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Abstract. Recently, Benini et al showed that, in simply connected wandering domains
of entire functions, all pairs of orbits behave in the same way relative to the hyperbolic
metric, thus giving us our first insight into the general internal dynamics of such domains.
The author proved in a recent paper [G. R. Ferreira. Multiply connected wandering
domains of meromorphic functions: internal dynamics and connectivity. J. Lond. Math.
Soc. (2) 106 (2022), 1897–1919] that the same is not true for multiply connected wandering
domains, a natural question is how inhomogeneous multiply connected wandering domains
can be. We give an answer to this question, in that we show that uniform dynamics
inside an open subset of the domain generalizes to the whole wandering domain. As an
application of this result, we construct the first example of a meromorphic function with a
semi-contracting infinitely connected wandering domain.
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1. Introduction
Let f : C → Ĉ be a meromorphic function, where Ĉ := C ∪ {∞} denotes the Riemann
sphere. The study of its iterates, undertaken first by Fatou and Julia in the 1920s, comprises
the area of complex dynamics, a field of research that has been increasingly active since
the latter half of the twentieth century. The Fatou set of f, defined as

F(f ) := {z ∈ C : (f n)n∈N is defined and normal in a neighbourhood of z},
is known to be the set of ‘regular’ dynamics, and its connected components, called Fatou
components, are mapped into one another by f. So, if U ⊂ F(f ) is a Fatou component of f,
f n(U) is, for all n ∈ N, contained in some Fatou component Un of f. This separates Fatou
components into two kinds: those for which there exist n > m ≥ 0 such that Un = Um,
called (pre)periodic components; and those for which all Un are distinct, called wandering
domains.
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The internal dynamics of preperiodic components has been studied for a century, going
back to Fatou and Cremer (see, for instance, [8]). It is well known, for instance, that a
periodic Fatou component falls into one of five dynamically distinct types, each one having
a distinct topological model. Studying the internal dynamics of wandering domains, on the
other hand, is a far more recent undertaking. The first steps were taken by Bergweiler,
Rippon, and Stallard in 2013 [9], who described the behaviour of multiply connected
wandering domains of entire functions (recall that the connectivity of a domain � ⊂ Ĉ

is its number of complementary components). Their methods made extensive use of the
geometric properties of multiply connected wandering domains of entire functions, but
more recent work examined the internal dynamics of wandering domains in terms of the
hyperbolic metric (which is always an available tool when talking about Fatou components)
for both simply [7] and multiply connected [15] wandering domains.

This is the point of view that we adopt in this work as well. Denoting the hyperbolic
metric in the hyperbolic domain � ⊂ Ĉ by d� (see §2 for the relevant definitions), the
starting point is the following question: given a meromorphic function f with a wandering
domain U and points z, w ∈ U , what happens to

dUn(f
n(z), f n(w)) as n → +∞?

A central result of [7] is that, if U and all its iterates are simply connected, then the
answer is qualitatively independent of our particular choice of z and w; in other words, all
pairs of orbits behave in the same way. On the other hand, it was shown in [15] that if U is
multiply connected the answer may depend on the chosen pair of points, and, in particular,
that all possible long-term behaviours can co-exist in the same domain.

An immediate question, then, is how complicated this co-existence can be. The observed
cases in [15] are all ‘well behaved’, in the sense that there are dynamically defined, smooth
laminations of U that determine how the iterates of each pair of points behave. In particular,
every non-empty open subset of U contains distinct pairs of points exhibiting all the
behaviours present in U. Here, we show that (in some sense) this uniformity is a general
feature of wandering domains of meromorphic functions.

THEOREM 1.1. Let U be a wandering domain of the meromorphic function f. Suppose that
there exist a point z0 ∈ U and a neighbourhood V ⊂ U of z0 such that one of the following
properties holds for every w ∈ V :
(a) dUn(f

n(w), f n(z0)) → 0 (we say that V is contracting relative to z0);
(b) dUn(f

n(w), f n(z0)) decreases to a limit c(z0, w) > 0 without ever reaching it,
except for a discrete (in V) set of points for which f k(w) = f k(z0) for some k ∈ N

(we say that V is semi-contracting relative to z0);
(c) there exists N ∈ N (uniform over compact subsets of V) such that dUn(f

n(w),
f n(z0)) = c(z0, w) > 0 for n ≥ N (we say that V is locally eventually isometric
relative to z0).

Then the same property holds for every w ∈ U .

Remark. Benini et al’s results [7, Theorem A] for simply connected wandering domains
generalize to meromorphic functions as long as all iterates of the wandering domains

https://doi.org/10.1017/etds.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.27


Multiply connected wandering domains of meromorphic functions 729

are simply connected, and so the conclusion of Theorem 1.1 always holds for such
domains. Theorem 1.1 is also vacuous for multiply connected wandering domains with
finite eventual connectivity, which have their internal dynamics dictated by their eventual
connectivity (see [15, Theorem 1.1]), and so it is of most interest for infinitely connected
wandering domains of meromorphic functions.

Theorem 1.1 shows that, even in the multiply connected setting, the internal dynamics
of wandering domains exhibits ‘uniformity’: if something happens relative to a base point
in a non-empty open set, then it happens in all of U.

As an application of Theorem 1.1, we construct a new type of example: a meromorphic
function with an infinitely connected semi-contracting wandering domain. A simply
connected example of such a domain, the first of its kind, was constructed by Benini et al.
using approximation theory; [15, Theorem 1.1] tells us that, if a semi-contracting orbit
of multiply connected wandering domains is to be found, it must be infinitely connected.
With that in mind, in §4 we modify [7, Example 2] via quasiconformal surgery to prove
the following result.

THEOREM 1.2. There exists a meromorphic function f with an infinitely connected
wandering domain V and a non-empty open subset V ′ ⊂ V such that, for z0 ∈ V ′, V is
semi-contracting relative to z0.

In [15], the author introduced bimodal and trimodal wandering domains, where
different long-term qualitative behaviours of the hyperbolic metric co-exist. In contrast,
we say that a wandering domain is unimodal if the limiting behaviour of the sequence
(dUn(f

n(z), f n(w)))n∈N is independent of the choice of z and w in U. Given that examples
of contracting and eventually isometric examples of multiply connected wandering
domains already exist (see, for instance, [29, Example 1] and [23, Theorem (iii)]),
Theorem 1.2 completes the proof of the existence of all possible unimodal behaviours in
such wandering domains. In particular, we see that the possible internal dynamics of mul-
tiply connected wandering domains (and, in particular, infinitely connected ones) includes
all possible internal dynamics that exists for simply connected wandering domains.

2. Preliminaries and notation
We use this section to establish some notation and terminology regarding the hyperbolic
metric; we refer the reader to [4] and [20, Ch. 3] for a more detailed treatment of the
subject. We start with the following definition.

Definition. A continuous function f : X → Y , where X and Y are topological spaces, is
called an unbranched covering map if:
(i) f is surjective;

(ii) every y ∈ Y has a neighbourhood Uy ⊂ Y such that f−1(Uy) is a union of disjoint
open sets Vy ⊂ X and f : Vy → Uy is a homeomorphism for each Vy .

Furthermore, if X is simply connected, f is called a universal covering map and X is called
a universal covering space of Y.

With that in mind, we recall Koebe’s uniformization theorem (see [14, Ch. 10] for a
modern proof).
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LEMMA 2.1. (Uniformization theorem) Let X be a Riemann surface. Then there exists a
holomorphic map f : X̃ → X that is a universal covering map, and X̃ is exactly one of C,
Ĉ, or D := {z ∈ C : |z| < 1}, the unit disc. Furthermore, given any p ∈ X, f can be chosen
so that f (0) = p.

