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A new resolvent-based method is developed to predict the space–time properties of the
flow field. To overcome the deterioration of the prediction accuracy with increasing
distance between the measurements and predictions in the resolvent-based estimation
(RBE), the newly proposed method utilizes the RBE to estimate the relative energy
distribution near the wall rather than the absolute energy directly estimated from the
measurements. Using this extra information from RBE, the new method modifies the
energy distribution of the spatially uniform and uncorrelated forcing that drives the flow
system by minimizing the norm of the cross-spectral density tensor of the error matrix in
the near-wall region in comparison with the RBE-estimated one, and therefore it is named
as the resolvent-informed white-noise-based estimation (RWE) method. For validation,
three time-resolved direct numerical simulation (DNS) datasets with the friction Reynolds
numbers Reτ = 180, 550 and 950 are generated, with various locations of measurements
ranging from the near-wall region (y+ = 40) to the upper bound of the logarithmic region
(y/h ≈ 0.2, where h is the half-channel height) for the predictions. Besides the RWE, three
existing methods, i.e. the RBE, the λ-model and the white-noise-based estimation (WBE),
are also included for the validation. The performance of the RBE and scale-dependent
model (λ-model) in predicting the energy spectra shows a strong dependence on the
measurement locations. The newly proposed RWE shows a low sensitivity on Reτ and the
measurement locations, which may range from the near-wall region to the upper bound
of the logarithmic region, and has a high accuracy in predicting the energy spectra. The
RWE also performs well in predicting the space–time properties in terms of the correlation
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magnitude and the convection velocity. We further utilize the new method to reconstruct
the instantaneous large-scale structures with measurements from the logarithmic region.
Both the RWE and RBE perform well in estimating the instantaneous large-scale structure,
and the RWE has smaller errors in the estimations near the wall. The structural inclination
angles around 15◦ are predicted by the RWE and WBE, which generally recover the DNS
results.

Key words: boundary layer structure, turbulence modelling, turbulent boundary layers

1. Introduction

Credible predictions of turbulent flows have long been an essential concern for numerical
and experimental studies. However, in many cases, only part of the flow information
could be obtained due to the inaccuracy of the numerical models or the limitations of the
experimental measurement techniques. For instance, in the numerical studies, the popular
wall-modelled large-eddy simulation (WMLES) resolves only the large-scale flow motions
beyond the local grid scale and models the effect of the near-wall small-scale motions with
Reynolds-averaged Navier–Stokes (RANS)-like methods to balance the accuracy and cost
for turbulence simulation; see e.g. Larsson et al. (2016), Fu et al. (2021) and Fu, Bose
& Moin (2022). However, the velocity fluctuation in the near-wall region, which is an
important turbulence property, is missing or inaccurate in WMLES (Bae et al. 2018). As
for the experimental studies, the measuring points are usually sparsely placed in space
due to technical limitations, and important flow information might be lost. To derive
the missing flow information in the unresolved or unmeasured regions, many researchers
attempt to estimate the turbulence statistics from limited sets of available flow data, the
methodologies of which could be generally categorized into the data-driven approaches
(Townsend 1976; Marusic, Mathis & Hutchins 2010; Baars, Hutchins & Marusic 2016;
Guastoni et al. 2021) and the physics-based approaches (Hwang & Cossu 2010; McKeon
& Sharma 2010).

The data-driven approaches predict the flow statistics based on the fundamental research
on the statistical properties of wall-bounded turbulence, where the widely recognized
attached eddy model (AEM) (Townsend 1976) and inner–outer interaction model (IOIM)
(Marusic et al. 2010; Baars et al. 2016) are proposed and extensively validated. The AEM
considers the turbulence properties in the logarithmic region to be characterized by a
collection of self-similar energy-containing eddies whose roots are attached to the wall.
From the basic concept of attached eddies, many kinds of statistics of turbulence could
be derived, such as the logarithmic profile of the variance of the streamwise velocity
fluctuations. From AEM, the logarithmic laws could be further extended to describe the
wall-normal distributions of higher-order even moments (Meneveau & Marusic 2013; de
Silva et al. 2015; Yang, Marusic & Meneveau 2016). On the other hand, the IOIM states
that the near-wall turbulence is influenced by the large-scale motions and very-large-scale
motions via the superposition and modulation effects, which also paves the way to predict
the near-wall turbulence using the velocity data in the logarithmic region. Recently, the
consistency between the AEM and the IOIM has been demonstrated by Cheng & Fu
(2022), which enables isolating of the attached eddies at a given single scale and further
predicting their separated superposition effect in the near-wall region. With the isolated
attached eddies at a given length scale, the turbulence properties can be further clarified
(Cheng, Shyy & Fu 2022; Cheng & Fu 2023). However, in practice, the IOIM needs the
given data at the near-wall region to calculate the transfer kernel for predicting the footprint
of the attached eddies in the near-wall region, which could not be directly applied for the
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predictions when the second-order flow statistics are not available. Meanwhile, the AEM
only considers the attached eddies that are dominant in the logarithmic region, which is not
the case in the inner and buffer layers, where the smaller detached eddies are significant.
Besides the above models describing the turbulence, the convolutional neural network
(CNN) is also used for the data-driven prediction of the turbulence properties (Guastoni
et al. 2021; Güemes et al. 2021). For instance, using the model parameters trained from
the existing datasets, Guastoni et al. (2021) reconstruct the flow field with the shear stress
measurements at the wall.

In addition to the data-driven approaches, the physics-based ones predict the turbulence
field based on the Navier–Stokes equations, which govern the flow dynamics. In general,
the physics-based approaches rearrange the Navier–Stokes equations to the form of the
linearized relationship between the nonlinear forcing (input) and the response of velocity,
pressure and temperature (output) (Hwang & Cossu 2010; McKeon & Sharma 2010).
Specifically, when the linearized relationship is defined in the frequency domain, the
operator that builds the linear relationship is named the resolvent operator (McKeon &
Sharma 2010). Taking Fourier transformation to the linearized Navier–Stokes equations
in all the uniform spatial and temporal directions, the linearized relationship between
the nonlinear forcing and the response at each scale is extracted, where the nonlinear
forcing involves the convolutions from all the other scales (McKeon 2017). So far, the
relationship between the forcing and the response is equivalent to the original form of the
Navier–Stokes equations without any assumptions. The response could be fully recovered
as long as the nonlinear forcing is completely known (Morra et al. 2021). However, the
completed knowledge of the nonlinear forcing is unavailable as long as the flow data
are not totally known. Despite this point, important turbulent properties can be extracted
from the resolvent operator itself when the mean velocity profile is known. For instance,
the forcing and response modes ordered by their gains could be obtained after taking
singular value decomposition to the resolvent operator. When the gain of the leading mode
dominates those of the sequential modes, which is referred to as the low-rank behaviour
(Pickering et al. 2021), it can effectively construct a low-dimensional description of the
turbulence (Moarref et al. 2013; Sharma & McKeon 2013; McKeon 2017). Assuming the
low-rank behaviour, Beneddine et al. (2016) predict the streamwise velocity spectra by
fitting the amplitude of the leading response mode, which minimizes the square of the
error between the predicted profile and the measurements at different positions. However,
the energy of the leading resolvent mode is not always predominant over the following
modes (Morra et al. 2021), which means that only taking the leading mode inevitably
sacrifices much information.

Rather than considering only the leading mode, another group of physics-based
approaches implicitly take advantage of the low-rank behaviour by treating the unknown
nonlinear forcing as white in space (Hwang & Cossu 2010; Madhusudanan, Illingworth
& Marusic 2019; Morra et al. 2019). Since the white-noise assumptions imply that the
energies of nonlinear forcing modes are equal to each other among all the modes (Towne,
Schmidt & Colonius 2018), the energies of the response modes are proportional to the
gains accordingly. By modelling a part of the forcing with the eddy-viscosity terms
(Cess 1958; Reynolds & Hussain 1972) in the linearized Navier–Stokes equations and
assuming that the remaining forcing is white noise, the accuracy of prediction on the
fluctuation statistics is much improved (Hwang & Cossu 2010; Morra et al. 2019). Later,
Madhusudanan et al. (2019) estimate the superposition effect of the large-scale structures
on the near-wall region using the eddy-viscosity model with the remaining forcing
assumed as white noise. Gupta et al. (2021) further improve the work of Madhusudanan
et al. (2019) by modifying the forcing profile according to the wall-normal distributions of
the eddy viscosity and flow scales.
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Besides the above approaches that assume a predefined forcing profile, the Kalman
filter-based approaches (Hœpffner et al. 2005; Chevalier et al. 2006) and resolvent-based
approaches (Martini et al. 2020; Towne, Lozano-Durán & Yang 2020) are also proposed.
Illingworth, Monty & Marusic (2018) estimate the large-scale structures in wall turbulence
with the H2-optimal approaches. Illingworth et al. (2018) also demonstrate significant
improvement in the predictions when the eddy-viscosity term is introduced in the
linearized Navier–Stokes equations. Towne et al. (2020) predict the two-point space–time
statistics in the near-wall region of turbulent channel flow by estimating the minimum
forcing that could fully reproduce the measurements, namely the resolvent-based
estimation (RBE). Since the approach only estimates the minimum forcing that recovers
the observations, it underestimates the forcing that generates large responses at other
positions but has minor effects on the measurements (Karban et al. 2022). In terms of
practical applications, the measurements are not guaranteed to be located in the vicinity of
the prediction region, which means that the direct applications of RBE are limited. Later,
Martini et al. (2020) generalizes the RBE approach by taking the forcing colour and sensor
noise into account when constructing the transfer function for estimation. An optimal
linear estimator of the flow states can be obtained by taking the real forcing cross-spectral
density (CSD) tensors as input. In practice, the forcing statistics can be estimated from
additional sensors or approximated from reasonable models. The improved RBE (Martini
et al. 2020) recovers the original one (Towne et al. 2020) when the forcing is assumed to be
white in space and the sensor noise is neglected. Amaral et al. (2021) predict the turbulent
channel flow with wall shear stress and pressure using the improved RBE, showing that
the flow information can be better predicted when the actual forcing spectra are already
known. In practice, a method that can avoid rather predefined or already-known forcing
statistics is indeed needed to fill the gap between theory and real applications.

With the current physics-based methods, the predictions based on the white-noise
assumptions (Madhusudanan et al. 2019; Morra et al. 2019; Gupta et al. 2021) could
represent the general properties of the turbulence, but the accuracy is limited. On the
other hand, without known forcing statistics, the RBE (Towne et al. 2020) performs well
when the prediction layer is located near the measurement layer but becomes invalid
when the prediction location moves far away from the measurement location. In cases
where the measurements are not close to the prediction region, both the methods based on
white-noise assumptions and the RBE are not expected to provide accurate predictions
on the flow information. However, these two kinds of methods could compensate for
each other in a sense. The new method proposed in this study builds the skeleton of
forcing based on the white noise to maintain the predicted response energy even when
the measurement is far away from the prediction, while refines the forcing profile with
near-wall relative energy profile from the RBE results. Through the above procedure, the
advantages of these two kinds of methods are combined in the new approach.

