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ABSTRACT 
Reported are results of incorporating recent snow 

avalanche processes into hydrodynamic uniform flow 
equations, used to model motion of snow avalanches. 
Actual modifications include the relating of dissipative 
coefficients of the flow model to slab release depth, the 
representation of the material as a locking fluid, and 
the mini-segmentation of the avalanche path at low flow 
speeds in order to numerically accomodate viscous 
transition and avalanche cessation of motion. The 
purpose in looking at different formulations of the 
uniform flow hydrodynamic flow equations is to reduce 
the variation in the drag coefficients when the theory is 
applied to different avalanche paths, as compared to 
what has been previous experience. The model that 
reduced parameter variation the most was one in which 
the total drag force decreased in an intermediate 
velocity range, a mechanism that has had recent 
experimental verification. 

INTRODUCTION 
In modeling snow avalanche motion the application 

of hydrodynamic theory and equations was first 
introduced by Voellmy (1955). Although the theory 
strictly applies only to uniform, steady flow conditions, 
this method has continued to be used to predict 
avalanche runout speeds and distances . This is 
undoubtedly because of the simplicity of the equations 
involved, compared to what would be the alternative 
with transient viscous fluid dynamic equations . In 
continued use of the Voellmy formulation, principal 
criticism over the years has been in selection of the 
drag coefficients in the governing dynamic equation , 
which tend to vary over a wide range for different 
avalanche paths and different snow and terrain 
conditions . While part of this variation is caused by 
varying material and surface conditions, another part is 
related to the restrictions imposed in formulation of the 
governing equation of motion. Recent findings on the 
flow properties of granularized snow, namely the 
property of snow to "lock up" as velocity gradients 
become small , provide a new basis in considering the 
formulation of equations of motion for avalanching 
snow . While the material locking property cannot be 
introduced explicitly into the hydrodynamic equations 
for uniform , steady flow , the physical concepts involved 
may be used to set up alternate forms of the drag 
terms. The intent in this is to determine if the range of 
the drag coefficients can be reduced in defining 
alternate forms of the drag terms. Evaluation of the 

range of these parameters is carried out by analyzing 
the runout of two avalanches, one constituted from dry 
mid-winter snow and the other of coastal wet snow. 

GOVERNING EQUATION OF MOTION 
The hydrodynamic equation of motion developed 

by Voellmy has the form 

a = g sine - J.l8 cos e 
g 

{h 
(I) 

This is an equation for acceleration, a, of the fluid 
mass in terms of the gravitational driving force g sine, 
frictional drag J.l8 cose, and v 2 or dynamic drag with 
coefficient g/ ~h. In this coefficient, g is the acceleration 
of gravity, h is the fluid flow depth, and ~ is the 
turbulence coefficient. In typical applications of this 
equation, (Buser, Frutiger 1980; Martinelli and others 
1980) the two drag coefficients I.l and { have a reported 
range of 

0.1 < I! < 0.5 

300 < ~ < 3000 (m / sec 2) 

depending upon avalanche path and field conditions. 
Another version of the acceleration (per unit mass) 

equation, reported by Cheng and Perla (1979), and made 
applicable to computer based analysis of avalanche 
runout, is 

a = g sine - J.l8 cose - (D/ M)v 2 (2) 

where the only change is in the dynamic drag 
coefficient, namely DI M, which is treated as a single 
parameter. The ranges of the parameters reported by 
Cheng and Perla are: 

0.1 < I! < 0 .5 

10 < MI D < 10· (m) 

in which the friction coefficient I.l is unchanged from 
the Voellmy friction parameter, but the dynamic drag 
coefficient, MI D, increases over that of ~ . The 
difference is in the account taken of flow depth h, a 
parameter difficult to evaluate if considered a variable 
over the path of avalanche runout. 
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To pursue further the effect of flow depth h on 
avalanche flow, and its incorporation into equations of 
motion, the following physical conditions are 
considered: 

I. At low shear stresses in flowing granular snow, the 
snow has a tendency to lock up (Dent and Lang 
1983). The constitutive law for this Bingham type 
fluid is 

dv 
+ Il (_)n 

dy 
(3) 

where To is the shear locking stress, Il is the 
viscosity coefficient and dv / dy is the velocity 
gradient. A true Bingham fluid corresponds to n = 

I; however, in order to retain v 2 type dynamic 
drag, the exponent is set at n = 2, which in fluid 
mechanics is termed the Boussinesq formulation 
(Shames 1982). 

2. Flow of avalanches involves bulk flow of the 
major portion of the moving material riding upon 
a high velocity gradient boundary layer of 
granularized snow (Lang and Dent 1983). 
Designating the boundary layer thickness by l., 
then the velocity gradient may be approximated by 
(Figure I), 

dv v 

dy 
(4) 

which assumes a linear velocity profile over the 
thickness of the boundary layer (Lang and Dent 
1983). 