In keeping with the name ‘uniformization theorem’, we will sometimes call the
universal covering maps given by Lemma 2.1 uniformizing maps. We are interested in
the case where the universal covering space of X is D, which happens, for instance, if X
is a domain on Ĉ such that Ĉ \X contains at least three points (see [4, Theorem 10.2]).
In this case, X is called a hyperbolic surface (or, if X ⊂ Ĉ, a hyperbolic domain), for it
admits a hyperbolic metric, that is, a complete conformal metric of constant curvature −1.

Given a hyperbolic surface X, we will use ρX and dX to denote its hyperbolic density and
hyperbolic distance, respectively. Since we are following [4, 20], the hyperbolic density of
the unit disc is

ρD(z) = 2
1 − |z|2 ,

giving us constant curvature −1 as promised. A curve γ : [0, 1] → X has hyperbolic
length

�X(γ ) :=
∫
γ

ρX(z) |dz|;

it is a consequence of the completeness of the hyperbolic metric that any two points
w, z ∈ X can be joined by a smooth curve γ ⊂ X such that

dX(w, z) = �X(γ ) = min{�X(γ ′) : γ ′ ⊂ X joins w and z},
and this γ is called a hyperbolic geodesic.

Now, let f : X → Y be a holomorphic map between hyperbolic surfaces. Its hyperbolic
distortion at z ∈ X is given by

‖Df (z)‖YX := lim
w→z

dY (f (w), f (z))
dX(w, z)

= ρY (f (z))|f ′(z)|
ρX(z)

.

This notation refers to the fact that the hyperbolic distortion is also the norm of the
differential of f at z, viewed as a linear map from TzX to Tf (z)Y , with the metrics
on the tangent spaces induced by the respective hyperbolic metrics; see [20, §3.3]. The
Schwarz–Pick lemma [4, Theorem 10.5] can now be expressed as follows.

LEMMA 2.2. (Schwarz–Pick lemma) Let f : X → Y be a holomorphic map between
hyperbolic Riemann surfaces. Then, for all z ∈ X,

‖Df (z)‖YX ≤ 1, (1)

with equality if and only if X is an unbranched covering map. Additionally,

dY (f (z), f (w)) ≤ dX(z, w) (2)

for any distinct z and w in X, with equality if and only if f is biholomorphic.
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A function for which equality holds in (1) is called a local hyperbolic isometry (or, if
the metric is clear from the context, a local isometry): it preserves hyperbolic distances in
small neighbourhoods around each point. A function satisfying equality in (2) is simply
called a hyperbolic isometry.

An immediate consequence of Lemma 2.2 and the chain rule is that hyperbolic
distortion is locally conformally invariant. More precisely, we have (see, for instance, [4,
Theorem 10.5], [20, Proposition 3.3.4] or [21, Theorem 7.3.1]) the following lemma.

LEMMA 2.3. Let f : X → Y be a holomorphic map between hyperbolic Riemann sur-
faces, let z0 ∈ X, let ϕ : D → X be a uniformizing map such that ϕ(0) = z0, and
let ψ : D → Y be a uniformizing map such that ψ(0) = f (z0). Then there exists a
holomorphic function f̃ : D → D such that f̃ (0) = 0 and ψ ◦ f̃ = f ◦ ϕ. Furthermore,
f̃ is unique and satisfies

|f̃ ′(0)| = ‖Df (ϕ(0))‖YX. (3)

A function f̃ given by Lemma 2.3 is called a lift of f.
Another important aspect of hyperbolic geometry that is relevant to us are the hyperbolic

discs. In the hyperbolic surface X, these are the open balls

BX(p, r) := {z ∈ X : dX(p, z) < r},
where p ∈ X is the centre and r > 0 is the radius. They are not necessarily topologically
equivalent to Euclidean open balls: an example would be to take the punctured disc
D

∗ := D \ {0}, any point p ∈ D
∗, and a sufficiently large r > 0; then, BD∗(p, r) surrounds

the origin, and is therefore doubly connected. Thus, given p ∈ X, we must look at the
injectivity radius of X at p: the largest value of r > 0 for which BX(p, r) is actually
isometric to BD(0, r). Another way of saying this is that the injectivity radius at p is
the largest r > 0 for which, taking a uniformizing map ϕ : D → X with ϕ(0) = p, the
restriction of ϕ to BD(0, r) is injective (hence the name injectivity radius); see [6, p. 166].

3. Uniformity in long-term behaviours of the hyperbolic metric
In this section, we prove Theorem 1.1. We divide it into three cases, each one considering
a different kind of ‘unimodality’.

Before doing so, however, we take some time to discuss the function u : U → [0, +∞)

defined as

u(z) := lim
n→+∞ dUn(f

n(z), f n(z0)),

where we have taken some base point z0 ∈ U . It is the limit of the sequence (un)n∈N,
where

un(z) := dUn(f
n(z), f n(z0)) for z ∈ U ,

which by the Schwarz–Pick lemma (Lemma 2.2) satisfies

u1 ≥ u2 ≥ · · · ≥ u. (4)
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The following lemma gives us an inkling of how the convergence of the hyperbolic
distances to their final values happens.

LEMMA 3.1. The convergence un → u is locally uniform. In particular, u is continuous.

Proof. We will apply the Arzelà–Ascoli theorem [1, Theorem 14].
First, for any z ∈ U , it is clear from the Schwarz–Pick lemma that (un(z))n∈N is

contained in the compact set [0, dU(z, z0)]. Second, we must show that the sequence
(un)n∈N is also equicontinuous on compact subsets of U; to this end, we apply the reverse
triangle inequality to obtain

dUn(f
n(z), f n(w)) ≥ |dUn(f n(z), f n(z0))− dUn(f

n(w), f n(z0))| = |un(z)− un(w)|
(5)

for every z, w ∈ U . Now, taking any ε > 0 andK ⊂ U a compact set, we can choose δ > 0
such that

|z− w| < δ ⇒ dU(z, w) < ε for any z, w ∈ K ,

by the fact that ρU is bounded above and below on K. Thus, by (5) and the Schwarz–Pick
lemma, we get for all n ∈ N that

|un(z)− un(w)| ≤ dUn(f
n(z), f n(w)) ≤ dU(z, w) < ε

whenever |z− w| < δ and z, w ∈ K , and therefore (un)n∈N is equicontinuous on K. It
follows that the Arzelà–Ascoli theorem [1, Theorem 14] applies: there exists a subsequence
(unk )k∈N such that unk → u locally uniformly. Then (4) implies that locally uniform
convergence happens for the whole sequence (un)n∈N.

Finally, the locally uniform convergence of un implies that u is continuous.

The continuity of u will be especially important for us as we discuss how the behaviour
of orbits in small neighbourhoods ‘globalizes’ to the whole of U.

3.1. Proof of Theorem 1.1(a): the contracting case. What we prove in this subsection
is actually stronger than what Theorem 1.1(a) claims: we will show that, if U contains a
non-empty open set V such that

dUn(f
n(z), f n(w)) → 0 as n → +∞ for every z, w ∈ V ,

then the same is true for every z, w ∈ U . In order to do this, we will use results of Benini
et al relating to non-autonomous dynamics in the unit disc (more specifically, [7, §2]). As
preparation for that, we prove the following lemma, which tells us how to associate the
dynamics of a wandering domain to a composition of inner functions. Recall that an inner
function is a holomorphic function g : D → D such that the radial limit

g(eiθ ) := lim
r↗1

g(reiθ )

exists and satisfies |g(eiθ )| = 1 for Lebesgue almost every θ ∈ [0, 2π).
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LEMMA 3.2. Let f : C → Ĉ be a meromorphic function with a multiply connected
wandering domain U, and let z0 be a point in U. Given uniformizing maps ϕn : D → Un

such that ϕn(0) = f n(z0), there exists a unique sequence of inner functions gn : D → D

such that, for all n ≥ 0,
(i) gn fixes the origin, and

(ii) f |Un lifts to gn, that is, ϕn+1 ◦ gn = f ◦ ϕn.