The remainder of this article is organized as follows. In § 2, existing prediction methods
are reviewed and discussed. In § 3, the prediction method is derived and illustrated. In § 4,
the newly proposed method is validated by comparing the prediction with the results from
the direct numerical simulation (DNS) data and existing prediction methods. Discussions
and concluding remarks are presented in § 5.

2. The existing methods

In this section, the mathematical description of the resolvent analysis is introduced,
followed by a brief review of the existing methods to predict the flow field, including
the white-noise-based estimation (WBE) (Morra et al. 2019), the wall-distance-dependent
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model (W-model) and the scale-dependent model (λ-model) (Gupta et al. 2021), as well
as the RBE (Martini et al. 2020; Towne et al. 2020). Basic ideas of the to-be-reviewed
methods will form the cornerstone of our newly proposed method derived in § 3.

2.1. Mathematical description of the resolvent analysis
The incompressible Navier–Stokes equations are given by

∂u
∂t

+ u · ∇u = −∇p + 1
Reτ

∇ · (∇u + ∇uT), (2.1a)

∇ · u = 0, (2.1b)

where Reτ = uτ h/ν is the friction Reynolds number, uτ is the friction velocity, h is the
half-channel height, ν is the kinematic viscosity and the superscript T denotes transpose.
Following the previous studies (Illingworth et al. 2018; Morra et al. 2019; Towne et al.
2020), the forcing f that contains the nonlinear interactions of velocity fluctuations while
excluding the eddy-viscosity term is defined as

f = −u′ · ∇u′ − 1
Reτ

∇ ·
[νt

ν
(∇u′ + ∇u′T)

]
, (2.2)

where the superscript ′ denotes the fluctuation variable. Here, the eddy viscosity νt is
calculated from the semi-empirical expression by Cess (1958) and reported by Reynolds
& Hussain (1972) as

νt = ν

2

{
1 + κ2Re2

τ

9
(2y − y2)2(3 − 4y + 2y2)2

[
1 − exp

(−Reτ y
A

)]2
}1/2

− ν

2
, (2.3)

where the constants κ = 0.426 and A = 25.4. By rearranging (2.1), the linearized
Navier–Stokes equations hold

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū + ∇p′ − 1

Reτ

∇ ·
[νT

ν
(∇u′ + ∇u′T)

]
= f , (2.4a)

∇ · u′ = 0, (2.4b)

where ū is the mean velocity, and νT = νt + ν is the total viscosity. Note that (2.4a,b) are
equivalent to the incompressible Navier–Stokes equations (2.1a,b).

From (2.2) and (2.4), the inclusion of the eddy viscosity model into the linearized
Navier–Stokes equations changes both the definition of forcing and the linearized
relationship between the forcing and response. In McKeon & Sharma (2010), the total
forcing is defined as f = −u′ · ∇u′. The forcing re-defined in this study is equivalent to
the remaining portion of the forcing in McKeon & Sharma (2010) after excluding the
eddy-viscosity term (1/Reτ )∇ · [νT/ν(∇u′ + ∇u′T)]. In the following sections, the tested
prediction methods actually provide different approaches to model the re-defined forcing
in (2.2). The total forcing, on the other hand, is equal to the summation of the portion that
is modelled by the eddy-viscosity terms and the remaining portion that is modelled by the
prediction methods.

The linearized Navier–Stokes equations in each spatial scale ks are obtained by taking
the Fourier transformation to (2.4) in the uniform spatial directions. For instance, in
the fully developed turbulent channel flow, the Fourier transformation is taken in the
streamwise (x) and spanwise (z) directions. The linearized equations (2.4) at ks = (kx, kz)
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can be therefore written in a discretized state-space form with N points in the wall-normal
direction as

M
∂qks

(t)
∂t

= Aksqks
(t) + Bf ks

(t), (2.5a)

mks(t) = Cqks
(t) + nks(t), (2.5b)

where qks
(t) = [uT

ks
(t), pks(t)]

T, mks(t) ∈ CNm is the system observation, nks(t) ∈ CNm

is the measurement noise and Nm is the number of observations. The expressions of
the operators M , Aks , B and C are provided in Appendix A. Further, taking the Fourier
transformation to (2.5a) in the temporal direction, the following linear relationship at each
spatio-temporal scale k = (ks, ω) holds,

q̂k = Hk · Bf̂ k, (2.6)

where q̂k = [ûT
k , p̂k]T, ûk, p̂k and f̂ k are the Fourier coefficients of velocity, pressure and

forcing at scale k, respectively, and the resolvent operator Hk is expressed as,

Hk = (−iωM − Aks

)−1
, (2.7)

where i = √−1. From (2.6), the velocity ûk and pressure p̂k are regarded as the response
of the input forcing f̂ k through the linear operator Hk. Since we will focus on predicting
the velocity field in this study, the linearized equation (2.7) can be reduced to the following
form:

ûk = Rk · f̂ k, (2.8)

where Rk is obtained from Hk by deleting the rows corresponding to p̂k at the left-hand
side of (2.7) and columns corresponding to the constant 0 at the right-hand side. A typical
application of (2.8) is to approximate the coherent structures of turbulence using the
resolvent modes, which are obtained by taking the singular value decomposition to Rk,
i.e.

ûk =
∞∑

j=1

(
Ψ̂ k,jσk,jΦ̂

∗
k,j

)
· f̂ k =

∞∑
j=1

σk,jΨ̂ k,j

(
Φ̂

∗
k,j · f̂ k

)

=
∞∑

j=1

σk,jΨ̂ k,jβk,j, (2.9)

where
∑∞

j=1(Ψ̂ k,jσk,jΦ̂
∗
k,j) = Rk is the result of singular value decomposition of the

resolvent operator Rk, the response mode Ψ̂ k,j and forcing mode Φ̂k,j are ordered by their
singular value σk,j, the expansion coefficient βk,j = (Φ̂

∗
k,j · f̂ k) is the projection of forcing

on the jth resolvent forcing mode and the superscript ∗ denotes the Hermitian transpose.
Using (2.8), the CSD tensors can be calculated as

Suu,k = 〈
ûkû∗

k
〉 = Rk ·

〈
f̂ k f̂ ∗

k

〉
· R∗

k = RkSf f ,kR∗
k, (2.10)

where 〈·〉 denotes the ensemble average. As in (2.10), the CSD tensor of the response is
fully determined when the forcing CSD Sf f ,k is known. Thus, in many existing methods
(e.g. Morra et al. 2019; Towne et al. 2020; Gupta et al. 2021), the estimating or modelling
object is actually Sf f ,k, after which the response Suu,k can be directly derived from Sf f ,k
via (2.10). In the following, the typical methods that make use of the resolvent analysis to
predict the turbulence field will be introduced.
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2.2. The white-noise-based estimation
With the simplest assumption, the portion of forcing that excludes the eddy-viscosity
terms, as defined in (2.2), can be modelled to be white as in some research (Hwang &
Cossu 2010; Madhusudanan et al. 2019; Morra et al. 2019), which means it is spatially
uniform and uncorrelated. Note that, in this approach, the total forcing as defined by
McKeon & Sharma (2010) is the summation of the eddy-viscosity portion and the
white-noise-assumed portion. With the white-noise assumption of the WBE approach,
the CSD tensor of forcing at each scale k can be expressed as

Sf f ,k,WBE = EkI, (2.11)

where Ek, as the energy of forcing, keeps constant at each node and in each direction.
Substituting (2.11) into (2.10) and considering the resolvent modes in (2.9), it can be
deduced that

Suu,k,WBE = Ek(RkR∗
k) = Ek

∞∑
j=1

σ 2
k,j(Ψ̂ k,jΨ̂

∗
k,j). (2.12)

If we define (Ψ̂ k,jΨ̂
∗
k,j) as the CSD of the response at the jth mode, the resultant response

CSD can be interpreted as the linear summation of the CSDs of all the resolvent modes
weighted by the gains σ 2

k,j. The white forcing, as the simplest form, can be utilized to
estimate the coherent structures (Hwang & Cossu 2010; Madhusudanan et al. 2019; Gupta
et al. 2021) and the spectra of turbulence (Morra et al. 2019). However, the resultant
accuracy of prediction with the initial white forcing is far from engineering usage (Towne
et al. 2020) even if the forcing is partially modelled by the eddy-viscosity term.

2.3. The wall-distance-dependent and scale-dependent models
To improve the prediction accuracy of the white forcing, Gupta et al. (2021) propose the
W-model and scale-dependent model (λ-model) by modifying the profile of the forcing
according to the profile of the eddy viscosity and the flow scales. The W-model and
λ-model maintain the diagonal property of Sf f ,k as in (2.11), while modifying the vertical
energy distribution. Extended from the work of Jovanović & Bamieh (2005) in laminar
flow, Gupta et al. (2021) propose the W-model by assuming that the vertical profile of
forcing energy is proportional to that of the eddy viscosity, i.e.

wk = Ekνt, (2.13)

where wk denotes the diagonal of Sf f ,k, i.e. the energy profile of forcing at k. Based on the
fact that the nonlinear interaction of turbulence is scale dependent (Cho, Hwang & Choi
2018), Gupta et al. (2021) further propose the λ-model with the modified eddy viscosity,
i.e.

νt,k = λ

λ+ λm
νt, (2.14)

where λ = 2π/(k2
x + k2

z )
0.5, and λm( y) = 50/Reτ + (2 − 50/Reτ )tanh(6y). The forcing

energy profile is thereby calculated by wk = Ekνt,k. The strategies of modifying the
forcing profiles by Gupta et al. (2021) efficiently improve the prediction of the vertical
spatial correlation of streamwise velocity fluctuations in turbulent channel flow. However,
the W-model and λ-model cannot accurately predict the energy distribution of velocity
fluctuation in the near-wall region, as will be further discussed in the following sections.
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2.4. The resolvent-based estimation
The RBE method (Towne et al. 2020) estimates the minimum L2-norm forcing that can
fully recover the measured signal. Denoting m as the measured set of variables and u as
the complete set of variables from all across the computational domain, where m = �u,
the RBE could be briefly expressed as

Sf f ,k,RBE = T f f ,k · Smm,k · T ∗
f f ,k, (2.15)

where the estimation operator T f f ,k = (�Rk)†, Smm,k = �Suu,k�T is the CSD tensor
of the measured variables at scale k, Sf f ,k,RBE is the estimated CSD tensor of forcing,
the expression of the observation matrix � can be found in (A8) in Appendix A and the
superscript † denotes the pseudo-inverse. With the estimated forcing, the CSD tensor of
the complete set of variable u is calculated by

Suu,k,RBE = RkSf f ,k,RBERk
∗. (2.16)

The RBE has been validated to be efficient for predicting the field where the turbulence
is highly correlated with the measured reference points (Towne et al. 2020; Yang
et al. 2020). On the other hand, since the RBE method only estimates the ‘observed’
forcing, its prediction deteriorates with the decrease of correlation between the signals of
measurements and the predicted locations.

