideal of A [8, p. 362]. A Banach algebra is called weakly completely continuous (w.c.c.) if
each of its elements is w.c.c.
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If A'is a Banach space, then every (norm-)closed subspace of Z is weakly closed [4, p. 422,
Theorem 13]. Thus every closed left (right) ideal of a Banach algebra is weakly closed.

For any subset S of a Banach algebra A, let /(S) and r(S) be the left and right annihilators
of S in A, respectively. A Banach algebra A is called dual if l(r(J)) = J and r(l(R)) = R for
every closed left ideal J and every closed right ideal R of A. An idempotent e in a Banach
algebra A is called minimal if eAe is isomorphic to the complex field. If A is semisimple,
then e is a minimal idempotent if and only if Ae (eA) is a minimal left (right) ideal of A [10,
p. 46].

For any subset S of a Banach space X, let ^ ( S ) = {xeS: |j x || ^ 1). If S is a closed
subspace of X, then 38{S) is a closed subset of X.

We shall need the following simple result.

LEMMA 2.1. Let A be a semisimple Banach algebra and let et and e2 be minimal
idempotents in A. If'etAe2 # (0), then it is a one-dimensional algebra over the complex field.

Proof. Suppose that eiAe2 # (0). Then there exists an element et x in A such that
exxe2 / 0 . Since eyAex is isomorphic to C and, by [10, p. 45, Lemma (2.1.8)], e^Ae2 =
e^Ae^xe^ it follows that exAe2 is one-dimensional over C. It is easy to see that, if e2 et ^ 0,
then elAe2 is isomorphic to C, and, if e2 el = 0, then it is a zero algebra, i.e., the product of
any two elements is zero.

3. B*-algebras with w.c.c. elements.

LEMMA 3.1. Let A be a B*-algebra. Then every closed left (right) ideal of A that contains
a nonzero w.c.c. element contains a nonzero w.c.c. self-adjoint idempotent.

Proof. Let / be a closed left ideal of A that contains a nonzero w.c.c. element. Then /
contains a self-adjoint w.c.c. element a such that [| a || = 1. We have || a2" || = 1 (n = 0 ,1 ,
2 , . . . ) . Consider the sequence S = {a2, a 4 , . . . , a2" , . . .} and let G(a) be the set of cluster
points of S, i.e., the set of points z such that every weak neighbourhood of each z contains
some a2" for arbitrarily large n. Since S is contained in the set {ax: xe&(A)} whose weak
closure is compact (a being w.c.c), by [4, p. 430, Theorem 1], G(a) is not empty and every
subsequence of S contains a subsequence that converges weakly to an element of G(a).
Moreover, it is easy to see that, for every zeG(a), there is a subsequence of S that converges
weakly to z. In fact, let zeG(a) and let E be the norm-closed linear span of 5. Then, by
[7, p. 261, (5)], £ ' is w*-separable with countable dense subset {/„}, say. Hence we may select
a subsequence {xnk} of S such that

|/»(**-*)I <j[ (l^mg/c).

Therefore, by the relative weak compactness of S, replacing {xnk} by a subsequence if necessary,
there is an element y of E such that {xnk} converges weakly to y. Since {/„} is dense in E',
we must have y = z. Hence there is a subsequence of S that converges weakly to z.

To show that G(a) contains nonzero elements we argue as follows. Let M be the closed
*-subalgebra generated by a and let £1 be the carrier space of M. Then M is isometrically
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*-isomorphic to C0(ft), the algebra of all continuous complex-valued functions on the locally
compact space Q vanishing at infinity. Let e be given, 0 < e < 1. Then {<peSl: \ <j)(a) | ^ e}
is compact and hence there exists <j>QeQ, such that |$0(fl)| = !• LetfeA' be an extension of
4>0 to all of A with | / 1 | = || </>0 || • Then /(a2") = 1 (n = 0 ,1 , 2 , . . . ) . Hence G(a) contains
nonzero elements. Using the argument given in the proof of [2, p. 180, Theorem 4], we can
show that G(a) is a group. Let u be the identity of G(a). Then u # 0, u2 = u and, since a* = a,
we also have u* = u. Since J is weakly closed, ueJ. Moreover, since the set of all w.c.c.
elements of A form a (norm-)closed and hence weakly closed two-sided ideal of A, u is w.c.c.
A similar proof holds for a closed right ideal.