Proof. The existence, analyticity, and uniqueness of the functions gn are guaranteed by
Lemma 2.3. It remains to show that they are inner functions.

Since ϕn(D) = Un and U is a wandering domain, it is clear that f ◦ ϕn(D) is not dense
in Ĉ (indeed, it omits every other Um, m �= n+ 1); thus, we can (if necessary) compose
f ◦ ϕn with a Möbius transformation mn to obtain a bounded map mn ◦ f ◦ ϕn : D → C.
By Fatou’s theorem [18, Lemma 6.9], the radial limit f ◦ ϕn(eiθ ) exists and is finite for
θ outside a set En ⊂ [0, 2π) of Lebesgue measure zero. Furthermore, also by Fatou’s
theorem, there exists a setE′

n of measure zero such that gn(eiθ ) exists for θ ∈ [0, 2π) \ E′
n.

Now, for every n ≥ 0, the set Fn := En ∪ E′
n has measure zero, and for θ ∈ [0, 2π) \ Fn

we have

lim
r↗1

ϕn+1 ◦ gn(reiθ ) = lim
r↗1

f ◦ ϕn(reiθ ),

where both limits exist and are finite. Since ϕn, being a covering map, has no asymptotic
values in Un and f is continuous, the right-hand side converges to a point in ∂Un+1. Thus,
on the left-hand side, we must have |gn(reiθ )| → 1 as r ↗ 1 by continuity of ϕn+1 and
the open mapping theorem. It follows that the gn are inner functions.

An immediate consequence of Lemma 3.2 is that, defining Gn = gn ◦ gn−1 ◦ · · · ◦ g0,
we have

ϕn ◦Gn−1 = f n ◦ ϕ0 for every n ≥ 1. (6)

However, since the domains Un are multiply connected, the limiting behaviours of Gn
and (f n)|U relative to the hyperbolic metric are not necessarily the same, except in one
particular case.

LEMMA 3.3. With the notation and definitions above, if Gn(w) → 0 as n → +∞ for all
w ∈ D, then U is a contracting wandering domain.

Proof. Let w ∈ D; since Gn(w) → 0 as n → +∞, we know that dD(0, Gn(w)) → 0. By
(6), we have

dUn(f
n(z0), f n ◦ ϕ0(w)) = dUn(ϕn(0), ϕn ◦Gn−1(w)) for w ∈ D,

and applying the Schwarz–Pick lemma to the right-hand side yields

dUn(f
n(z0), f n ◦ ϕ0(w)) ≤ dD(0, Gn−1(w)),

which goes to zero as claimed.
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For a sequence (Gn)n∈N as above, [7, Theorem 2.1] tells us that dD(0, Gn(w)) → 0 for
w ∈ D if and only if ∑

n≥0

(1 − |g′
n(0)|) = +∞,

or equivalently, if none of the g′
n(0) equal zero,G′

n(0) → 0. Since f n lifts toGn, the local
conformal invariance of hyperbolic distortion (recall (3)) implies that this is equivalent to
saying that a sufficient condition for U to be a contracting wandering domain is

lim
n→+∞ ‖Df n(z0)‖UnU = 0.

Now our course of action is to choose a z0 ∈ V , the contracting neighbourhood inside
U, and show that the condition above holds. To this end, we prove the following hyperbolic
version of Landau’s theorem. Unlike in Landau’s original theorem, the function here is not
normalized (if it were, it would be a hyperbolic isometry!), and thus there is dependence
on the derivative of f.

LEMMA 3.4. Let f : �1 → �2 be a holomorphic map between hyperbolic domains, let
r > 0, and let z0 ∈ �1. If 0 < ‖Df (z0)‖�2

�1
< 1, then f (B�1(z0, r)) contains a hyperbolic

disc of radius

2Lr∗‖Df (z0)‖�2
�1

,

where r∗ = tanh(r/2) and L ∈ (0.5, 0.544) is Landau’s constant.

Proof. First, we take uniformizing maps ϕ : D → �1 and ψ : D → �2 with ϕ(0) = z0

and ψ(0) = f (z0). Then, by Lemma 2.3, f admits a lift F : D → D (that is, F satisfies
ψ ◦ F = f ◦ ϕ), which can be chosen to satisfy F(0) = 0, and by (3) we also have
|F ′(0)| = ‖Df (z0)‖�2

�1
. The ball BD(0, r) is contained (by the Schwarz–Pick lemma) in

ϕ−1(B�1(z0, r)), and its image under F contains (by Landau’s theorem [24]; see [27]
for a discussion of the bounds given here) a disc of Euclidean radius Lr∗|F ′(0)| =
Lr∗‖Df (z0)‖�2

�1
, where we have set r∗ = tanh(r/2) so that dD(0, r∗) = r . Since we do

not know where the centre w0 of this disc is, we cannot accurately calculate its hyperbolic
size. Nevertheless, we do know that, for any w on its boundary,

dD(w0, w) =
∫
γ

ρD(s) |ds| ≥ 2
∫
γ

|ds| ≥ 2|w − w0| = 2Lr∗‖Df (z0)‖�2
�1

,

where γ ⊂ D is a hyperbolic geodesic connecting w0 to w. Hence, F(BD(0, r)) contains a
disc of hyperbolic radius 2Lr∗‖Df (z0)‖�2

�1
.

In order to transfer this knowledge from D to �2, we will use tools from [3] (see
also [21, Ch. 10]). More specifically, for a subdomain D of �2, let R(D, �2) denote the
hyperbolic radius of the largest hyperbolic disc contained in D; this is the hyperbolic Bloch
constant, and Beardon et al proved in [3, Lemma 4.2] that it is invariant under unbranched
covering maps. More specifically, let B∗ denote the component of ψ−1(f (B�1(z0, r)))
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containing the origin. Then, since f ◦ ϕ = ψ ◦ F , F(0) = 0, and B∗ is connected, we
have B∗ ⊃ F(BD(0, r)), and thus

R(f (B�1(z0, r)), �2) = R(B∗, D) ≥ R(F(BD(0, r)), D).

Since we know that F(BD(0, r)) contains a disc of hyperbolic radius 2Lr∗‖Df (z0)‖�2
�1

,
we have

R(F(BD(0, r)), D) ≥ 2Lr∗‖Df (z0)‖�2
�1

and we are done.

With these results in hand, we can finally prove what we intended. Notice that, by the
triangle inequality, the hypotheses of Theorem 1.1(a) imply those of Theorem 3.5.

THEOREM 3.5. Let U be a wandering domain of a meromorphic function f. If U contains
a non-empty open set V such that

dUn(f
n(z), f n(w)) → 0

for every z and w in V, then U is contracting.

Proof. Take any z0 ∈ V , and take uniformizing maps ϕn : D → Un such that ϕn(0) =
f n(z0). Let gn be the lifts of f given by Lemma 3.2. We want to show that∑

n≥0

(1 − |g′
n(0)|) = +∞, (7)

whence our theorem will follow by Lemma 3.3 and [7, Theorem 2.1]. We can assume that
none of the g′

n(0) are zero; indeed, if there are infinitely many such gn, then (7) is trivially
true, and if there are only finitely many such gn we pass to UN , f N(z0), and f N(V ) for
some sufficiently large N. Thus (recall that Gn = gn ◦ · · · ◦ g0), as anticipated on page 8,
(7) is equivalent to |G′

n(0)| → 0 or, by (3), to ‖Df n(z0)‖UnU → 0.
Assume now that this is not the case; notice that, again by the Schwarz–Pick lemma,

the sequence (‖Df n(z0)‖UnU )n∈N is decreasing, and so if it gets arbitrarily close to zero
on a subsequence then it is in fact tending to zero. In other words, there must exist
some constant c > 0 such that ‖Df n(z0)‖UnU > c for all n ≥ 0. Choose some r > 0 such
that K := BU(z0, r) ⊂ V ; then, by Lemma 3.1, we have diamUn(f

n(K)) → 0, while by
Lemma 3.4 f n(K) always contains a hyperbolic ball of radius 2Lc · tanh(r/2). This is
clearly a contradiction; we are done.