Later, Martini et al. (2020) demonstrate that the estimated forcing in the original

version of RBE in (2.15) is actually the stationary point of the error matrix ε̂ f ,kε̂
†
f ,k,

where the error ε̂ f ,k is defined as the difference between the estimated forcing and the
white-noise-assumed forcing here. Since the real forcing is not white, the estimation of the
original RBE is not optimal to minimize the relative error between the estimated forcing
and the real one. Martini et al. (2020) then propose the improved RBE that incorporates
the effect of the forcing colour and the measurement noise, i.e.

T f f ,k,opt = Sf f ,k(�Rk)†
[
(�Rk)Sf f ,k(�Rk)† + Snn,k

]−1
, (2.17)

by which the stationary point of the error matrix ε̂ f ,kε̂
†
f ,k between the estimated forcing

and the real one is obtained. Here, Snn,k is the CSD tensor of the measurement noise at
scale k, which is set as zero since the DNS data at a given reference layer can be directly
provided as measurements without introducing additional errors in this study. When the
real forcing colour from additional sensors is used to inform the transfer function, the
optimized RBE performs better than the original RBE in estimating the turbulent channel
flow given the same amount of measurements. However, the optimized RBE needs the
knowledge of forcing statistics obtained from additional sensors or forcing models, which
is not considered in this study. Thus, the RBE method mentioned in the following refers
to its original version by Towne et al. (2020), which will be used to develop our newly
proposed methods and provide comparison results.

The above existing methods can be categorized into two groups. First, the WBE,
W-model and λ-model assume that the forcing is uncorrelated in space, then explicitly
model the forcing energy with predefined profiles. These approaches aim to describe
the forcing statistics throughout the flow field. On the other hand, the information of
the measurements is only utilized to determine the overall forcing energy Ek, while the
estimated relative energy distribution of forcing is independent of the measurements. The
advantage of these methods with predefined profiles is that the predicted response can
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generally reflect the energy distribution of the response to some extent, no matter how far
the measurement layers are located from the prediction region. However, the performance
of the prediction is highly dependent on the specific form of the predefined profiles, which
implies that the accuracy of this group of methods could not be as good as expected, even if
the measurements and predictions are close to each other, as can be seen in § 4. Second, the
RBE infers the forcing statistics from the measurements without imposing assumptions on
the form of the forcing profile. The RBE has been validated to be efficient for predicting the
field where the turbulence is highly correlated with the measured reference points (Towne
et al. 2020; Yang et al. 2020). However, since it only estimates the ‘observed’ forcing, its
prediction accuracy deteriorates with increasing distance between the measurements and
the predicted locations.

3. Derivations of the resolvent-informed white-noise-based estimation method

From the above discussions of the existing methods, the group of methods assuming
predefined profiles and the RBE compensate with each other in a sense. Specifically, the
group of methods assuming predefined profiles performs better in estimating the general
energy distribution of the forcing and response when there is a long distance between
the measurements and the prediction region. On the other hand, the RBE is efficient in
providing reasonable estimations when the measurements are located near the prediction.
According to Holford, Lee & Hwang (2023), the energy spectra of turbulence can be
well recovered using the spatially uncorrelated forcing with optimal profiles. In this study,
following the strategy of modifying the spatially uncorrelated forcing profile, we aim to
propose an adaptive method to adjust the spatially uniform and uncorrelated forcing profile
based on reliable inference informed by the RBE.

As already discussed, when the measured reference layer is not close to the prediction
region, the RBE cannot be directly applied for prediction due to the deterioration of
accuracy. However, the RBE can, instead, be utilized to estimate the relative energy profile
of the response with respect to an assumed reference layer that is closer to the wall than
the actual reference layer. Based on the basic RBE formula (2.15)–(2.16), the predicted
relative CSD tensor of velocity ui near the wall can be estimated as

Ŝuiui,k,RBE = Suiui,k,RBE

Smm,k
= Rk(�Rk)† · (�Rk)†∗Rk

∗, (3.1)

where Smm,k should be the scalar energy of ui at a single reference height so that it can be
eliminated from the denominator by the numerator. Note that there is no requirement on
the specific value of the reference height in (3.1), a pretty high accuracy can be obtained
for predicting the relative CSD tensor. This desirable property of the RBE in estimating the
relative response statistics provides a standard for the modification of the initially assumed
white forcing profile. To be distinguished from the actual reference layer, which is denoted
as yR, the assumed reference layer used for estimating the relative CSDs in (3.1) is denoted
as the quasi-reference layer yQ in this article. To obtain the relative CSD tensor used for
the optimization, the value of yQ should be determined first. According to Towne et al.
(2020), the accuracy of RBE decreases as the wavenumbers and frequency increase. As the
wavenumbers and frequency are closely related to the flow scale, we choose to determine
the quasi-reference layer according to the flow scale in the wall-normal direction. The
purpose of this step is to let the RBE provide a reasonable estimation of the widest possible
wall-normal extent. To quantify the wall-normal scale, the linear coherence spectrum
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(LCS) γ 2 (Baars et al. 2016) is introduced here, i.e.

γ 2(k) =

∣∣∣〈ûk( y+
Q)ûk( y+

P )
〉∣∣∣2〈∣∣∣ûk( y+

Q)

∣∣∣2〉 〈∣∣ûk( y+
P )
∣∣2〉 , (3.2)

where ûk is the Fourier coefficient of u at scale k, the overline denotes the complex
conjugate and y+

P = 15 corresponds to the height of the near-wall inner peak (Smits,
McKeon & Marusic 2011). Since the LCS at a given distance increases as the flow scale
enlarges, the LCS could be an effective index to quantify the flow scale. Based on the
value of LCS preliminarily estimated from the WBE, the quasi-reference layer yQ is set
as the height beyond the inner peak where γ 2(k) = 0.3. When the height of yQ exceeds
yR, it will be set as yR instead. With the above procedure, the value of yQ is adaptively
determined. Details of the implementation of the LCS calculation and discussions about
the impact of the threshold LCS on the prediction accuracy are provided in Appendix C.

With the information of the turbulence statistics below yQ from the RBE, our goal is to
minimize the relative error between the estimated CSD of the velocity u from the modified
forcing and the RBE-estimated one. As will be revealed in § 4.3, the RBE just provides the
reliable prediction of the relative energy profile below the quasi-reference layer yQ, which
does not work well when y � yQ. Thus, the modification range of the forcing is restricted
below yQ. For the region beyond the quasi-reference layer, there is no reliable information
to further improve the forcing profile there. Thus, a conservative strategy is adopted by
setting the forcing to be unity at each node for y � yQ, which corresponds to the spatially
uniform forcing, as also assumed by the WBE reviewed in § 2.2. Derivations of the explicit
relationship between the relative energy profiles of forcing and response are provided in
Appendix D. For each scale k = (kx, kz, ω), the norm minimization problem is considered
as follows:

minimize
wk

∥∥∥∥∥diag
[
Suu,k(wk)

] |y<yQ

diag
[
Suu,k(wk)

] |y=yQ

− diag
[
Ŝuu,k,RBE

]
|y<yQ

∥∥∥∥∥ ,

subject to 0 ≤ wk( y) ≤ 1,
dwk( y)

dy
≥ 0, ∀y ∈ [0, yQ),

wk( y) = 1, ∀y ∈ [yQ, 2h],
(3.3)

where the norm ‖‖ is defined as ‖‖ = ∫ yQ
0 ()2 dy. This constrained optimization problem is

solved with the interior point method (Momoh, El-Hawary & Adapa 1999). By minimizing
the norm of the error matrix, the energy spectrum of the modified response is optimized
with respect to the RBE-estimated one. After the relative profile of wk is obtained from
the optimization, the forcing profile will be multiplied by a unified coefficient Ek to match
the response energy at the reference layer for all the velocity components of u, v and w,
respectively.

The above construction process of the newly proposed RWE method is sketched in
figure 1. To illustrate the actual modification process of the forcing and its effects on the
response energy profile, the scale with (kx, kz, ω) = (3.0/h, 30/h, 1.3uc/h) corresponding
to the large-scale motions (Smits et al. 2011) is selected, as in figure 2, where uc is the mean
velocity at the half-channel height h. The forcing energy is uniformly distributed in the
vertical direction before the modifications, with the corresponding response energy profile
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Modifications of the
forcing profile with RBEMeasured instantaneous

velocity signal as input
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forcing

Prediction region

Wall-normal direction

Figure 1. Schematic sketch of the white-noise-based estimation (RWE).
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Figure 2. Sketch of the modification process at (kx, kz, ω) = (3.0/h, 30/h, 1.3uc/h). (a) Energy profile of
forcing. (b) Energy profile of the streamwise velocity.

much larger than the DNS results in the near-wall region, as figure 2(b). The height of the
quasi-reference layer y+

Q is determined according to the LCS value defined in (3.2). During
the modification procedure, the forcing energy is reduced in the near-wall region to let the
predicted relative energy profile approach that by the RBE till the norm of the error matrix
in (3.3) reaches the minimum under the constraints. The forcing and response profiles after
modification are denoted in the orange colour in figures 2(a) and 2(b), respectively. The
response energy profile after modification matches well with the DNS and RBE results.

In the next section, validations of the RWE will be conducted in terms of the prediction
capability of the near-wall statistics as well as the instantaneous flow field with the DNS
data and several representative existing prediction methods. The WBE (Morra et al. 2019)
and RBE (Towne et al. 2020) will be included in the following validations, since they
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Reτ Nx Nz Ny Lx/h Lz/h Ly/h (uτ T)/h

180 768 512 97 12π 4π 2 11.45
550 1536 1536 257 8π 4π 2 8.80
950 3072 2304 385 8π 3π 2 5.39

Table 1. Parameters of the incompressible channel DNS set-ups.

provide the initial forcing profile and the reference for optimization for the newly proposed
RWE method, respectively. Besides, the λ-model (Gupta et al. 2021) considers the effects
of flow scale on the estimated forcing profile, which is found to perform better than
the W-model and WBE (named the B-model by Gupta et al. 2021) for estimating the
large-scale motions in the near-wall region. Thus, the λ-model will also be included in the
following validations. Note that the λ-model is originally used in cases where temporal
information of velocity is unknown. The forcing is thus assumed to be white in time in
those cases (Gupta et al. 2021), the response CSD tensor of which can be obtained via
the algebraic Lyapunov equation. Meanwhile, in this study, the λ-model will be applied
in the time-resolved cases instead, where the flow is estimated at each spatio-temporal
scale quantified by k = (kx, kz, ω). The modified eddy viscosity and forcing profiles in
the λ-model will be calculated by (2.14) at each scale (kx, kz), keeping consistent with the
original version.

