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1. Introduction. This paper is concerned with three basic transforms:

= Tin f"e-'2'A's-3l2g(s)ds. (1.3)
\JV*n) Jo

The first of these has been studied by Widder [1], who points out that/(f) can be interpreted as
the temperature M(0, t) on the time axis, where u(x, t) is the solution of the heat equation with
symmetric initial temperature u(x, 0) = g(\ x |). The second has also been studied by Widder
[2], where it is pointed out that/(f) can be interpreted as the value of the harmonic function
M(JC, t) on the /-axis arising from the boundary data u{x, 0) = g(\ x |). In view of some recent
work by L. R. Bragg and the author [3-6], transforms (1.1) and (1.2) take on new significance,
since they are exactly the transforms that relate important problems in partial differential
equations. Let x = (xu x2 xn) and AB be the n-dimensional Laplacian.f Let v(x, t) be a
solution of the wave equation vtt = Anv satisfying v(x, 0) = <f>(x) and v,(x, 0) = 0. Then under
suitable hypotheses

±re-^'v(x,s)ds (1.4)

is a solution of the heat equation u, = An« satisfying u{x, 0) = <j>(x). Furthermore, under
appropriate conditions

is a solution of Laplace's equation wtt+Anw = 0 satisfying w(x, 0) = <f>(x). As we shall see, the
relations which Widder derives [1, 2], now become important formulas in relating solutions of
partial differential equations.

In reference [7], we showed that the heat equation and Laplace's equation are related by
the transform (1.3). Indeed, if u{x, t) is a solution of the initial value problem for the heat

t This research was supported by N.S.F. Grant GP-8123.
j More general linear operators than An are possible. See references [3-7] for details. Also boundary value

problems can be considered.
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equation mentioned above, then under suitable restrictions

e-'2/4ss-3/2u(x,s)ds (1.6)

is a solution of the corresponding Dirichlet problem for Laplace's equation.
In this paper, we show that transform (1.3) is a convolution transform closely related to

transform (1.1), and therefore yields to analysis similar to that of Widder. We obtain inversion
theorems for transform (1.3) and show how these and similar theorems for (1.1) and (1.2)
apply to related problems in partial differential equations.

2. Complex inversion theory. In this section, we briefly outline the complex inversion
theory for the transforms (1.1), (1.2), and (1.3). In transforming classical solutions of partial
differential equations we shall generally have functions which are continuous as functions of f
and have continuous first partial derivatives with respect to t. Therefore, we do not state our
results in quite the generality possible (see [8]).

In (1.1) assume that g(s) is continuous and has a continuous first derivative for s ^ 0
and is O(easl) as s -* oo. Then, making the change of variables a = s2 in (1.1), we have

=r
Jo

and gQo)ly/a = 0 ( O as a -» oo. Therefore

F(z) = V(4KZ)/(Z) = [ " e-«*' {<?(»/>} da
Jo

is analytic for Re(l/4z)>o, and the complex inversion formula applies. Hence, letting
( = l/4z, we have, for y > a,

or, assuming t > 0,

In (1.2) let us assume that g(s) is continuous for 0 ^ j < oo and g(s)/(\ +s2) belongs to
HO, oo). Then

is analytic for Rez > 0. Let e > 0, t > 0 and pick branches of y/(-t2-ie) and s/(-t
2

with values in the right half-plane Re z > 0. Then

g(s)

-'2 + <'<0 J «
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In the integral we let s2 = i], and then

2teCm g(s
n)0(s

2-t2)

Since g(y/r])l{(1 + >;2)N/'/} IS integrable and continuous for t] > 0, we can take the limit as
s -> 0+ and we obtain the inversion formula for / > 0

a(t) = Hm — - - - - :r^_-'_ivv ". (2 2)
1-.0+ ^'L V^ ' V^ TIC.; j

In (1.3) assume that #(.?) is continuous and has a continuous derivative for t ^ 0 and is
O(s"), a < | , as s -* oo. Letting s = 1/4?;, we have

lo

where g(\/4ti) = O(?;"a), — a > — £ as ?; -> 0. Therefore

is analytic for Re z2 > 0. The complex inversion formula is valid. Hence, for /; = z2,y > 0,

If / > 0 and >/ = . .

(2.3)
Jy-ico

3. Real inversion theory. All three transforms (1.1), (1.2) and (1.3) can be expressed as
convolution transforms with kernels which are of the type treated by Hirschman and Widder
[9]. This leads to the following real inversion formulas.

In (1.1) let * = £>-*, s = 2e~yl2. Then

= 4-f"
V^J-

/(«"*) = 4 - f e-°x-ye<x-»V2g(2e->"2)dy=r G(x-y)<t>(y)dy,
V^J J

where G(y) =( llyjn)e~cyeyl2 and (j>(y) = g(2e~yl2). To find the inversion operator we compute
(following Hirschman and Widder) the bilateral Laplace transform of G(y).

1
£(s) J - » V71

Then

= f"
J - o
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Let D = d\dx and define the symbolic operator

n-»oo Jc=l

Then, under appropriate conditions, the following inversion is possible

g(2e-x'2) = E(D)f(e-*).