3.2. Proof of Theorem 1.1(b): the semi-contracting case. In this subsection, we want to
show that if there exist some point z0 ∈ U and an open neighbourhood V of z0 such that
un(z) ↘ u(z) > 0 without ever reaching it for z ∈ V outside of a discrete set (un and u as
defined at the beginning of §3, with z0 as base point), then the same holds for every z ∈ U
except those for which f n(z) = f n(z0) for some n ∈ N.

We will divide the proof into two cases. We prove first that no point z ∈ U can be
contracting relative to z0, and then that no point can be eventually isometric relative to z0.
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For the first case, we will revisit the function u; in particular, we notice that it is
‘f -invariant’ in the sense that, if u∗ : U1 → [0, +∞) is defined taking as a base point
f (z0), then u∗(f (z)) = u(z). By an abuse of notation, we will keep referring to the
functions defined onUn with base points f n(z0) as u and hope it will not lead to confusion.
Now what we want to show is that u(z) = 0 if and only if f n(z) = f n(z0) for some n.

The ‘if’ is trivial. For the ‘only if’ part, let z∈ U be such that f n(z) �= f n(z0) for
all n, and assume that u(z) = 0. Then, since U is semi-contracting in V, we can take
a closed curve γ ⊂ V that surrounds z0 and avoids the zeros of u, which are discrete
in V by hypothesis; by Lemma 3.1, u|γ achieves a minimum c > 0. Additionally, V is
in the Fatou set, meaning that (f n)|V is holomorphic for every n ∈ N, and so by the
argument principle f n(γ ) surrounds BUn(f

n(z0), c) for all n ∈ N. Therefore, since we
have that dUn(f

n(z), f n(z0)) → 0, there must be N1 ∈ N such that f N1(γ ) surrounds
f N1(z), and thus (again by the argument principle) there exists w ∈ V surrounded by
γ such that f N1(w) = f N1(z). Now, by f -invariance of u, we have u(w) = u(z) = 0,
and so by the definition of V there exists N2 ∈ N for which f N2(w) = f N2(z0). Finally,
we see that f N1+N2(z) = f N1+N2(z0), which is a contradiction since we assumed that
f n(z) �= f n(z0) for all n ∈ N. It follows that u(z) > 0.

Let us now exclude the possibility of eventually isometric points. We show that if there
exists z ∈ U such that

dUn(f
n(z), f n(z0)) = c(z, z0) > 0 for n ≥ N , (8)

then f : Un → Un+1 is a local hyperbolic isometry (equivalently, an unbranched covering
map) for n ≥ N . Indeed, let γ ⊂ Un be a hyperbolic geodesic joining f n(z) to f n(z0).
Then, by the Schwarz–Pick lemma,

�Un+1(f ◦ γ ) ≤ �Un(γ ),

while by the definition of the hyperbolic distance and (8) we have

�Un+1(f ◦ γ ) ≥ dUn+1(f
n+1(z), f n+1(z0)) = dUn(f

n(z), f n(z0)) = �Un(γ ).

Hence, �Un+1(f ◦ γ ) = �Un(γ ), or, equivalently,∫
γ

ρUn(s) |ds| =
∫
f ◦γ

ρUn+1(s
′) |ds′|.

By a change of variables, this becomes∫
γ

ρUn(s) |ds| =
∫
γ

ρUn+1(f (s))|f ′(s)| |ds|,

and since 0 ≤ ρUn+1(f (z))|f ′(s)| ≤ ρUn(s) by the Schwarz–Pick lemma, we are forced to
conclude that ρUn+1(f (s))|f ′(s)| = ρUn(s) for every s ∈ γ . From the equality case of the
Schwarz–Pick lemma, we deduce that f : Un → Un+1 is a local hyperbolic isometry.

From now on, we will exchange U for UN , z0 for f N(z0), and V for f N(V ) for some
sufficiently large N, and work as if f maps one wandering domain onto the next one locally
isometrically for every n ∈ N. We can do this because of the ‘f -invariance’ of u: if V ⊂ U
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is semi-contracting relative to z0 ∈ V , then f N(V ) ⊂ UN is semi-contracting relative to
f N(z0) ∈ f N(V ).

We will see that V being semi-contracting relative to z0 ∈ V is incompatible with
f : Un → Un+1 being a local hyperbolic isometry. Indeed, let w be any point in V such
that f n(w) �= f n(z0) for all n and BU(z0, dU(z0, w)) ⊂ V . Since V is semi-contracting,
un(w) = dUn(f

n(w), f n(z0)) forms a non-increasing sequence that is also not eventually
constant, that is, there is no N such that un(w) is constant for n ≥ N . However, as
f : Un → Un+1 is a local hyperbolic isometry for all n ≥ 0, we can produce a sequence
(wn)n∈N in U \ {w} such that f n(w) = f n(wn) and dUn(f

n(w), f n(z0)) = dU(wn, z0)

for all n ∈ N as follows.
Taking distance-minimizing geodesics γn ⊂ Un joining f n(z0) to f n(w), we apply the

path lifting property to f n : U → Un (see [14, Proposition 10] or [17, Proposition 1.30])
to obtain a curve γ̃n ⊂ U joining z0 to a point wn ∈ U such that f n(wn) = f n(w). Since
f n : U → Un is a local hyperbolic isometry, it preserves curve length, and thus

dUn(f
n(z0), f n(w)) = �Un(γn) = �U (γ̃n) ≥ dU(z0, w).

On the other hand, by the Schwarz–Pick lemma,

dU(z0, wn) ≥ dUn(f
n(z0), f n(w)),

and therefore dU(z0, wn) = dUn(f
n(z0), f n(w)) for all n ∈ N. Notice, though, that

(dUn(f
n(z0), f n(w)))n∈N is, by hypothesis, a non-constant non-increasing sequence, so

that wn �= w for all large enough n.
By the same token, the sequence (wn)n∈N is confined to the annulus {z ∈ U : u(w) ≤

dU(z, z0) ≤ dU(w, z0)} ⊂ V , and hence has an accumulation point w∗ ∈ V . Since u is
f -invariant, every wn satisfies u(wn) = u(w), and thus by the continuity of u we have
u(w∗) = u(w). But it is also the case by the definition of the points wn that u(w∗) =
u(w) = limn→+∞ dU(wn, z0), and so by continuity of the hyperbolic distance we have

u(w∗) = dU(w
∗, z0).

It follows from the definition of u that w∗ is an eventually isometric point relative to z0

lying in V, which is a contradiction.
Together, these two arguments show that every point in U is semi-contracting relative

to z0.

3.3. Proof of Theorem 1.1(c): the eventually isometric case. Here, we assume that U
contains a non-empty open set V and a point z0 ∈ V such that dUn(f

n(z), f n(z0)) =
c(z, z0) > 0 for every z ∈ V (except for at most countably many points for which
f k(z) = f k(z0) for some k ∈ N) and all sufficiently large n (say, n ≥ N , with N locally
uniform over compact subsets of V). We want to show that the same holds for everyw ∈ U
relative to z0 ∈ V . Perhaps surprisingly, this is the most delicate case we will deal with
here; it needs certain machinery that we now take the time to introduce.