4. Results

In this section, the DNS data with three friction Reynolds numbers equal to 180, 550 and
950 are used to provide reference measurements at corresponding locations and validate
the tested methods in predicting the flow properties of turbulent channel flows.

4.1. Descriptions of the DNS database
The code used to compute the extensively validated DNS database for channel flows
(Del Alamo & Jiménez 2003; Hoyas & Jiménez 2008) is utilized to generate the
time-resolved channel flow data with Reτ = 180, 550 and 950. Details of the DNS
set-ups are listed in table 1. To provide time-resolved results, the sampling time intervals
	t+ = (	t)u2

τ /ν are set as 2.13, 4.81 and 5.09 for cases with Reτ = 180, 550 and 950,
respectively. The normalized total simulation time (uτ T)/h is larger than 5.0 in each case
to obtain statistically convergent results. To assess the DNS dataset generated in this study,
comparisons of the mean and root-mean-squared velocity profiles with the open source
DNS database (Del Alamo & Jiménez 2003; Hoyas & Jiménez 2008) are provided in
Appendix B.

To process the DNS data, the flow field is divided into blocks with a spatial domain of
sizes Lx/h = 4π, Lz/h = π and Ly/h = 1 in each case. Given that the turbulent channel
flow is statistically symmetric about the centreline y = h, the flow data at y = y0 will be
utilized together with those at y = 2h − y0 when investigating the flow at y = y0. The
time periods of the blocks are set as 80	t, 80	t and 120	t for cases with Reτ = 180,
550 and 950, respectively, with 75 % overlap in the temporal direction. The rectangular
window function is used when conducting spectral analyses. With the above set-ups for
data processing, the numbers of blocks are 1128, 752 and 360 for cases with Reτ = 180,
550 and 950, respectively.
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Case 180-40 550-40 550-100 950-40 950-100 950-200

Reτ 180 550 550 950 950 950
y+

R 40 40 100 40 100 200
yR/h 0.22 0.073 0.18 0.042 0.11 0.21

Table 2. Case settings for validation.

4.2. Case settings
Six cases are set to validate the prediction methods, as summarized in table 2. Besides the
Reynolds number Reτ , the height of the reference layer yR where the measurements are
obtained is also treated as an independent variable to test the sensitivities of the methods
to the location of measurements, which ranges from the near-wall region at y+ = 40 to
the upper bound of the logarithmic region at y/h ≈ 0.2. The wall-normal direction y is
discretized with 129, 201 and 257 Chebyshev polynomials in cases with Reτ = 180, 550
and 950, respectively, with no-slip boundary conditions applied at the walls.

4.3. Reynolds stress profiles
In this section, the root-mean-squared (r.m.s.) velocities and the Reynolds shear stress
(RSS) are investigated to study the ensemble effect of fluctuations with all the
spatio-temporal scales along the height. Specifically, the r.m.s. velocities quantify the
fluctuation energies of u′, v′ and w′, which are important indexes to validate the DNS
(e.g. Cheng et al. 2019) or prediction methods (e.g. Towne et al. 2020). On the other hand,
the RSS 〈u′v′〉 quantifies the correlation of u′ and v′, which is closely related to the skin
friction of wall-bounded turbulence (Fukagata, Iwamoto & Kasagi 2002) and has been
investigated via the resolvent analysis for flow control (Luhar, Sharma & McKeon 2015;
Nakashima, Fukagata & Luhar 2017).

When Reτ = 180, the only reference layer at y+ = 40 is used for the predictions.
According to the evaluations of RBE by Yang et al. (2020), the best performance of
RBE in terms of estimating the r.m.s. profile of the streamwise velocity is achieved when
y+ = 39, which is very close to y+ = 40 used in the current case. As in figure 3(a), the
r.m.s. profiles predicted by RBE are pretty consistent with the DNS results in all three
directions, with only 2.0 % relative error at the inner peak of the streamwise r.m.s. velocity
profile. The RWE also performs well when Reτ = 180 with a relative error of 13.2 % at the
inner peak. On the other hand, the predictions from the λ-model and WBE both deviate
quite a lot from the DNS results, with maximum errors of 25.7 % and 109.7 % at the
inner peaks of the streamwise r.m.s. velocity. Note that this case is considered to be the
least challenging one with the smallest Reynolds number and the closest reference layer
to the wall, the large prediction errors in the λ-model and WBE results indicate that the
predefined forcing profiles cannot properly model the forcing effects if not adjusted by
additional flow information, especially in the near-wall region.

With the increase of Reτ , the RBE continues performing well when the reference layers
are located at y+ = 40, with the maximum error of 7.7 % at the inner peak in case
950-40. However, as the reference layer moves away from the wall, the RBE-predicted
energy decreases rapidly, which is considered to be attributed to the decrease of coherence
between the signals at the reference layer and the near-wall region. Especially, when the
reference layer is located at y+ = 200 with Reτ = 950, the energy peak can be barely
observed in the RBE-predicted streamwise r.m.s. profile. Like the RBE, the energies

976 A31-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

86
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.867


A. Ying, T. Liang, Z. Li and L. Fu

RWE

λ-model

RBE

WBE

R
.m

.s
. v

el
oc

ity
R

.m
.s

. v
el

oc
ity

R
.m

.s
. v

el
oc

ity
R

.m
.s

. v
el

oc
ity

y+100
0

1

3

4

2

102

y+100
0

1

3

4

2

102
y+100

0

1

3

4

2

102

100
0

1

3

4

2

102 100
0

1

3

4

2

102 100
0

1

3

4

2

102

100
0

1

3

4

2

102 100
0

1

3

4

2

102 100
0

1

3

4

2

102

100
0

1

3

4

2

102 100
0

1

3

4

2

102 100
0

1

3

4

2

102

(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 3. Comparisons of the r.m.s. profiles for cases with Reτ = 180 (a,d,g, j), 550 (b,e,h,k) and 950 (c, f,i,l).
The solid lines denote the DNS results. The dashed lines denote the predictions from the RWE (a–c), λ-model
(d– f ), RBE (g–i) and WBE ( j–l), where the lines with square, lower triangles and upper triangles denote the
RMSs of the streamwise velocity, spanwise velocity and vertical velocity, respectively. The vertical dotted lines
denote the reference layers corresponding to the dashed lines with the same colours.

predicted by the λ-model also tend to decrease when the reference layer lifts upward, which
overestimates and underestimates the energy with y+

R = 40 and y+
R = 200, respectively.

When y+
R = 100, the λ-model-predicted results match fairly well with the DNS results.

The WBE overestimates the energies of the fluctuations of all the velocity components in
all the tested cases, which indicates that the WBE cannot be directly used to estimate
the energy magnitude in the near-wall region. Despite this, the capacity of WBE to
estimate the distributions of the relative energy spectra should be further investigated in
the following sections. Compared with the above methods, the RWE performs steadily
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Figure 4. Comparisons of the RSS profiles for cases with Reτ = 180 (a), 550 (b) and 950 (c). The solid lines
and dashed lines denote the DNS results and predictions, respectively. The lines with square, upper triangles,
lower triangles and diamonds denote RWE, RBE, λ-model and WBE results, respectively, where only the RWE
results are depicted with opaque colours. The vertical dotted lines denote the reference layers corresponding to
the dashed lines with the same colours.

well in all the cases with various Reynolds numbers and choices of the reference layers,
with the maximum error equal to 16.6 % at the inner peak of streamwise r.m.s. velocity in
case 950-40.

Besides the r.m.s. velocity profiles below the reference layer, those in the higher region
in each case are also depicted in figure 3 with translucent curves. From the RWE results,
the predicted profiles match well with the DNS results in the wall-normal range of
y ∈ ( yR, 0.2h) for all the r.m.s. velocities with different Reynolds numbers and reference
layers. Moreover, for the same Reynolds number, the profiles predicted by the RWE
nearly overlap with each other for each Reynolds number, which again demonstrates the
insensitivity of the RWE results to the choice of reference layer. For the region that is
higher than the upper bound of the logarithmic region, i.e. y > 0.2h, the RWE results
become larger than those from the DNS, which should be attributed to the mismatch of
the RWE-modelled forcing profile in the outer layer with the real forcing in the DNS
results. On the other hand, the other three considered methods cannot provide satisfying
results at y > yR. For the RBE, the magnitudes of the r.m.s. velocities shrink rapidly when
the prediction location lifts up from the reference layer. On the contrary, the λ-model
results become obviously larger than the DNS results at y > yR, which implies that the
λ-model overestimates the forcing in the logarithmic region. The WBE underestimates the
fluctuation energies at y ∈ ( yR, 0.2h), which in turn overestimate the magnitudes in the
outer layer.

The RSS profiles are depicted in figure 4. The RWE-predicted RSS profiles, which are
obtained from the measurements of the streamwise velocity at the reference layers, are
fairly consistent with the DNS results in all the cases. The RBE results that are depicted
with upper triangles match well with the DNS results when y+

R = 40. However, when
the reference layer increases to 100 and 200, the magnitudes of the RBE-predicted RSS
profiles become obviously underestimated. In the meantime, the λ-model and WBE neither
provide satisfying results with different Reynolds numbers and reference heights.

From the above discussions, the impacts of the friction Reynolds numbers and
measuring locations on the prediction accuracy of the tested methods can be concluded as
follows. When the Reτ increases, the accuracy of prediction with the same y+

R by the RBE
and RWE does not show an obvious difference. Meanwhile, the variation of the measuring
locations significantly influences the prediction accuracy of all the methods except for the
newly proposed RWE. Specifically, the increasing height of the reference layer reduces
the predicted fluctuation energy at a given height for the RBE and λ-model, the errors of
which become minimum when y+

R = 40 and 100, respectively. Since the measurements are
usually not guaranteed to be fixed at an ideal location in the WMLES or experiments, the
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insensitivity of the choices of reference layers implies a large potential of RWE to practical
engineering applications.

4.4. One-dimensional energy spectra of the fluctuation velocities
Besides the r.m.s. profiles, the energy spectra, which describe the energy distributions
among different scales, provide a more comprehensive picture to display the predicted flow
properties. In this section, the distributions of one-dimensional energy spectra at different
heights as functions of kx, kz or ω will be studied. For brevity, only the results of streamwise
velocity u, as the most interesting physical quantity, in the cases where the reference layers
are the farthest away from the wall for the corresponding Reynolds numbers, i.e. cases
180-40, 550-100 and 950-200, are chosen for the validations in this section.