At present, not enough data exist to physically 
relate the boundary layer thickness ). to the flow depth 
h of the material. However, recognizing the degree of 
approximation involved in the model under 
consideration, two assumed relationships are investigated 
as a means of studying two additional versions of the 
equation of motion. 

In one case the granular layer is taken to be 
proportional to h, and the constant of proportionality is 
combined with the viscosity coefficient v in the final 
equation. The equation of motion is then obtained by 
summing forces in the x direction (in Figure I) and 
using the equation for the locking shear stress to 
obtain 

a g sine - I\g cose - ~ v2 

h2 
(5) 

In this equation the locking shear stress, To' is contained 

y 

Fig.1. Bulk flow forces, kinematics, and boundary layer. 
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in the coefficient 1\, so that the mechanism of material 
locking reverts to the same type of term that surface 
friction contributes in previous derivations . In the v2 

drag term the form is the same except that flow depth 
appears to second power in the denominator of the 
dynamic friction coefficient. 

As another example, if ). is taken proportional to 
h, then h3 appears in the v2 drag term. In numerical 
studies this proved to be too severe a motion retardation 
unless a "fast-stop" mechanism is introduced, that has 
been proposed from observations of the appearance-wise 
accelerated slow-down of avalanches as they come to a 
stop. Lang and others (J 979) define a slow speed 
viscosity function of the form 

(6) 

to represent a fast-stop mechanism. In this equation Vo is 
the nominal high-speed viscosity, and C and ex are 
constants that are evaluated from avalanche outflow 
analyses. Using this equation for viscosity, the governing 
equation of motion becomes: 

a g sine - I\g cose 

Note that in these equations the viscosity referred to 
has different units based upon the different 
dependencies on h. 

The next step, namely evaluation of the 
coefficients for specific avalanche cases, involves 
integration of the equations of motion. This was carried 
out by computer methodology using the Cheng-Perla 
(1979) code with some modifications . First, h was set 
equal to the average depth of the released snow slab 
and not updated as the flow progressed. This is not 
considered a serious error, since the avalanches studied 
are sheet-flow types without significant lateral 
confinement. Under this assumption the Yoellmy, 
Cheng-Peria and Material Locking equations become 
identical in form, and anyone of the three can be 
evaluated using the Cheng-Perla code. In what follows 
the Material Locking equation is evaluated, and the 
Yoellmy and Cheng-Perla coefficients are computed for 
reference purposes only . However, if h were to be 
treated as a variable, then the procedure could be 
adapted as was necessary in the case of the Fast-Stop 
equation. In this equation velocity, v, appears in the 
argument of the exponential function, which negates 
easy integration of the equation, as is necessary to 
obtain an equation for velocity as a function of 
distance traveled for the Cheng-Perla code. Rather than 
try to find an integrated form of the Fast-Stop equation, 
an alternate option of equivalent linearization was 
introduced . At the slower flow speeds (v < 8 ms-i) 
where the viscosity changes, the length of segment was 
reduced to the point where coefficient values were 
essentially constant over the interval of integration . An 
added benefit of this finite differencing is that it is 
also easy to determine the segment in which flow speed 
becomes negligible and the avalanche stops . This negates 
the need to use an integrated form of the equation that, 
in the case of the other three versions of the equations 
of motion, contains an instability condition for this 
calculation . 

AY ALANCHE ANALYSES 
Evaluations of the drag coefficients in the 

Material Locking and Fast-Stop equations are carried out 
for two avalanche paihs. One is the nominal 35

0 

Ironton 
Park path in southwestern Colorado where, after an 
elevation drop of 350 m, runout is onto a frozen lake 
bed . For this avalanche path a 2 m deep release slab of 
mid-winter dry snow is known to have traversed a path 
distance of 910 m, while a I m deep release traverses a 
path distance of 690 m (Lang, Dawson, Martinelli 1979). 
The second avalanche path is located on Mt Myoko, 23 
km from the Sea of Japan in central Honshu Island, 
Japan. The slope extends from 800 to 1100 m (34

0 
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average slope), on which a 2.0 m average depth wet 
snow avalanche was artificially released on 18 February 
1966 (Nakamura and others 1984). Avalanche distance of 
travel was 570 m. For these avalanche cases the two 
versions of the hydrodynamic equations of motion were 
factored into a computer analysis to determine values of 
the drag coefficients in order to match the travel 
distances of the avalanches. Results of these evaluations 
are summarized in Table 1. In matching the avalanche 
runout distances, maximum velocities were also matched, 
which are also listed in Table I for the two cases. For 
reference purposes we show also the corresponding 
coefficients of the Voellmy and Cheng-Perla equations, 
computed directly from the Materials Locking coefficient 
values. 