We consider the set H2 of hyperbolic surfaces, identifying any two surfaces that are
isometric. In other words, H2 is a space of equivalence classes of hyperbolic surfaces.
We can ‘refine’ it a little by considering marked hyperbolic surfaces: pairs (S, p) where
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S ∈ H2 and p ∈ S is a base point. The space of all such pairs, again up to isometry
equivalence, is denoted H∗

2; we will now imbue it with a topology.

Definition. Let ((Sn, pn))n∈N be a sequence of marked hyperbolic surfaces. We say that
the sequence converges to the marked surface (S∗, p∗) ∈ H∗

2 in the sense of Gromov if, for
every r > 0, there exists a sequence of smooth orientation-preserving diffeomorphisms
φn : Un → φn(Un) ⊂ Sn such that the following assertions hold.

(i) Each Un ⊂ S∗ is a neighbourhood of p∗ containing BS∗(p∗, r).
(ii) For all n ∈ N, φn(p∗) = pn.

(iii) Each φn is Kn-bi-Lipschitz relative to the hyperbolic metrics of S∗ and Sn, and
Kn → 1 as n → +∞.

Despite its (relatively) intuitive definition, this topology, called the geometric topology,
offers little insight into its own properties. Fortunately, there is an equivalent way of
defining it via Kleinian groups, originally due to Claude Chabauty, which we will not state
here. The following result was proved using this alternative definition (see [6, Theorem
E.1.10], [12, Corollary I.3.1.7], or [25, Proposition 7.8]).

LEMMA 3.6. Let ((Sn, pn))n∈N be a sequence in H∗
2 such that the injectivity radius of Sn

at pn is at least some r > 0 for all n ∈ N. Then there exists a subsequence ((Snk , pnk ))k∈N
converging in the sense of Gromov to a marked hyperbolic surface (S∗, p∗).

Notice that Lemma 3.6 makes no claim about the limit surface (or, to be more precise,
the equivalence class of limit surfaces). The nature of the limit surface can, in fact,
be extremely counter-intuitive, but since appreciating the intricacies of the geometric
topology is not our aim here, Lemma 3.6 will suffice.

Convergence in the sense of Gromov can be though of as a ‘locally uniform conver-
gence’ of the surfaces’ geometry around the base point. Thus, Lemma 3.6 is, in a certain
sense, a ‘normal families’ criterion for H2. We will also need more conventional results
on normal families, such as the following restatement of the Arzelà–Ascoli theorem for
Lipschitz functions; see [5, Theorem 7.1].

LEMMA 3.7. Let X and Y be Riemann surfaces with complete conformal metrics dX and
dY , and suppose that {fα : X → Y }α∈A is a family of locally uniformly dX-to-dY Lipschitz
functions. Then {fα}α∈A is a normal family if and only if there exists x ∈ X such that
{fα(x) : α ∈ A} is relatively compact in Y.

With this in mind, let us begin our study of the eventually isometric case in Theorem 1.1.
Let U, f, V ⊂ U and z0 ∈ V be as in the statement of Theorem 1.1(c). We can exclude

the possibility of contracting points in U (relative to z0) by an argument similar to the one
used in §3.2: the iterates of such a point w ∈ U would eventually intersect f n(V ), and the
f -invariance of u would imply that u(w) > 0, contradicting our choice of w.

Now, suppose that there exists a point w ∈ U \ V that is semi-contracting relative to z0.
The same argument as in §3.2 shows that f : Un → Un+1 is a local hyperbolic isometry
for n ≥ N (N here being chosen according to some compact subset of V), but the rest of the
argument does not carry through—there is nothing unexpected about finding an eventually
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isometric point relative to z0 in V; think, for instance, of the ‘annulus model’ described in
[15, §2]. Instead, we will proceed with a ‘normal families’ argument. As before, we swap
U for UN , z0 for f N(z0), and V for f N(V ) while keeping the same notation.

First, we take a universal covering map ϕ0 : D → U with ϕ0(0) = z0, and build the
functionsψn : D → Un given by ψn(z) = f n ◦ ϕ0(z); since f n is a local hyperbolic isom-
etry, these are all universal covering maps with ψn(0) = f n(z0). Furthermore, the hypoth-
esis that V is locally eventually isometric implies that, if r0 is such that BU(z0, r0) ⊂ V is
an embedded disc (and N was chosen accordingly), then f n maps BU(z0, r0) isometrically
onto f n(BU(z0, r0)) for all n. In particular, the sets f n(BU(z0, r0)) will all be embedded
discs of hyperbolic radius r0. Therefore, the injectivity radii at f n(z0) of the hyperbolic
surfaces Un are uniformly bounded below by r0. Thus, by Lemma 3.6, the sequence of
marked hyperbolic surfaces ((Un, f n(z0)))n∈N admits a subsequence ((Unk , f

nk (z0)))k∈N
converging in the sense of Gromov to a marked hyperbolic surface (U∗, z∗) (say).

It follows from the definition, then, that we can take some r > 10dU(z0, w) (where
w ∈ U \ V is assumed to be semi-contracting relative to z0) and find diffeomorphisms
φk : BU∗(z∗, r) → φk(BU∗(z∗, r)) ⊂ Unk such that φk(z∗) = f nk (z0) and each φk is
Kk-bi-Lipschitz relative to the hyperbolic metrics on U∗ and Unk , with Kk → 1 as
k → +∞. Since Kk → 1, we can assume without loss of generality that supk Kk < 10,
so that every φ−1

k is defined on a hyperbolic ball of radius dU(z0, w) around f nk (z0). In
particular, the functions

ψ̂k = φ−1
k ◦ ψnk : BD(0, dU(z0, w)) → U∗

are all well defined and map 0 to z∗. We want to show that {ψ̂k}k∈N is a normal family
in the sense of precompactness relative to locally uniform convergence (see [5], as well
as [11, Theorem 1.21] and [19] for an account of this interpretation of normality) with
analytic limit functions; to this end, we make two claims.

CLAIM 3.8. Each ψ̂k is (Kk)2-quasiregular.

Proof. Being Kk-bi-Lipschitz, each φk is (Kk)2-quasiconformal (see, for instance, [10,
Ch. 1] or [20, Proposition 4.5.14]), and the composition of a restriction of a universal
covering map (which is, of course, 1-quasiregular) with a (Kk)2-quasiconformal map
yields a K2

k -quasiregular map.

CLAIM 3.9. The family {ψ̂k}k is uniformly Lipschitz relative to the hyperbolic metric.

Proof. For z and z′ in Bw = BD(0, dU(z0, w)), we have, using the bi-Lipschitz constant
of φk and the Schwarz–Pick lemma respectively,

dU∗(φ−1
k ◦ ψnk (z), φ−1

k ◦ ψnk (z′)) ≤ KkdUnk (ψnk (z), ψnk (z
′))

≤ KkdD(z, z′) ≤ KkdBw(z, z
′).

SinceKk → 1, we have thatK := supk Kk < 10 is a uniform Lipschitz constant for φ−1
k ◦

ψnk = ψ̂k .
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Now, since {ψ̂k(0) : k ∈ N} = {z∗} is clearly a relatively compact subset of U∗,
Lemma 3.7 tells us that (ψ̂k)k is a normal family, and so admits a subsequence (ψ̂km)m
converging locally uniformly to a limit function

ψ∗ : BD(0, dU(z0, w)) → U∗.

Since Kk → 1 and the limit of K-quasiregular functions is K-quasiregular, it follows
by Claim 3.8 that ψ∗ is 1-quasiregular (see, for example, [10, Theorem 4.2], [19], [2,
Corollary 5.5.7], or [28, Theorem VI.8.6]) and hence analytic by the quasiregular version
of Weyl’s lemma (see [11, Proposition 1.37]).