Figure 5 depicts the premultiplied one-dimensional energy spectra of the streamwise
velocity u with the reference layer located at y+ = 40, where the location of the reference
layer is denoted with the white dashed line in each case. The black dashed line denoting
the contour of 0.5SDNS,max is marked in each case to highlight the energy-concentrating
region, where SDNS,max is the maximum premultiplied spectral energy of the DNS result in
the same case. The values of the premultiplied energy are normalized by SDNS,max. When
the reference layer is located at y+ = 40 with Reτ = 180, the RBE works well in predicting
the energy distributions at different heights and flow scales, with the maximum error
lower than 0.25SDNS,max according to figure 6, that depicts the relative error. This result
is consistent with the previous work that also uses the RBE to predict the energy spectra
with the reference layer at y+ = 37 (Towne et al. 2020). The energies predicted by the
RWE also match fairly well with the DNS results, whose maximum error is approximately
0.46SDNS,max. On the other hand, the relative errors that are larger than 1.0SDNS,max are
observed in the results of the λ-model and WBE. For the λ-model, the maximum error
occurs at the heights around the inner peak y+ = 15 and the scales that are slightly smaller
than the energy-concentrating scales predicted by the DNS, as denoted by the black dashed
lines. This indicates that the deviations between the λ-model and DNS results mainly
concentrate at small scales near the inner peak. On the other hand, the WBE overestimates
the energy within a wide wall-normal range from y+ = 3 to 20, which indicates that the
WBE results cannot be directly applied to the predictions of the magnitude of the energy
spectra.

Although the WBE overestimates the magnitude of the energy, it is still worth
investigating the relative spectral energy predicted by the WBE. To depict the relative
spectral energy distributions in the WBE results, we set the upper bound of the colour bar
as the maximum spectral energy predicted by the WBE rather than SDNS,max. The relative
distributions of the energies predicted by WBE are roughly consistent with those from the
DNS, while deviations could also be found, e.g. the inner peak for the streamwise velocity
from WBE is located at about y+ ≈ 10, which should be at y+ ≈ 15 according to the DNS
results.

Among the above-discussed methods, the RBE provides the most accurate results,
followed by the RWE. Although the RWE result does not totally recover the RBE results,
it provides a better result over the WBE and λ-model.

With the increase of the reference height yR, as in figures 7–10, the prediction accuracy
of RBE deteriorates obviously. The RBE-predicted energy-concentrating regions denoted
by the black dashed lines shrink towards the vicinity around y+ = 15 in case 550-100,
which finally disappear in case 950-200, indicating that the near-wall energy is seriously
underestimated by RBE when y+

R = 200. On the other hand, as the reference layer lifts
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Figure 5. Premultiplied energy spectra of streamwise velocity as a function of the wall-normal distance y and
the streamwise wavenumber kx (a,d,g, j,m), spanwise wavenumber kz (b,e,h,k,n) and frequency ω (c, f,i,l,o) in
case 180-40, from the results of DNS (a–c), RWE (d– f ), RBE (g–i), λ-model ( j–l) and WBE (m–o). The
black dashed lines denote the contour of 0.5SDNS,max, and the white dash-dotted lines denote the height of the
reference layer. The values shown in the figures are normalized by SDNS,max.
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Figure 6. Relative error of the premultiplied energy spectra of streamwise velocity as a function of the
wall-normal distance y and the streamwise wavenumber kx (a,d,g, j,m), spanwise wavenumber kz (b,e,h,k,n)
and frequency ω (c, f,i,l,o) in case 180-40, from the results of DNS (a–c), RWE (d– f ), RBE (g–i), λ-model
( j–l) and WBE (m–o). The values shown in the figures are normalized by SDNS,max. The black solid and dashed
lines denote the contours of 0.75SDNS,max and 0.25SDNS,max, respectively.

up, the magnitude of the λ-model-predicted energy decreases gradually. In case 550-100,
the λ-model results match well with the DNS results, with the relative error lower than
0.35SDNS,max, as in figure 8. When y+

R increases to 200, the energy magnitude predicted by
the λ-model continues decreasing and consequently becomes lower than the DNS results
by more than 0.75SDNS,max in the small scales at around y+ = 15, as in figure 10. The WBE
significantly overestimates the magnitude of energy, while the relative energy distribution
roughly reflects the patterns of the DNS results. Compared with the WBE, the λ-model
has a higher accuracy, which highlights the importance of including the scale effects
when determining the forcing profile. Meanwhile, the RWE keeps the highest accuracy
in the streamwise energy distributions with k+

x , k+
z , and ω+, with the maximum error of
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Figure 7. Same as figure 5, but in case 550-100.

0.33SDNS,max. The good performance of the RWE supports the capability of the adaptive
modification process as derived in § 3.

In order to quantitatively analyse the patterns of the near-wall predictions from different
methods as the reference layer moves away from the wall, the relative errors at the inner
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Figure 8. Same as figure 6, but in case 550-100.

peak (y+ = 15) and along different scales quantified by k+
x , k+

z and ω+ are shown in
figure 11. The values are normalized by SDNS,max, as consistent with those in figures 6,
8 and 10. The green curves denoting the relative errors of the WBE results deviate
too much from the reference zero value, and thus they cannot be fully depicted in the
figures. The predicted energies from the RBE and λ-model show a clear trend to decrease
compared with the DNS results as the reference layer lifts up. For instance, in case 180-40,
the spectral energy predicted by the λ-model is larger than the DNS results at almost
all the scales, whose maximum error is more than 1.37SDNS,max with a positive value.
When the reference layer lifts up to y+ = 200, the maximum relative error of the λ-model
predictions becomes 0.7SDNS,max with a negative value instead. With the increasing height
of the reference layer, the RBE and λ-model achieve their best performance with y+

R = 40
and 100, respectively. On the other hand, the relative error of the RWE results is pretty
small in the cases tested. Meanwhile, with the increase of flow scales, the spectral energy
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Figure 9. Same as figure 5, but in case 950-200.

predicted by the RWE tends to increase compared with the DNS results, which can also
be observed in the predictions from the other tested methods.
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Figure 10. Same as figure 6, but in case 950-200.

4.5. Two-dimensional spectra of the fluctuation velocities
In this section, the two-dimensional auto- and cross-spectra of the fluctuation velocities
in the near-wall region (y+ = 10) are analysed to investigate the energy distributions and
correlations at different spatial scales. For brevity, the results for the auto-spectra of the
streamwise velocity and the cross-spectra of the streamwise and wall-normal velocities are
presented for the analyses.

First, the results of streamwise velocity in cases 180-40, 550-100 and 950-200 at the
near-wall plane at y+ = 10 are presented in figure 12. In order to show the relative energy
spectrum predicted by the WBE, the separate colour bar with its upper bound set as the
maximum spectral energy predicted by the WBE is used. Meanwhile, the relative errors of
the premultiplied spectra are depicted in figure 13, with the black solid and dashed lines
denoting the contours of 0.75SDNS,max and 0.25SDNS,max of the DNS results, respectively.
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Figure 11. Relative error of the predicted energy at y+ = 15 along k+
x (a,d,g), k+

z (b,e,h) and ω+ (c, f,i) in
cases 180-40 (a–c), 550-100 (d– f ) and 950-200 (g–i). The values of the curves are normalized by SDNS,max.

When Reτ = 180 with y+
R = 40, it is observed that the predictions of RWE and RBE are

relatively consistent with the DNS results. On the other hand, the λ-model and WBE
obviously overestimate the spectral energy. This observation is consistent with that in the
one-dimensional spectra as discussed in § 4.4. With the increase of the reference height
y+

R , the predicted energies from the RBE and λ-model decrease correspondingly. When
y+

R = 200, only a small amount of the RBE-predicted energy is observed in the large-scale
region with λx/h � 2, which indicates that the RBE becomes invalid when the reference
layer in this case. In § 4.4, we have observed that the λ-model-predicted one-dimensional
energy distributions match well with the DNS results with a wide range of k+

x and k+
z

values. However, when considering the energy distributions as binary functions of λx
and λz, the λ-model results are not consistent with the DNS. From figure 13, the energy
predicted by the λ-model is obviously lower than the DNS result, in the energetic region
denoted by the black dashed lines. In the RWE results, the energy-concentrating regions
that are surrounded by the black dashed lines in figure 12 match well with the DNS results.
From figure 13, the largest relative error in the RWE results occurs in case 180-40, which
is equal to 0.48SDNS,max. In cases 550-100 and 950-200, the relative error is always lower
than 0.4SDNS,max. As consistent with the one-dimensional results, the WBE results are
overestimated by more than 4 times in magnitude for all the cases. Whereas the WBE
results fairly reflect the energy distributions from the DNS.

Then, the cross-spectra between u′ and v′ at y+ = 10 are investigated, as shown in
figure 14 with the relative errors presented in figure 15. The values in figures 14 and 15
are normalized by the peak absolute value of the DNS results, as denoted by |SDNS|max
here. The region with large values of negative correlations between the streamwise
and wall-normal velocities are observed in each case from the DNS results, which is
slightly offset towards smaller flow scales than the auto-spectra as in figure 12. In
case 180-40, the RBE provides the most accurate result of the cross-spectra. The RWE
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Figure 12. Premultiplied energy spectra as a function of the streamwise wavelength λx and spanwise
wavelength λz from the results of DNS (a–c), RWE (d– f ), W-model (g–i), RBE ( j–l) and WBE (m–o), at
y+ = 10 in case 180-40 (a,d,g, j,m), case 550-100 (b,e,h,k,n) and case 950-200 (c, f,i,l,o). The values shown in
the panels are normalized by SDNS,max.
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Figure 13. Relative errors of the predicted premultiplied energy spectra normalized by the maximum energy
spectra density from DNS as a function of the streamwise wavelength λx and spanwise wavelength λz from the
results of RWE (a–c), W-model (d– f ), RBE (g–i) and WBE ( j–l), at y+ = 10 in case 180-40 (a,d,g, j), case
550-100 (b,e,h,k) and case 950-200 (c, f,i,l). The values shown in the panels are normalized by SDNS,max.

result is larger in magnitude than the DNS results for approximately 0.3|SDNS|max in the
energy-concentrating region in case 180-40. Meanwhile, the relative errors of the RWE
results are much smaller than those in the λ-model and WBE results. As the reference
layer lifts up to y+ = 100 and 200, both the RBE and λ-model obviously underestimate
the correlations between u′ and v′. Meanwhile, the RWE keeps a relatively low prediction
error in the estimation of the cross-spectra in cases 550-100 and 950-200.
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Figure 14. The same as figure 12, but for the premultiplied cross-spectra between u′ and v′ at y+ = 10. The
values shown in the panels are normalized by |SDNS|max. Case 180-40 (a,d,g, j,m), case 550-100 (b,e,h,k,n) and
case 950-200 (c, f,i,l,o).