CONCLUSIONS 
Results of the analysis allow two comparisons to 

be made. One comparison is between dry and wet snow 
avalanches of equal release depth (h = 2 m). In the case 
of the Material Locking model the variation in the 
friction coefficient between the dry and wet snow 
avalanches is from T1 = 0.053 to T1 = 0.075 respectively 
(Table I) , a factor of 1.4, which however fall below the 
published range of this parameter, namely 0.1 < T1 < 0.5 . 
In the case of the Fast-Stop model, TI = 0.12 to 0.08, 
respectively, a factor of 0.8; friction values somewhat 
greater than those of Material Locking. For the dynamic 
drag coefficients v and vo' the difference is a factor of 
4 between the dry and wet snow avalanches, for both 
flow models, although the corresponding values differ by 
a factor of 2. Thus the dominant difference is reflected 
in the viscous part of the flow models relative to the 
wetness of the snow in these avalanches. 

The second comparison is in regard to difference 
in flow depth of the avalanches. For friction the 
variation is about a factor of 2 for a comparable 
change in depth in the case of Material Locking, but 
virtually no change with Fast-Stop. Change in the 
coefficient v for Material Locking, is by a factor of 0.6 
from h = I m to h = 2 m flow depth , and by 1.16 for 
Fast-Stop, for the same depth change. Thus there is a 
decrease in the range of the coefficients with Fast-Stop 
compared to Material Locking relative to flow depth 
change. 

The characteristic of the Fast-Stop model that 
distinguishes it from the other models is that the total 
drag force decreases in magnitude in a low to mid 
velocity range. For example, in the case of the Mt 
Myoko avalanche, the total drag force drops in the 
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velocity range 3 < v < II ms-1 . Above v = 11 m S-l 

the v2 drag becomes dominant and continues to increase 
up to the maximum velocity of the avalanche at v = 
20.8 m S-l . This drop in drag force over an 
intermediate avalanche speed range is reported also by 
Schaerer (1975) from drag force studies of avalanches at 
Rodger's Pass, Canada. Schaerer introduces a kinetic 
friction term f = ¥ which he applies over a speed range 
10 < v < 50 m s- , based upon numerical fitting of the 
drag coefficients to more than 35 control released 
avalanches . Using this representation for drag, an 
intermediate range occurs, in which the total drag force 
decreases in magnitude, similar to that of Fast-Stop. 
That drag force decreases with increasing speed has also 
been directly measured on a granular snow layer, 
subjected to overburden pressure representing that in an 
avalanche at speeds up to v = 12 ms-1 by Lang and 
Dent (1984). While the Fast-Stop model stems from 
empirical origins, it appears that the essential ingredient 
in the mechanism of drag force reduction at mid-range 
speeds of avalanches warrants further consideration as a 
means of reducing the current wide range in the motion 
parameters associated with the hydro~ynamic flow 
representation of avalanches. 

One objective in this study was to attempt to 
incorporate recently determined flow conditions into the 
fluid flow equations for snow avalanches. What was 
determined was that in starting with the hydrodynamic 
equation for uniform, steady flow, that conditions of 
material locking and bulk flow on an active boundary 
layer could not be incorporated in a distinctive way 
from the usual form of the equation. The basic property 
of Material Locking at low speed, known to be a 
property of granular flowing snow, cannot be accounted 
for in a "single block" model, wherein the shear locking 
stress coefficient reverts instead to the sliding friction 
term of the ordinary equation. Through this reversion 
the application of the locking stress To ha ving 
dependence upon the magnitude of the velocity gradient, 
the basic characteristic of a Bingham type fluid, is lost. 
Thus if account is to be taken of the somewhat unique 
flow properties of avalanching snow, a more refined 
flow model is needed than what is associated with 
uniform flow hydrodynamics. 

In regard to the numerical aspects of this 
investigation, the segmentation of the avalanche path in 
the terminal part of the flow facilitated rapid 
determination of the location where the avalanche stops. 
This modification to the Cheng-Perla code resulted in an 
insignificant increment in computer running time, yet 
simplified the numerical algorithm. 

TABLE 1. FRICTION AND DYNAMIC DRAG COEFFICIENTS AND MAXIMUM VELOCITIES OF 
THREE A V ALANCHES. 

Material Locking Fast-Stop Equation Voellmy Cheng-Perla 
Equation C 500 a = 1.25 Coefficients Coefficients 

Avalanche TI v v max TI Vo v max j.l j.l MID 

(m) (ms- 1) (m2) (ms- 1) (ms- 2) (m) 

Ironton Park 0.020 0.021 17.1 0.13 0.019 17.3 0.020 467 0.020 47 
h = Im 

Ironton Park 0.053 0.013 40.0 0.12 0.022 40.7 0.053 1509 0.053 307 
h = 2m 

Mt Myoko 0.075 0.050 20.2 0.090 0.090 20.8 0.075 392 0.075 80 
h = 2m 
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