We want to show that ψ∗ is not constant; to that end, take a point z′ ∈ BD(0, dU(z0, w))
such that ϕ0(z

′) ∈ V \ {z0}. Then, by the definition of the maps ψ̂n and the bi-Lipschitz
property of φk ,

dU∗(z∗, ψ̂km(z
′)) ≥ dUn(ψkm(0), ψkm(z

′))
Kkm

≥ dUn(ψkm(0), ψkm(z
′))

10
;

since ψn = f n ◦ ϕ0 and f n is isometric when restricted to V, we have that dUn(ψkm(0),
ψkm(z

′)) = dU(z0, ϕ0(z
′)) > 0 for all m. Thus, by making m → +∞, we see that

dU∗(ψ∗(0), ψ∗(z′)) > 0, and so ψ∗ is indeed non-constant.
We are now in position to make a case against the existence of w, the semi-contracting

point relative to z0. The fact that f : Un → Un+1 are local hyperbolic isometries implies
that, in order for dUn(f

n(w), f n(z0)) to decrease infinitely many times, we must (as
in §3.2) be able to find a sequence wn ∈ U \ {w} such that f n(wk) = f n(w) for
1 ≤ k ≤ n and dU(wn, z0) = dUn(f

n(w), f n(z0)) < dU(z0, w). By the completeness
of the hyperbolic metric in U, the sequence wn admits an accumulation point
w∗ ∈ BU(z0, dU(z0, w)), and this lifts to a sequence w̃n ∈ BD(0, dU(z0, w)) with an
accumulation point w̃∗ ∈ BD(0, dU(z0, w)). However, repeated application of the triangle
inequality yields

dU∗(ψ∗(w̃km), ψ∗(w̃∗)) ≤ dU∗(ψ∗(w̃km), ψ̂kl (w̃km))
+ dU∗(ψ̂kl (w̃km), ψ̂kl (w̃kl ))+ dU∗(ψ̂kl (w̃kl ), ψ

∗(w̃∗)),

wherem ∈ N is fixed and l ≥ m. By the definitions of w̃n and ψ̂k , we have that ψ̂kl (w̃kl ) =
ψ̂kl (w̃km ), so that the middle term in the sum above vanishes. As for the other two,
taking the limit l → +∞ makes them arbitrarily small, since ψ̂kl converges to ψ∗ locally
uniformly. It follows that ψ∗(w̃km) = ψ∗(w̃∗) for all m ∈ N. This is a contradiction, since
ψ∗ is analytic and as such (ψ∗)−1(p) is discrete for any p ∈ U∗.

We have completed the proof of case (c), and hence finished the proof of Theorem 1.1.

Remark. This argument can be adapted to rule out the existence of contracting points and
to drop the dependence on the base point z0, which takes care of the eventually isometric
case in its general form. Indeed, the contradiction above can be obtained for any pair of
points z, w ∈ U such that dUn(f

n(z), f n(w)) is not eventually constant; one need only
choose a sufficiently large radius for the discs where the φk are to be defined.
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4. A semi-contracting multiply connected wandering domain
4.1. The patient. Benini et al constructed the first known examples of semi-contracting
wandering domains using approximation theory (the one we are interested in is [7, Exam-
ple 2(a)]). As such, we can describe its properties mostly in an asymptotic fashion; but by
controlling the rate of convergence, this will suffice for our ends.

To describe the example, we shall need the following sets and functions. Let
Tn : C → C and bn : D → D be defined as

Tn(z) = z+ 4n and bn(z) = z · z+ an

1 + anz
,

where an is a real sequence satisfying 0 < an < 1 and an ↗ 1 fast enough that

λ :=
+∞∏
n=1

an > 0;

as our construction progresses, we will impose further restrictions on the speed with which
an ↗ 1. Define also the discs �′

n := B(4n, rn) and �n := B(4n, Rn), where 0 < rn <

1 < Rn, both sequences (rn)n∈N and (Rn)n∈N tend to 1 as n → +∞, and the rate of
convergence is relatively ‘free’—that is, 1 − rn and Rn − 1 have upper bounds depending
only on 1 − an.

With all that in place, their example consists of an entire function f with a bounded
simply connected wandering domain U such that, for all n ≥ 0, the following properties
hold.
(A) �′

n ⊂ Un ⊂ �n, so, in particular, Un ‘is asymptotically a disc’ (recall that Un is the
Fatou component containing f n(U)).

(B) |f (z)− Tn+1 ◦ bn+1 ◦ T −1
n (z)| < εn+1 for z ∈ �n, where εn < (Rn − rn)/4.

(C) f n(0) = 4n.
(D) deg f |Un = deg bn+1 = 2 and f |Un satisfies

|f (z)− z− 4| → 0 locally uniformly for z ∈ Un as n → +∞.

In particular, the critical points zn of f |Un satisfy

dist(zn, ∂Un) → 0 as n → +∞,

where dist denotes Euclidean distance.
It was shown in [7, Example 2] that the wandering domain U is semi-contracting; let us

take a closer look at it.
Let Bn(z) := bn ◦ bn−1 ◦ · · · ◦ b1(z) for n ∈ N. By Montel’s theorem, Bn admits a

subsequence converging locally uniformly to someB : D → D; since bn(0) = 0 for all n ∈
N, we have B(0) = 0, and thus B : D → D. Furthermore, by the Weierstrass convergence
theorem and the assumptions on an,

B ′(0) = lim
n→+∞ B ′

n(0) =
+∞∏
n=1

an = λ > 0,
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and so B is non-constant. Additionally, since B ′
n(0) = ∏n

k=1 ak > 0 and, by Schwarz’s
lemma applied to the sequence (Bn)n∈N,

|Bn(z)| ↘ |B(z)| for all z ∈ D, (9)

the limit function B is unique.
Next, we recall [7, Corollary 2.4].

LEMMA 4.1. Let h : D → D be a holomorphic function with h(0) = 0 and |h′(0)| = μ.
Then, for all w ∈ D,

h1(|w|) := |w| · μ− |w|
1 − μ|w| ≤ |h(w)| ≤ |w| · μ+ |w|

1 + μ|w| =: h2(|w|).

Elementary calculus shows that the function h1 : [0, 1] → R is a concave function with
maximum

2μ2 + (2 − μ2)
√

1 − μ2 − 2

μ2
√

1 − μ2
.

Thus, if we choose c ∈ (0, 1) such that

c <
2λ2 + (2 − λ2)

√
1 − λ2 − 2

λ2
√

1 − λ2
,

then there exists a round annulus A ⊂ D centred at 0 such that |B(z)| > c for z ∈ A. Now
recall (9); in particular, since (|Bn(z)|)n∈N is a non-increasing sequence for all z ∈ D and
Bn(z) = bn ◦ bn−1 ◦ · · · ◦ b1(z), we also have |bn(z)| > c for z ∈ A for all n ∈ N.

Now take some positive c′ < c; applying Rouche’s theorem to condition (B) satisfied by
f, we conclude that, for all sufficiently large n, there exists a topological annulus A′

n ⊂ �′
n

such that |f (z)− 4(n+ 1)| > c′ for all z ∈ A′
n, and A′

n surrounds the disc {z ∈ C : |z−
4n| ≤ c′}.