4.6. Space–time properties of the fluctuation velocities near the wall
The space–time correlation is an important property of turbulence (He, Jin & Yang
2017). According to Taylor’s frozen hypothesis (Taylor 1938), the spatial distributions of
the turbulent motions are carried past a fixed point by the convection velocity without
significant changes. However, Taylor’s frozen hypothesis cannot accurately describe the
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Figure 15. The same as figure 13, but for the relative errors of the premultiplied cross-spectra between u′ and
v′ at y+ = 10. The values shown in the panels are normalized by |SDNS|max. Case 180-40 (a,d,g, j), case 550-100
(b,e,h,k) and case 950-200 (c, f,i,l).

complex space–time properties of turbulence (He & Zhang 2006; He et al. 2017). In this
section, we will test the capability of the newly proposed RWE method in estimating the
space–time properties of turbulence in the near-wall region.

The space–time correlation R(r, τ ) is defined as the correlation of the velocity
fluctuation at (x, t) and (x + r, t + τ), which can be calculated by

R (r, τ ) =
〈
u′(x, t)u′(x + r, t + τ)

〉
√〈

u′(x, t)2
〉 〈

u′(x + r, t + τ)2
〉 =

∑
k Suu,k exp(i(kxr − ωτ))∑

k Suu,k
, (4.1)
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Figure 16. Space–time correlation of the streamwise velocity from the results of DNS (a–c), RWE (d– f ),
λ-model (g–i), RBE ( j–l) and WBE (m–o) at y+ = 10 in cases 180-40 (a,d,g, j,m), 550-100 (b,e,h,k,n) and
950-200 (c, f,i,l,o). The slope of the black dashed lines denotes the mean streamwise velocity at the prediction
layers, while the red dot-dashed lines denote the convection velocity calculated by (4.2).
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for stationary stochastic processes in the x and temporal direction such as the fully
developed turbulent channel flow. With (4.1), the space–time correlation can be estimated
using the predicted spectra Suu,k. The space–time correlations of the streamwise velocity
obtained from different methods are depicted in figure 16, where the slopes of the black
and red dashed lines respectively denote the local mean streamwise velocity 〈u〉 and the
convection velocity Uc, as defined by

Uc = arg max
U

∫ ∞

−∞
R (Ut, t) dt, (4.2)

following Choi & Moin (1990). From the DNS results in figures 16(a)–16(c), the
magnitude of the space–time correlation at a given spatio-temporal point increases
with the increasing Reτ , which is due to inner-flow scaling (Kunkel & Marusic 2006)
for the flows in the near-wall region. In all three cases, the red dashed line that
denotes the convection velocity Uc does not overlap with the black one that denotes
the local mean streamwise velocity 〈u〉, where Uc > 〈u〉. The deviations of Uc and
〈u〉 in the near-wall region are consistent with previous observations (Kim & Hussain
1993; Del Alamo & Jiménez 2003). Since the convection velocity Uc quantifies the
propagation of the coherent structures (Kim & Hussain 1993; He et al. 2017), the
near-wall flow structures are propagated with a larger velocity than the local streamwise
velocity.

In the predicted results from the four considered methods, quite diverse patterns are
observed. In case 180-40, the RWE and RBE results match well with the DNS results in
terms of the correlation magnitude. However, the convection velocities predicted by the
RWE and RBE are slightly lower than the DNS results, as the slopes of the predicted
red dashed lines are smaller than those of the DNS. On the other hand, the space–time
correlations predicted by the λ-model and WBE deviate even larger from the DNS
results. For the λ-model, the regions where the space–time correlations are larger than 0.2
concentrate at the vicinity of the red dashed line corresponding to the convection velocity,
which conflicts with the turbulence nature (He et al. 2017). The space–time correlation
predicted by the WBE is smaller than that from the DNS at a given spatio-temporal point.
Moreover, the convection velocities predicted by the λ-model and WBE appear to be
smaller than the local mean streamwise velocity, with relative errors larger than those
of the RWE and RBE results in magnitude.

When the reference height yR increases from 40 to 200, the space–time correlations
predicted by RWE tend to become larger compared with the DNS results, which
indicates that the large-scale motions are overestimated as the reference layer lifts
up. The RBE-predicted results show a much larger overestimation of the space–time
correlations, with the dark red region where the correlation magnitude is larger than
0.6 occupying the depicted area when y+

R = 200. Meanwhile, the convection velocity
predicted by the RBE is obviously larger than the DNS results in case 950-200. As
discussed in figure 12, only the turbulent motions with large scales with λx/h � 2 are
estimated by the RBE at y+ = 10 in case 950-200, which means that the space–time
correlations predicted by the RBE are dominated by the large-scale flow motions with high
spatio-temporal coherence. The λ-model-predicted correlations are large in magnitude in
the region close to the red dashed line that denotes the convection velocity, which totally
deviates from the patterns of the DNS results. The space–time correlation distributions
predicted by the WBE also appear to increase in magnitude as the reference layer
lifts up.

From the above discussions on the space–time properties, it is noticed that the
predicted near-wall convection velocities are quite different among the results from
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Figure 17. Convection velocity as a function of y+ for cases 180-40 (a), 550-40 (b), 550-100 (c), 950-40 (d),
950-100 (e) and 950-200 ( f ).

different methods. To further investigate the variations of the predicted convection velocity
with different Reynolds numbers and reference heights, figure 17 shows convection
velocity Uc as a function of y+ in all six cases with Reτ = 180–950 and the reference
layer, ranging from y+ = 40 to y/h = 0.2. The relative errors of the predicted convection
velocities for different methods along the height are shown in figure 18. Distinct
characteristics are observed in the convection velocities predicted by different methods.
For RBE, the convection velocity matches well with the DNS results when y+

R = 40 with
all the three considered friction Reynolds numbers that are equal to 180, 550 and 950. In
case 950-40, the RBE-predicted convection velocity is lower than the DNS results near
the wall by approximately 14 %, which is still the most accurate compared with the results
from other prediction methods. With the increase of the reference height, the near-wall
convection velocity by RBE increases and thus deviates from the DNS results, which
is attributed to the underestimated near-wall small-scale flows with smaller convection
velocities compared with those of the large-scale motions. On the other hand, the WBE and
λ-model underestimate the convection velocity when y+

R = 40, which should be induced
by the overestimated small-scale flows near the wall. With the increase of reference
height, the predicted convection velocities by λ-model and WBE increase correspondingly,
just like the phenomenon observed in the RBE results. A non-physical increase of Uc
when approaching the wall in the WBE results is observed at the near-wall region in
cases 550-100 and 950-200, making the WBE-predicted near-wall convection velocity
the largest among all the methods. The λ-model provides the most accurate predictions
of the convection velocity in cases 550-100 and 950-200. In all the tested cases, the RWE
steadily provides fairly well results in predicting the convection velocity. When y+

R = 40
and 100, the relative errors between the RWE and the DNS results are less than 15 %.
When y+

R = 200, the RWE-predicted convection velocity shows an enlarged deviation with
respect to the DNS results with the maximum error equal to 16.4 % near the wall, which
is still smaller than that in the WBE and RBE results.
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the same methods in figure 17, respectively.

4.7. Instantaneous large-scale flow structure of the streamwise velocity near the wall
According to the IOIM (Marusic et al. 2010; Cheng & Fu 2022), the footprint of the
large-scale motions on the lower region can be calculated as

u+
L
(
x+, y+, z+) = F−1

x
{
HL
(
λ+x , y+)Fx

[
u+

o
(
x+, y+

o , z+)]} , (4.3)

where u+
o is the streamwise velocity fluctuation at y+

o in the logarithmic region, and Fx
and F−1

x denote the Fourier transform and inverse Fourier transform in the streamwise
direction, respectively. Gupta et al. (2021) extend the transfer kernel HL to quantify the
correlation between u+( y+) and u+

o ( y+
o ) at a given two-dimensional length scale of

(λ+x , λ+z ) rather than just the streamwise scale λ+x . The re-defined transfer kernel HL can
be calculated as

HL
(
λ+x , λ+z , y+) =

〈
û
(
λ+x , λ+z , y+, z+) û

(
λ+x , λ+z , y+

0 , z+)〉〈
û
(
λ+x , λ+z , y+

0 , z+) û
(
λ+x , λ+z , y+

0 , z+)〉 = Suu,yyo(kx, kz)

Suu,yoyo(kx, kz)

=
∑

ω Suu,yyo(kx, kz, ω)∑
ω Suu,yoyo(kx, kz, ω)

. (4.4)

Since all the tested methods can directly predict the CSD tensor of the velocity from the
measurements, the transfer kernel HL can be estimated from the auto-spectrum coefficient
Suu,yoyo(kx, kz, ω) and the cross-spectrum coefficient Suu,yyo(kx, kz, ω) from the estimated
CSD tensor. In Gupta et al. (2021), the large-scale fluctuations are estimated with the linear
model as in (4.3). Following Gupta et al. (2021), we will also conduct the estimation
of large-scale structures using the transfer function estimated from the tested methods.
Case 950-200, where the reference layer is the farthest away from the wall among all the
tested cases, will be used to investigate the estimated footprint at two prediction heights
of y+ = 100 and 10 that correspond to the logarithmic region and the near-wall region,
respectively.
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Figure 19. Comparisons of the predicted footprint of the large-scale motions of y+
R = 200 with the prediction

layer of y+ = 100 in case 950-200 from DNS (a–c), RWE (d– f ), W-model (g–i), RBE ( j–l) and WBE (m–o).
Panels (a,d,g, j,m) are the instantaneous flow field, (b,e,h,k,n) are the energy spectra and (c, f,i,l,o) are the
relative error normalized by the maximum spectral energy in the DNS results. The values of fluctuation velocity
shown in (a,d,g, j,m) are normalized by the mean velocity at y = h. The value of spectral energy and relative
error shown in (b,e,h,k,n) and (c, f,i,l,o) are normalized by SDNS,max, respectively.

Figure 19 shows the estimated large-scale structures of the streamwise velocity
fluctuation at y+ = 100. From the instantaneous flow field shown in the left column,
the RWE and RBE predictions well reflect the characteristics of the instantaneous flow
structures. The good performance of RWE and RBE can also be seen in the spectral
space, where the relative errors are smaller compared with those of the λ-model and
WBE. Specifically, the relative errors in the RWE results are smaller than those in the
RBE results, with a maximum error of 0.13SDNS,max in the premultiplied energy spectra.
On the other hand, the WBE and λ-model overestimate and underestimate the fluctuation
energy at y+ = 100, respectively.