Taking into account the changes of variables, we define QF(x) = — xF'(x), and

Then, if g(s) is continuous and (1.1) converges for 0 < t < r, we have, for x > 0,

f/(v'4x) = lim LBiX[/]. (3.1)

In (1.2) let g(s) = JA(J) and make the changes of variables / = e~x, s = e~n. Then

2 I*00 Me~n) C°

= - - 2 ( , - , ) i i dl> =
" J -oo e ' A J -where

Taking the two-sided Laplace transform of G(t}), we have

1 2 f °° e~" , _ 1

J l | = ! s i
If D = J/d!x, then the inversion operator is

To take into account the changes of variable, we define 8G(x) = xG'(x), and the operator

Then, if g(s)/s is continuous for 0 < J < oo and belongs to L(0, oo), and the integral (1.2)
converges for some / > 0,

= y lim £n,x[/W/*]> (3-2)

the formula holding for all positive x.
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In(1.3)let/ = ex / 2andj = eJ'/4. Then

where G(y) = ( lly/n)e~eyeyl2 and <f>(y) = g(eyl4). We see that we have the same kind of con-
volution transform as in (1.1). Hence

1 f* _s

To take into account the changes of variable, we define BF(x) = \xF'(x), and the inversion
operator

We shall prove the following formula for the inversion of (1.3):

\\mLn>xUl (3-3)
n-»oo

We first note that B(x") = ixpx"'1 = $px", B\xp) = (ip)2xp, etc. We therefore interpret

n\xp) = npl2xp = {xylny

and

n'F(x) = F(xy/n). (3.4)

It is a straightforward calculation to show that, if

then, operating on k with respect to /, we obtain

25 \ . . nlt2n+ie-'2/4s

Therefore, using (3.4), we have

We have seen above that if g(s) in (1.3) is continuous for 0 ^ f < oo and O(s") for a < \, as
j -> oo, then J(n)f(t)lt is a Laplace transform. Therefore the integral converges for 0 < / < oo
and the differentiation under the integral sign is justified. Hence

M1 *(2n+l),2n
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Letting u = \/s, we have

and an application of the Laplace asymptotic method [8] shows that

which proves formula (3.3).

4. Expansion theorems. The inversion theorems using series proved by Widder in [1]
and [2] now become expansion theorems for solutions of partial differential equations. For
example, we have

THEOREM 4.1. Let v(x, t) be a solution of the wave equation v,t = &nv in some domain
D cR", satisfying v(x, 0) = <j>(x) and v,(x, 0) = 0, such that v(x, t) = O(eal1) as t -* oo for xe D.
Then

is a solution of the heat equation ut = Artw in D satisfying u(x, 0) = </>(*). If

00

H ( X , 0 = E ak(x)tk

for xeD, 0^t<o, then

for 0 g t < oo. If for some real numbers a and c, u(x, t) has an expansion of the form

forO<t<co, where bk(x) = O(ck/k^ as k -> oo /or all xeD, then

/or 4ce" < t2 < oo.

Similarly, in connection with transform (1.2) we have the following theorem:

THEOREM 4.2. Let v(x, t) be a solution of the wave equation vtl = Anv in some domain
D cR", satisfying v(x,Q) = <t>(x) and v,(x,0) = 0, such that v(x, t)l(\ + t2)eL(0, oo) with respect
to t for each xeD. Then
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is a solution of Laplace's equation wtt + Anw = 0 in D satisfying w(x,0) = </>(-*). V
00

w(x,t) = £ ak(x)tk

* = 0

for O^t<p, xeD, then

v(x,t)= t(-Vk"2k'
2k

* = 0

for some interval 0 ^ t < a. Furthermore, if for some real a

for p < t < oo, xeD, then

v(x t) - c o s ^ V ( - Z l ^

wi jome interval a < t < oo.
Finally, we prove an expansion theorem in reference to transform (1.3).

THEOREM 4.3. Let u{x, t) be a solution of the heat equation u, = Anu in some domain D c R",
satisfying u(x, 0) = <j)(x) and such that u(x, t) = 0{t*) as t -* oo (a < $) for all xeD. Then

w(*>() = -!7r\ f" ^'2 / 4 JS-*M(X,s)ds

is a solution of Laplace's equation wtt + Anw in D satisfying w(x,0) — <f>(x). If

for xeD and 0 ^ t < oo, where ak(x) = 0{cklkX) as k -* oo /or some positive c, then

for 0 ^ t < co. If, for some a,

w(x,t) =

for xeD and a < t < oo, then

for 0 < t < oo.

0 0
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Proof. The proof that w(x, t) is a solution of the Dirichlet problem is contained in
reference [6].

It is easily verified that

where

Therefore, since we are permitted to differentiate a power series term by term,

By Lemma 5.4 of [1], | Sa(k)\ <;;r~*r(i + Jfc)cosh7rJfc. We take as a comparison series

4
or, since IXi+Jfc) = UTt.(2k)\]l22kk\, the series

oo -2k,

I
* = O

By the ratio test, this series converges for 0 ^ / < oo. Therefore, since the convergence is
uniform in n,

u(x,t2l4) = lim Ln,,[w(x,0] = > E S r r ?
n->oo * = 0 * ( . t " ^

and, replacing f2/4 by r, we have

for 0 <; / < oo.
For the last part of the theorem, we note that

and, taking derivatives term by term, we have

*=o J *=o
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However, now, because of the factor w-(*+ a ) / 2 in Sn(-±k-±a), the series converges for
o/Jn < t < oo. By Lemma 5.2 of [1], for all n ^m and k ^ - a ,

We take as a comparison series

which converges for a/y/m <t<co. Therefore, since the convergence is uniform in n,

u(x, t2i4) = lim In>,[w(x-, 0] = > f^LL

However, since m is arbitrary, the resulting series converges for 0 < t < oo. Finally, replacing
f2/4 by t, we have

b (x)(4 ~(*+a'/2
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