4.2. The surgery. At each Un, we want to cut out a small disc and replace f by an
appropriately rescaled version of the Joukowski map z �→ z+ z−1 inside of it, giving
us a pole in each domain. After that, we must join f to the Joukowski map through
quasiconformal interpolation in an appropriate annulus An ⊂ Un such that An ⊂ Un.
Since we want the resulting quasiregular map g0 to be quasiconformally conjugate to a
meromorphic one, there are two conditions we require to hold.
(1) Ensure that the dilatations Kn of the interpolating map in An (respectively) satisfy

+∞∏
n=1

Kn < +∞;

(2) For any z ∈ An, its orbit under g0 does not intersect Am for m < n.
The two main results we will use in this surgery are both due to Kisaka and Shishikura.

First, we have a way to interpolate quasiconformally in round annuli [22, Lemma 6.2].

LEMMA 4.2. Let k ∈ N, 0 < R1 < R2, and ϕj be analytic on a neighbourhood of
Cj := {|z| = Rj } such that ϕj |Cj winds around the origin k times (j = 1, 2). If there exist
positive constants δ0 and δ1 such that
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∣∣∣∣ log
(
ϕ2(R2e

iθ )

Rk2

Rk1
ϕ1(R1eiθ )

)∣∣∣∣ ≤ δ0 (10)

and ∣∣∣∣z ddz
(

log
ϕj (z)

zk

)∣∣∣∣ ≤ δ1, z = Rje
iθ , (j = 1, 2), (11)

for every θ ∈ [0, 2π), and if δ0 and δ1 satisfy

C = 1 − 1
k

(
δ0

log(R2/R1)
+ δ1

)
> 0, (12)

then there exists a quasiregular map

H : {z : R1 ≤ |z| ≤ R2} → C
∗

without critical points that interpolates between ϕ1 and ϕ2 and has dilatation constant

KH ≤ 1
C

. (13)

Second, we need a sufficient condition for us to conjugate the resulting quasiregular map
to a meromorphic one [22, Theorem 3.1]. Although it was originally stated only for entire
maps, it is easy to see how to deal with the presence of poles: this lemma is a particular
case of the necessary and sufficient conditions given by Sullivan’s straightening theorem,
which is flexible enough for transcendental meromorphic maps (see [11, §§5.2 and 5.3]).

LEMMA 4.3. Let g : C → Ĉ be a quasiregular map. Suppose there are (disjoint) measur-
able sets Ej ⊂ C, j = 1, 2, . . . , such that:
(i) for almost every z ∈ C, the g-orbit of z meets Ej at most once for every j;

(ii) g is Kj -quasiregular on Ej ;
(iii) K∞ := ∏

j≥1 Kj < +∞; and
(iv) g is holomorphic (Lebesgue) almost everywhere outside

⋃
j≥1 Ej .

Then there exists aK∞-quasiconformal map φ (‘fixing infinity’) such that f = φ ◦ g ◦ φ−1

is a meromorphic function.

We have our patient and our tools; let us begin the surgery. We refer to Figure 1 for a
sketch of some of the sets and functions here and their relations to each other. First, we take
the points zn := 4n ∈ Un, n ≥ N , which form an orbit under f ; N here is large enough that
the annuli A′

n described at the end of §4.1 exist for n ≥ N . We take some r > 0 such that,
for n ≥ N , the circle Cn = {z : |zn − z| = r} (shown by the blue inner disc in Figure 1)
is surrounded by A′

n. Inside the discs {z : |zn − z| ≤ r}, we will remove f and transplant
appropriately translated versions of the rescaled Joukowski map

Jn(z) = μnr
2

μ2
nr

2 − 1

(
μnz+ 1

μnz

)
,

where the μn > 1/r are parameters that will give us great control over the dilatation of
the interpolating maps. The strange scaling constant here requires explaining; its role is
to guarantee that Jn(Cn) surrounds Cn+1, which will help us enforce condition (2). It can
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FIGURE 1. In the blue inner discs bounded by Cn, the original map f was replaced by appropriately translated
versions of γn. To connect this with f, we interpolate on the red outer annuliAn using the quasiconformal maps φn.

be calculated as follows: as explained in [1, pp. 94–95], the function z �→ z+ 1/z maps a
circle of radius ρ > 1 injectively onto an ellipse with major semi-axis ρ + 1/ρ and minor
semi-axis ρ − 1/ρ. Denoting the (as yet unknown) scaling constant by λ, the condition
‘Jn(Cn) surrounds Cn+1’ then becomes

λ

(
μnr − 1

μnr

)
= r ,

and solving for λ yields precisely

λ = μnr
2

μ2
nr

2 − 1
.

Next, since f |Un converges locally uniformly to the translation z �→ z+ 4 (in the sense
outlined in property (D)), we can take some r ′ > r with C′

n := {z : |zn − z| = r ′} (red in
Figure 1) also surrounded by A′

n, and such that |f (C′
n)− zn+1| > r + δ for all sufficiently

large n. Now, if n is (again) large enough, the only pre-image of zn+1 under f surrounded
by C′

n is zn itself, and hence ind(f ◦ C′
n, zn+1) = 1 (the notation ind(γ , α) denotes the

winding number of the curve γ around the point α ∈ C). We are ready to start interpolating
the maps Tn+1 ◦ Jn ◦ T −1

n on Cn and f on C′
n. For the sake of convenience, we pass to the

unit disc, interpolating instead the functions Jn and T −1
n+1 ◦ f ◦ Tn on {z ∈ C : |z| = r} and

{z ∈ C : |z| = r ′} (respectively).
Needless to say, we are applying Lemma 4.2 with k = 1. We would like first to draw

attention to condition (11) in the case j = 1, that is, for the function Jn. The left-hand
quantity takes the form ∣∣∣∣ 2

μ2
nr

2e2iθ + 1

∣∣∣∣,
which has the upper bound (achieved for θ = π/2)

2
μ2
nr

2 − 1
.

Clearly, taking μn → +∞ gives us excellent control over how small this term is; it is
through this ‘trick’ that we will control the dilatation introduced by the Joukowski map.

For the case j = 2, we have a function of the form f (z) = bn+1(z)+ εn(z), where
εn → 0 uniformly as n → +∞ and bn are the Blaschke products described in §4.1. The
exact form of the left-hand side of condition (11) is
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∣∣∣∣z ddz
(

log
bn+1(z)+ εn(z)

z

)∣∣∣∣, (14)

and by controlling how fast an ↗ 1 and applying Cauchy’s integral formula to εn, we can
ensure that εn and its derivative tend to zero as fast as necessary to control the size of the
constants in Lemma 4.2. Thus, up to a small error term tending to zero arbitrarily fast, (14)
takes the form ∣∣∣∣zb′

n+1(z)

bn+1(z)
− 1

∣∣∣∣ =
∣∣∣∣ (1 + an+1)z+ a2

n+1z
2 + an+1

(1 + a2
n+1)z+ an+1z2 + an+1

− 1
∣∣∣∣,

which again tends to zero arbitrarily fast by choosing an appropriate sequence an ↗ 1.
Finally, the left-hand side of condition (10) takes the form∣∣∣∣ log

(
bn+1(r

′eiθ )+ εn(r
′eiθ )

r ′eiθ
reiθ

Jn(reiθ )

)∣∣∣∣
for θ ∈ [0, 2π), and we can use the triangle inequality to bound it by∣∣∣∣ log

bn+1(r
′eiθ )+ εn(r

′eiθ )
r ′eiθ

∣∣∣∣ +
∣∣∣∣ log

reiθ

Jn(reiθ )

∣∣∣∣.
Ignoring the error term again, this becomes∣∣∣∣ log

r ′eiθ + an+1

1 + an+1r ′eiθ

∣∣∣∣ +
∣∣∣∣ log

reiθ

(μ2
nr

3eiθ /(μ2
nr

2 − 1))− (r/(eiθ (μ2
nr

2 − 1)))

∣∣∣∣. (15)

Thus, we see that, by making appropriate, independent choices of an ↗ 1 and μn → +∞,
we can make (15) go to zero arbitrarily fast as n → +∞.