THEOREM 3.2. Let A be a commutative w.c.c. B*-algebra with identity. Then A is finite
dimensional.

Proof. Let Q be the carrier space of A. Then SI is a compact Hausdorff space and A is
isometrically *-isomorphic to C(Q), the algebra of continuous complex-valued functions on
£1. Let a e Q and let {Ga} be the collection of all open neighbourhoods of a partially ordered by
inclusion. Then, for each a, there exists / . eC(f i ) such that fx(d) = 1, fa = 0 off Ga and
0 ^fx ^ 1- Since the identity is w.c.c, the net {fa} has a weak adherent point g. Considering
the point measures on fi, we see that the neighbourhood

{/eC(fi): \f(b)-g(b)\ < t} (ben, e > 0)

contains a cofinal subnet of {/„}. Ontakingi = a, this gives g(a) = 1, and on taking b ^ aitgives
g(b) = 0. Since geC(Q), it follows that Q is discrete, and being compact it must be finite.
Hence A has a finite number of self-adjoint minimal idempotents el,e2,...,en, say, and
e = el + e2 + ... + en, where e is the identity of A. Thus every xeA can be expressed in the

n

form x — £ e; x and, since each e( A is one-dimensional, it follows that A is finite dimensional.
i = l

This completes the proof.
As a consequence of Theorem 3.2 we obtain the following result due to Ogasawara

[8, p. 362, Theorem 3]:

COROLLARY 3.3. Let A be a w.c.c. B*-algebra with identity. Then A is finite dimensional.

Proof. Let B be a maximal commutative *-subalgebra of A. Then B is a commutative
w.c.c. 2?*-algebra with identity and hence, by Theorem 3.2, it is finite dimensional. Let
{eu e2, •.., en} be the set of all self-adjoint minimal idempotents in B. It is easily shown
that { î, e2,..., en} is a maximal orthogonal family of self-adjoint minimal idempotents in
A (see [9, p. 21]). Since e = ei+e2 + ...+en, where e is the identity of A, every xeA can be

n

written in the form x = Y e^e,. Hence, by Lemma 2.1, A is finite dimensional.

COROLLARY 3.4. Let Abe a B*'-algebra. Then every closed left (right) ideal of A that
contains a nonzero w.c.c. element contains a self-adjoint minimal idempotent that is w.c.c.

Proof. Let / be a closed left ideal that contains a nonzero w.c.c. element. Then, by
Lemma 3.1, / contains a w.c.c. self-adjoint idempotent u # 0. Since B = uAu is a w.c.c.
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.B*-algebra with identity, it contains a self-adjoint minimal idempotent e by Corollary 3.3.
Since eAe = euAue = eBe, it follows that e is also a self-adjoint minimal idempotent of A;
clearly eeJ. A similar proof holds for a closed right ideal. This completes the proof.

We can also use Theorem 3.2 to prove the following result due to Sakai [11, p. 661,
Proposition 2].

THEOREM 3.5. Let A be a weakly sequentially complete B*-algebra. Then A is finite
dimensional.

Proof. We may clearly assume that A has identity. Let M be a maximal commutative
"-subalgebra of A. Then M is weakly sequentially complete and isometrically *-isomorphic
to C(Q), the algebra of all continuous complex-valued functions on a compact Hausdorff
space £2. Hence, for each ae C(Q), the multiplication operator Ta on C(il) is weakly compact
[4, p. 494, Theorem 6]. Thus M is w.c.c. and so, by Theorem 3.2, it is finite dimensional.
The proof of Corollary 3.3 now shows that A is finite dimensional.

4. Main theorem.

THEOREM 4.1. Let Abe a W-algebra. Then the following statements are equivalent:

(i) A is a dual algebra.
(ii) For every maximal modular left ideal M of A there exists a right identity modulo M

that is w.c.c.

Proof, (i) => (ii). If A is dual, then every maximal modular left ideal M = {x—xe: xeA},
where e is a self-adjoint minimal idempotent. (See [1, p. 155, Theorem 1] and [10, p. 261,
Lemma (4.10.1)].) Now Ae is a minimal left ideal of A and the scalar-valued function (x, y)
given by (x, y)e = y*x (x, yeAe), is an inner product on Ae with | x || = | x |0 = (x, x)112 for
all xeAe. Thus Ae is a Hilbert space and so 28(Ae) is a weakly compact subset of Ae and
hence of A. Therefore every xeAe is w.c.c, and in particular e is w.c.c.