As the prediction layer approaches the wall, the magnitude of relative errors between
the predictions from all the tested methods becomes larger, as in figure 20. For the RWE
methods, the largest magnitude of error equal to 0.26SDNS,max appears at y+ = 10 for the
large-scale motions with (λx/h, λz/h) = (6.2, 1.6), where the predicted energy is lower
than the DNS result. Meanwhile, another extreme point for error from RWE is found
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Figure 20. Same as figure 19, but with the prediction layer at y+ = 10.

at (λx/h, λz/h) = (2.5, 0.6) with the positive value equal to 0.17SDNS,max. The relative
errors in the RBE predictions reach the extreme points at (λx/h, λz/h) = (6.2, 1.6) and
(2.5, 0.4). At the extreme points, the errors from RBE are equal to −0.34SDNS,max and
0.32SDNS,max, both of which are larger than those from RWE at the same points. The
λ-model-predicted energy is lower than the DNS for the scales with λx/h � 6, with the
relative error larger than 0.5SDNS,max, which indicates that the fluctuation energy predicted
by the λ-model is much overestimated in the near-wall region. As for the WBE, the relative
error is larger than 0.3SDNS,max when λx/h � 1.8 and 0.4 � λz/h � 0.8. Considering the
above comparisons, the RWE performs better than the other tested methods, with the
smallest relative error in the estimated energy spectra at both the logarithmic region and
the near-wall region.

In Gupta et al. (2021), the λ-model and WBE (namely B-model) are also used to predict
the large-scale motions in the near-wall region, with the assumption that the input forcing
is white in time, which leads to the same conclusion that the energy predicted by the
λ-model is lower than that from the WBE. However, when applied in time-resolved cases
as in this study, the energies predicted by the λ-model and WBE both tend to decrease
compared with those using the white-in-time forcing in Gupta et al. (2021), which causes
the obvious underestimation of energy by the λ-model. The deviations between the results
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Figure 21. Structure inclination angles of the predicted fluctuation velocity in (a) case 550-100, (b) case
950-100 and (c) case 950-200.

generated by the forcing with different temporal properties indicate that the λ-model could
be improved by considering the effect of temporal scales when applied in the time-resolved
cases. On the other hand, the validity of the RWE-kind method for estimating large-scale
motions in cases where only the spatial data are available should be further tested.

From the instantaneous flow field for large-scale motions as discussed above, the
structures are observed to delay backward as the prediction layer approaches the wall.
The spatial delay of the flow structure is quantified by the SIA (Marusic & Heuer 2007),
which is defined as

θ = arctan
[
(y/(	x∗)

]
, (4.5)

where 	x∗ = arg max	x Rτu(	x), and

Rτu (	x) = 〈τ (t) u (t + 	x/U)〉√〈
τ 2
〉 〈

u2
〉 =

∑
k Sτu,k exp(ikx	x)

στσu
, (4.6)

is the correlation function between the wall shear stress and the streamwise velocity
fluctuation with a spatial delay of 	x, and Sτu,k is the cross-spectra between the wall shear
and the velocity fluctuations at k. To further investigate the ability of the tested methods
in predicting the spatial distribution of the flow structures, the structural inclination angles
(SIAs) from the predictions are analysed in the following. Since the logarithmic region
does not exist clearly for the channel flow with Reτ = 180, only the cases 550-100, 950-100
and 950-200 will be discussed.

Figure 21 depicts the SIAs in the tested cases based on the reference positions located
inside the logarithmic region from y+ = 100 to y/h = 0.2 (Jiménez 2018). According
to the DNS results, the inclination angles keep almost constant around 15◦ at reference
positions with different heights, which is consistent with the results in Marusic & Heuer
(2007). In case 550-100, all the tested methods fairly predict the inclination angle of
around 15◦ except for the λ-model. In fact, the λ-model-predicted SIAs are always around
10◦ in all the three cases shown in figure 21. In case 950-100, the RBE-predicted SIA is
larger than the DNS result by approximately 3◦ when y+ = 100. As the height lifts up, the
SIA predicted by RBE reaches the maximum value of approximately 19◦ when y+

R = 125,
then gradually decreases and finally overlaps with the DNS results when y+

R = 200. The
RWE and WBE perform well in case 950-100, with the r.m.s. error compared with the
DNS result equal to 0.96◦ and 1.55◦, respectively. When the reference layer moves to
y+ = 200, as in figure 21(c), the RBE-predicted SIA is accurate when y+ � 175. However,
when the horizontal layers approach the wall, the SIA predicted by the RBE decreases,
which becomes around 12◦ when y+ = 100. On the other hand, the RWE has the highest
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accuracy, with the root-mean-squared error equal to 0.81◦. Meanwhile, the WBE-predicted
results are also close to the DNS results, whose r.m.s. error is 1.14◦.

Based on the above analyses of the flow structures predicted by the tested methods,
the RWE has the best performance in estimating both spectral energy distributions and
the structural inclination angles of the large-scale motions of the turbulent channel flow.
Meanwhile, the WBE also performs well in predicting the SIAs, indicating that the relative
distribution of the coherent structures can be fairly estimated by the WBE which just
utilizes the white-noise-assumed forcing.

5. Conclusions

In this study, a new method for predicting the turbulent channel flow is proposed, which
is denoted as RWE. The RWE modifies the spatially uniform and uncorrelated forcing
profile based on the relative value of response energy in the near-wall region estimated by
the RBE (Towne et al. 2020). Comprehensive validations are made to investigate the ability
of RWE to predict the spectra of the incompressible turbulent channel flow. Time-resolved
DNS datasets with Reτ = 180, 550, and 950 are used to provide limited layers of reference
measurements for the predictions. The DNS results are further used as a standard to
evaluate the accuracy of different prediction methods, including the RWE, λ-model (Gupta
et al. 2021), RBE and the method using the WBE. To test the sensitivity of the prediction
methods on the locations of measurements and the friction Reynolds numbers, several
reference layers ranging from y+ = 40 at the near-wall region to y/h ≈ 0.2 at the upper
bound of the logarithmic region are set in cases with Reτ = 180, 550 and 950, resulting in
a total number of six cases for the validations.

The r.m.s. profiles of the velocity fluctuations are first tested for all six cases. The r.m.s.
profiles predicted by the RWE are pretty consistent with the DNS results. Specifically, the
relative deviations of the streamwise r.m.s. peaks between the RWE and DNS results are
less than 11 % in all the tested cases, indicating that this newly proposed method is robust
in the friction Reynolds numbers and the measurement locations. On the other hand, the
performances of the RBE and λ-model show a dependence on the specific measurement
locations. The prediction accuracy of RBE is close to that of RWE when the reference
layer is located at y+ = 40 that is in the vicinity of the wall. With the increase of the
reference height, the accuracy of RBE near the wall deteriorates rapidly. The near-wall
energy predicted by the λ-model also decreases when the reference layer lifts. The λ-model
reaches its best performance with the reference layer at y+ = 100, and overestimates and
underestimates the near-wall energy when y+ = 40 and 200, respectively. In all the tested
cases, the WBE largely overestimates the near-wall energy, indicating that the WBE is not
suitable to be directly used for the estimations of near-wall energy magnitude.

The prediction capability of the considered methods is further investigated by examining
the energy spectra. The RBE continuously shows a good prediction capacity at specific
reference layers at y+ = 40. Meanwhile, it is observed that the relative spectra predicted
by the WBE can fairly reflect the energy distribution of the DNS results. Compared with
the other tested methods, the RWE better predicts the energy distribution of velocity
fluctuations at different scales along the heights ranging from the wall to the reference
layer. On the other hand, compared with the DNS results, the predicted energy of all the
considered methods tends to decrease as the flow scale decreases, while the RWE keeps
the minimum relative error.

The space–time properties of the predicted flow field are also investigated, including
the magnitude of the space–time correlation and the convection velocity. In case 950-200,
the magnitude of space–time correlations is overestimated by all the methods, while the
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RWE and WBE provide the closest results compared with the DNS. On the other hand, the
RBE obviously overestimates the correlation magnitude, especially at the near-wall region
y+ = 10 due to the underestimation of the small-scale motions. The convection velocity
of the coherent structures is also studied. The RBE and RWE results match well with the
DNS when the reference layer is located at y+ = 40 that is close to the wall. However,
the predicted convection velocity in the near-wall region by the RBE and RWE increases
with the increasing height of the reference layer, which reaches the maximum error when
y+ = 200. In case 950-200, the RWE-predicted convection velocity is larger than the DNS
result by 16.4 % at the near-wall region, which is smaller than the WBE and RBE.

The instantaneous flow field near the wall can be predicted based on the estimated
CSD sensor and the reference velocity signal in the logarithmic region. The large-scale
structures are well predicted by the RWE and RBE. On the other hand, the λ-model and
WBE underestimate and overestimate the energies of the near-wall large-scale motions,
respectively. The SIAs from the tested methods are researched to further investigate the
characteristics of the predicted flow structures. The WBE and RWE perform well in
predicting the SIAs in cases 550-100 and 950-200 when compared with the DNS results,
i.e. at around 15◦.

From the above discussions, the strategy to modify the forcing profile informed by
the RBE shows a strong potential in predicting the turbulent statistics of incompressible
channel flows. Meanwhile, there are some discussions on the application scope of the
current RWE method and its future extensions. (i) In this study, we focus on estimating
the near-wall statistics based on the measurements in the higher region, especially for the
cases where the reference layer is located in the logarithmic region. A related problem
could be the estimation of the flow patterns in the logarithmic region based on the wall
measurements, which is explored by Amaral et al. (2021) using the RBE and Guastoni
et al. (2021) using the CNN. Due to the restrictions of yQ � yR when determining
the quasi-reference layer, the current RWE will degenerate to WBE when yR → 0. To
effectively make use of the wall measurements, the way to determine yQ in the current
RWE should be modified, which can be explored in future studies. (ii) The current RWE
approach only uses one type of observation at one reference layer. It is clear that the
prediction accuracy could be further improved with different measurements at multiple
reference layers with suitable modelling approaches. Such a topic is to be explored in the
future work. (iii) The method used in this study relies on the availability of time-resolved
measurement data. The RWE could be more practical if it can predict the flow with
measurement data that are sparse in time, which might be realized using the assumptions
of the stochastic forcing as used by Hwang & Cossu (2010) and Gupta et al. (2021).
(iv) Possible extensions of the RWE to other types of turbulent flows, such as the pipe
flows, boundary layers and jet flows, could be explored in the future. For wall-bounded
turbulence, the basic steps of the RWE can be directly applied. According to Monty
et al. (2009) and Lee & Sung (2013), the differences between the channel/pipe flows
and boundary layers are obvious in the very-large-scale motions, which are energetic in
the outer region. In the inner region where the RWE is applied, the differences in flow
structures are not as obvious as those in the outer region. Thus, the RWE is believed to
be valid in estimating the wall-bounded turbulence, including the turbulent pipe flows
and boundary layers. For jets, the approach of RWE developed in this study could not
be directly applied, since the flow pattern is different from that of the wall-bounded
turbulence. In Schmidt et al. (2018), the inclusion of the eddy viscosity has been
demonstrated to largely improve the agreement with the resolvent modes and the spectral
proper orthogonal decomposition modes, which implies the potential of linear estimation
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of jets in the future. However, to our knowledge, the applicability of the RBE for jets from
limited measurements is not fully investigated. Future studies are needed to explore the
applications of the RWE-like methods in estimating the jets. (v) The validity of the RWE
in predicting the compressible or stratified turbulence has not been tested, which should
be comprehensively investigated in the future.
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Appendix A. Linearized Navier–Stokes operator