It follows that we can arrange conditions (10) and (11) to hold in each annulus
An := {z ∈ C : r < |z− zn| < r ′} with constants δn,0 and δn,1 that are as small as we need
them to be. Thus, by invoking Lemma 4.2, we obtain a sequence of quasiconformal maps
φn that interpolate between Jn and f on the annuli An with dilatation as close to 1 as we
please, (say)Kn < 1 + 1/n2, by (12) and (13). It follows that theKn can be made to satisfy

K∞ :=
+∞∏
n=1

Kn < +∞.

We now define the map

g0(z) :=

⎧⎪⎪⎨
⎪⎪⎩
Jn(z), z ∈ int(Cn), n ≥ N ,

φn(z), z ∈ An, n ≥ N ,

f (z) elsewhere,

and claim that it satisfies the hypotheses of Lemma 4.3. Indeed, for any z ∈ An, the fact
that Jn(Cn) surrounds Cn+1 while C′

n+1 surrounds f (C′
n) implies that g0(z) ∈ An+1, and

so the g0-orbit of every z ∈ C meets each An at most once, guaranteeing hypothesis (i).
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Hypotheses (ii)–(iv) are also satisfied by the construction of the Jn and our choices of an
and μn, and so we can apply Lemma 4.3 and obtain a K∞-quasiconformal map ψ such
that

g(z) := ψ ◦ g0 ◦ ψ−1(z)

is a transcendental meromorphic function.
We claim that:

(i) the new map g has a wandering domain V;
(ii) V is semi-contracting; and

(iii) V is infinitely connected.
The first claim will follow from the fact that ψ conjugates g0 to g, and that we left

‘enough’ of f intact in each Un. More specifically, recall the round annulus A from §4.1;
it satisfies |B(z)| > c for z ∈ A. By Rouche’s theorem, we find a topological annulus
A′ ⊂ UN (where, again, N is large enough that the annuli A′

n exist for n ≥ N) such that,
for z ∈ A′, f n(z) ∈ Un+N does not intersect the discs {z ∈ C : |z− 4(n+N)| < c′} ⊂
Un+N , where c′ was also defined in §4.1. In particular, for z ∈ A′, the f -orbit of z is not
affected by the surgery, and therefore is conjugated byψ to its g-orbit; it follows thatψ(A′)
is contained in a Fatou component V of g. Furthermore, since g has a pole at ψ(4n) for
n ≥ N , V is at least doubly connected.

We now show that V is semi-contracting. We begin by showing that V (and each Vn, the
Fatou component of g containing gn(V )) is contained in ψ(UN) (respectively, ψ(Un+N)).
This, in turn, will follow from the fact that we did not modify f outside of a small disc
properly contained within each Un. Indeed, if w is a point on ∂UN , it belongs to the Julia
set of f, and is therefore approached by a sequence (wn)n∈N of repelling periodic points of
f (see, for instance, [8, Theorem 4]). Since the wn are periodic points in the Julia set, their
orbits do not intersect the discs {z ∈ C : |z− 4(n+N)| < c′} ⊂ Un+N for any n ∈ N, and
so g0 agrees with f on their f -orbits. It follows that the conjugacy ψ takes these f -orbits
to corresponding g-periodic orbits ψ(wn), which we can show to be repelling by the local
topological dynamics as follows.

Take one of the wn, of minimal period kn ≥ 1 (say), and apply Koenig’s linearization
theorem [26, Theorem 8.2] to find a neighbourhood W of wn and a biholomorphic map
φ : W ∪ f kn(W) → φ(W ∪ f kn(W)) ⊂ C such that φ conjugates f kn |W to multiplication
by αn := (f kn)′(wn), which satisfies |αn| > 1 since wn is repelling. This allows us to
find (if necessary) a smaller neighbourhood W ′ ⊂ W such that f m(W ′) ∩ {z ∈ C : |z−
4(n+N)| < c′} = ∅ for all n ∈ N and 1 ≤ m ≤ kn, so that ψ(f m(z)) = gm(ψ(z)) for
z ∈ W ′ and 1 ≤ m ≤ kn. From this, we may conclude that ψ(wn) is repelling for g: for
all z ∈ ψ(W ′) \ {wn}, there must exist M ∈ N such that gMkn(z) is not in ψ(W ′) (see, for
instance, [26, p. 84]). It follows thatψ(w), being accumulated by repelling periodic points,
belongs to J (g); a similar argument applies to each Vn, n ∈ N.

Thus, for any points z, w ∈ V , we have by the Schwarz–Pick lemma and the fact that
Vn ⊂ ψ(Un+N) that

dVn(g
n(z), gn(w)) ≥ dψ(Un+N)(g

n(z), gn(w));
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if ψ were a conformal map, our work would be done—but it is not, and it does not preserve
the hyperbolic metric. Instead, for a domain D ⊂ C and points z, w ∈ D, let us define

kD(z, w) := inf
γ

∫
γ

1
d(s, ∂D)

|ds|,

where the infimum runs over every rectifiable arc γ ⊂ D joining z and w. This is the
quasihyperbolic metric; if D is simply connected, standard estimates for the hyperbolic
metric [13, p. 13] show that

kD(z, w)
2

≤ dD(z, w) ≤ 2kD(z, w).

Additionally, since ψ is (K∞)−1-Hölder continuous [11, p. 31], we know (see [16,
Theorem 3]) that there exists a constant C > 0 depending only on K∞ such that

kUn+N (z
′, w′) ≤ C · max{kψ(Un+N)(z, w), kψ(Un+N)(z, w)1/K∞},

where z′ = ψ−1(z) and w′ = ψ−1(w) are points in Un+N . For points z′ ∈ A′, the
construction of g implies that

ψ(f n(z′)) = gn(ψ(z)) for all n,

and so taking z′ and w′ in A′ yields

kUn+N (f
n(z′), f n(w′))

≤ C · max{kψ(Un+N)(gn(z), gn(w)), kψ(Un+N)(gn(z), gn(w))1/K∞}.
The left-hand side of this expression is bounded below by dUn+N (f

n(z′), f n(w′))/2,
which, since U is semi-contracting, is in turn bounded below by c(z′, w′)/2 > 0. Also,
since the exponent on the right-hand side is independent of n, we can get a uniform,
positive lower bound c′(z, w) on kψ(Un+N)(g

n(z), gn(w)) regardless of which term is the
maximum. Combining everything, we see that

c′(z, w)
2

≤ dψ(Un+N)(g
n(z), gn(w)) ≤ dVn(g

n(z), gn(w)) for z and w in ψ(A′),

and thus V contains a non-empty open subset that is semi-contracting relative to any z0 in
this subset—we claim that (dVn(g

n(z), gn(w)))n∈N is not a constant sequence, since each
g|Vn ‘inherits’ a critical point from f. Indeed, f |Un has a single critical point z∗n for every
n, and since z∗n approaches ∂Un as n → +∞ (in the sense outlined in property (D)), we
have z∗n ∈ Un \ {z ∈ C : |z− zn| ≤ r ′} for all sufficiently large n. Hence, the critical point
is not affected by the surgery for sufficiently large n, and ψ(z∗n) ∈ Vn is a critical point of
g for all large n.

We have only shown that V is semi-contracting on the topological annulus ψ(A′). For
the remainder of V, we choose some z0 in ψ(A′) and apply Theorem 1.1.

To prove that V is infinitely connected, notice that (since Vn ⊂ ψ(Un+N)) all Vn are
bounded, and so deg g|Vn is always finite. By applying [15, Theorem 1.1], we deduce that
V must be infinitely connected. This concludes the proof of Theorem 1.2.
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