(ii) => (i). Suppose that (ii) holds. Let u be a right identity modulo the maximal modular
left ideal M and suppose that u is w.c.c. Since u # 0, Au ^ (0). Let / = {x—xw.xeA};
J <=. M and J+Au = A. If Mr\Au = (0), then clearly M = J and Au is a minimal left ideal
and hence closed [10, p. 45-46]. Hence ueAu. As u-u2eMnAu = (0), u2 = u, i.e., u is an
idempotent and so M is an annihilator ideal.

Now suppose that MnAu ^ (0). Then Mcontains nonzero w.c.c. elements and therefore,
by Corollary 3.4, M contains self-adjoint minimal idempotents. Let {ex} be a maximal
orthogonal family of self-adjoint minimal idempotents in M. Then, for any finite number of
elements eai, eav ..., e3n from {ea}, u — w(eai + . . . + eaj is a right identity modulo M. Let Q
be the set of all elements in A that are finite sums of elements from {ea}. Since u is w.c.c.
and the net Q a 38{A), uQ has a weak adherent point u', say, and it is easy to show that u'
is unique. Since uQ is contained in M and M is weakly closed, u'eM. Hence u—u'^0 and
is a right identity modulo M; moreover (u—u')ea = 0 for all a. Let / = cl(A(u—u')). Then
/ i=- 0 and Jea = 0 for all a. If JnM ^ (0), then Jr\M contains a self-adjoint minimal idem-
potent / and fett = 0 for all a. As/eM, this means that {ea} is not a maximal orthogonal
family in M, a contradiction. Hence JnM = (0). It is now easy to conclude that u—u' is
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an idempotent, J = A(u—u') and M <*= {x—x(ii—u'):xeA} (see the paragraph above).
Hence, if (ii) holds, then every maximal modular left ideal of A has a nonzero right annihilator.
By the continuity of the involution, every maximal modular right ideal has a nonzero left
annihilator. Since every proper closed left (right) ideal is the intersection of all maximal
modular left (right) ideals containing it, A is an annihilator algebra and consequently, by
[1, p. 157, Corollary], A is dual.

COROLLARY 4.2. Let Abe a B*-algebra. Then A is dual if and only if, for every maximal
modular left ideal M, there is a right identity modulo M that belongs to the closure of the socle
of A.

Proof. If A is dual, the proof of (i) => (ii) of Theorem 4.1 shows that, for every maximal
modular left ideal M, there is a right identity modulo M which belongs to the socle of A.
Since every element of the closure of the socle is w.c.c. the converse is an immediate
consequence of Theorem 4.1.

COROLLARY 4.3. A B*-algebra A is dual if and only if it is w.c.c.

Proof. If A is dual, then the socle of A is dense [10, p. 100, Theorem (2.8.15)] and
consequently A is w.c.c. The converse is clear from Theorem 4.1.

COROLLARY 4.4. A B!|'-algebra A is dual if and only if its socle is dense.
For other proofs of Corollaries 4.3 and 4.4, see [9] and [6] respectively.

REFERENCES

1. F. F. Bonsall and A. W. Goldie, Annihilator algebras, Proc. London Math. Soc. (3) 4 (1954),
154-167.

2. F. F. Bonsall and B. J. Tomiuk, The semi-algebra generated by a compact linear operator,
Proc. Edinburgh Math. Soc. (2) 14 (1965), 177-196.

3. J. Dixmier, C*-algebres et leurs representations (Paris, 1964).
4. N. Dunford and J. T. Schwartz, Linear operators, Part I (New York, 1958).
5. I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.
6. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951),

219-255.
7. G. Kothe, Topologische lineare Rdume (Springer-Verlag, 1960).
8. T. Ogasawara, Finite dimensionality of certain Banach algebras, / . 5c/. Hiroshima Univ.

Ser. A 17 (1954), 359-364.
9. T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach*-algebras, / . 5c/.

Hiroshima Univ. Ser. A 18 (1954), 15-36.
10. C. E. Rickart, General theory of Banach algebras (New York, 1960).
11. S. Sakai, Weakly compact operators on operator algebras, Pacific J. Math. 14 (1964), 659-664.

UNIVERSITY OF OTTAWA

OTTAWA, CANADA

https://doi.org/10.1017/S0017089500001373 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001373