Recall the discretized state-space form of the linearized Navier–Stokes equations as

M
∂qks

(t)
∂t

= Aksqks
(t) + Bf ks

(t), (A1a)

mks(t) = Cqks
(t) + nks(t). (A1b)

The operators M ∈ C4N×4N , Aks ∈ C4N×4N , B ∈ C4N×3N in (A1a) are expressed as

M =

⎡
⎢⎣

IN 0 0 0
0 IN 0 0
0 0 IN 0
0 0 0 0

⎤
⎥⎦ , Aks =

[
Lks −∇T

∇ 0

]
, B =

⎡
⎢⎣

IN 0 0
0 IN 0
0 0 IN
0 0 0

⎤
⎥⎦ . (A2a–c)

The spatial linearized Navier–Stokes operator Lks ∈ C3N×3N in (A2a–c) for the
momentum equations is calculated as

Lks = L0 + ikxLx + LyD + ikzLz + L2(−k2
x I + D2 − k2

z I), (A3)

with

Lx =
⎡
⎣ū −v ′

T 0
0 ū 0
0 0 ū

⎤
⎦ , Ly =

⎡
⎣−v ′

T 0 0
0 −2v ′

T 0
0 0 −v ′

T

⎤
⎦ , Lz =

⎡
⎣ 0 0 0

0 0 0
−v ′

T 0 0

⎤
⎦ ,

L0 =
⎡
⎣0 u′ 0

0 0 0
0 0 0

⎤
⎦ , L2 =

⎡
⎣−vT 0 0

0 −vT 0
0 0 −vT

⎤
⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A4)
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where ū = diag[ū1], ū1 is the mean streamwise velocity profile, vT = (1/Reτ )diag
[(1/ν)νT ], v ′

T = (1/Reτ )diag[(1/ν)ν′
T ], D and ′ denote ∂/∂y. The Hamiltonian operator

∇ ∈ CN×3N in (2.7) is calculated as

∇ = [
ikxIN D ikzIN

]
. (A5)

The observation matrix � in (A1b) is determined by the location of the measured
variable. In this study, the state matrix is assembled as

qks
(t) = [

uT
ks

(t), pks(t)
]T = [

uks(t), vks(t), wks(t), pks(t)
]T

. (A6)

Denoting (u1, u2, u3) = (u, v, w), when the measured variable is the velocity ui (i =
1, 2, 3) at the nth node, then the observation matrix � ∈ C1×4N should be expressed as

� = [
O1×[(i−1)N+n−1] 1 O1×[4N−(i−1)N−n]

]
. (A7)

Note that, in other cases, such as when the state matrix is assembled in another approach
or the measurements are located at multiple wall-normal locations, the expression of the
measurement operator should be redetermined in an analogous manner. For instance, in
(2.15), the resolvent operator Rk is utilized, which excludes the rows corresponding to the
pressure state. In this case, when the measured variable is the velocity ui (i = 1, 2, 3) at
the nth node, the observation matrix as denoted by � should be calculated by

� = [
O1×[(i−1)N+n−1] 1 O1×[3N−(i−1)N−n]

]
. (A8)

Appendix B. Assessment of the DNS dataset generated in this study

In figure 22, the DNS dataset generated in this study is compared with the open source
DNS database (Del Alamo & Jiménez 2003; Hoyas & Jiménez 2008) for the mean
streamwise velocity and the r.m.s. velocities. Very small differences are found between the
two datasets, which demonstrates that the DNS data generated in this study are reliable.

Appendix C. Discussions on the determination of quasi-reference layer

The LCS (γ 2) used to determine the quasi-reference layer yQ is estimated using the WBE
in each spatio-temporal scale. This quantity is obtained by firstly estimating the CSD
tensor with the white-noise-assumed forcing through (2.12), i.e.

Suu,k = RkSf f ,kR∗
k = EkRkR∗

k. (C1)

From the definition of γ 2 in (3.2), and considering (C1), γ 2 is calculated by

γ 2(k) =

∣∣∣〈û( y+
Q)û( y+

P )
〉∣∣∣2〈∣∣∣û( y+

Q)

∣∣∣2〉 〈∣∣û( y+
P )
∣∣2〉

=
S2

uu,k

(
y+

Q, y+
P

)
Suu,k

(
y+

Q, y+
Q

)
Suu,k

(
y+

P , y+
P
)

=

∣∣∣�(u, y+
Q)RkR∗

k�T(u, y+
P )

∣∣∣2[
�(u, y+

Q)RkR∗
k�T(u, y+

Q)
]
· [�(u, y+

P )RkR∗
k�T(u, y+

P )
] , (C2)
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Figure 22. Comparisons of the mean and r.m.s. profiles between the open-source DNS results (Del Alamo &
Jiménez 2003; Hoyas & Jiménez 2008) and those generated in this study; (a,d) Reτ = 180, (b,e) Reτ = 550,
(c, f ) Reτ = 950.
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Figure 23. Distributions of the quasi-reference layer y+
Q at different wavelengths with ω = 10uτ /kx in cases

180-40, 550-100 and 950-200.

where the expressions of Rk and �(u, y+) can be found in (2.7)–(2.8) and Appendix A,
respectively.

Since the LCS calculated in (C2) is determined separately in each scale k, the height
of the quasi-reference layer calculated from the LCS is also determined scale by scale.
When the threshold LCS is 0.3 as adopted in this study, the value of y+

Q at the wavelength
(λx, λz) = (2π/kx, 2π/kz) with ω = 10uτ /kx in cases 180-40, 550-100 and 950-200 are
depicted in figure 23. It can be observed that the height of the quasi-reference layer tends
to increase when the flow scale is larger.

In this study, we use the threshold LCS value (denoted as LCSt) to determine the height
of the quasi-reference layer, which has an important impact on the estimation result of the
RWE. To efficiently modify the forcing profile, an ideal choice of the quasi-reference layer
should be as high as possible under the premise of keeping the RBE valid for estimating
the near-wall statistics. To test the impact of LCSt on the estimation accuracy, the RWEs
with five values of LCSt equal to 0.1, 0.2, 0.3, 0.4 and 0.5 are set to estimate the streamwise
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Figure 24. Impact of the threshold LCS on the estimation error of the streamwise r.m.s. profile.

Case 180-40 550-40 550-100 950-40 950-100 950-200

RWE 13.2 11.8 3.3 16.6 10.1 8.9
RBE 2.0 5.9 −28.0 7.7 −20.6 −47.4
λ-model 25.7 24.5 −8.5 17.5 −8.0 −24.0
WBE 109.7 122.1 113.4 103.6 115.2 115.7

Table 3. Summary of the relative percentage errors of the predicted streamwise r.m.s. velocity at the inner
peak.

r.m.s. profiles in cases 950-40, 950-100 and 950-200. To quantify the relative estimation
error in the tested cases, the integrated relative error of the streamwise r.m.s. profile is
defined as

ε =

⎡
⎢⎢⎣
∫ yR

0

(
urms,RWE − urms,DNS

)2 dy∫ yR

0

(
urms,DNS

)2 dy

⎤
⎥⎥⎦

0.5

. (C3)

The estimation errors are summarized in figure 24. A universal law between the relative
error and LCSt clearly exists in all the tested cases when LCSt � 0.2. Although the tested
cases with LCSt = 0.2 appear to have the minimum errors, we notice that there are sharp
increases of the relative error when LCSt decreases from 0.2 to 0.1 in cases 950-100
and 950-200. Such increases in the estimation error are due to the underestimation of
the fluctuation energy in the near-wall region when LCSt is too low, in which case yQ
is too high so that the RBE becomes invalid to predict the near-wall statistics. To ensure
the estimation accuracy in higher friction Reynolds numbers beyond 950, it is safer to
conservatively set the value of LCSt to be 0.3 to avoid the possible sharp increase of
estimation error at LCSt = 0.2. Thus, the threshold value of LCSt = 0.3 is adopted as a
default setting for all the cases with RWE in this study.

Appendix D. Relationship between the relative energy profiles of forcing and
response

In this study, the relative forcing energy is modified between the wall and the
quasi-reference layer yQ, which is set to be unity upon yQ then. The range of the relative
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forcing energy to be modified is the same as the range of the target response estimated from
RBE, both of which are below the quasi-reference layer. In the optimization problem of this
study, the relationship between the forcing and response energy below the quasi-reference
layer is expressed by

ŝk = �k,1 · ŵk +�k,2 · ŵ1

�k,NQ,1 · ŵk +�k,NQ,2 · ŵ1
, (D1)

where

ŝk = diag[Suiui,k]|y<yQ

diag[Suiui,k]|yQ

∈ C
NQ−1 (D2)

is the relative energy profile below the quasi-reference layer. The relative forcing energy
profile wk( y) is split in (D1) as wk = [ŵT

k, ŵT
1 ]T, where ŵk ∈ CNQ−1 is the relative forcing

energy below yQ that is to be determined, ŵ1 = [1, . . . , 1]N−NQ+1 is that beyond yQ. The
linear operators in (D1) are expressed by�k,1 = �1�k�T

1 ,�k,2 = �1�k�T
2 ,�k,NQ,1 =

�NQ�k�T
1 ,�k,NQ,2 = �NQ�k�T

2 and

�1 = [
I(NQ−1)×(NQ−1) O(NQ−1)×(N−NQ+1)

] ∈ C
(NQ−1)×N,

�2 = [
O(N−NQ+1)×(NQ−1) I(N−NQ+1)×(N−NQ+1)

] ∈ C
(N−NQ+1)×N,

�NQ = [
O1×(NQ−1) 1 O1×(N−NQ)

] ∈ C
1×N,

�k =
3∑

j=1

Rk,i,j ◦ Rk,i,j ∈ C
N×N,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D3)

where Rk,i,j denotes the sub-matrix of the resolvent operator Rk by selecting its rows
for ui and columns for the forcing in xj direction, ◦ denotes the element-wise matrix
multiplication, and NQ is the node number between yQ and the wall.
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