COMPLEMENTED MODULAR LATTICES

ICHIRO AMEMIYA! anp ISRAEL HALPERIN

1. Introduction.

1.1. This paper gives a lattice theoretic investigation of “‘finiteness’’? and
“continuity of the lattice operations’” in a complemented modular lattice.
Although we usually assume that the lattice is X-complete for some infinite X,
we do not require completeness and continuity, as von Neumann does in his
classical memoir on continuous geometry (3); nor do we assume orthocom-
plementation as Kaplansky does in his remarkable paper (1).

1.2. Our exposition is elementary in the sense that it can be read without
reference to the literature. Our brief preliminary § 2 should enable the reader
to read this paper independently.

1.3. Von Neumann’s theory of independence (3, Part I, Chapter II) leans
heavily on the assumption that the lattice is continuous, or at least upper
continuous. We do not assume such continuity and we find it necessary
therefore to distinguish several concepts of independence for a family of
elements {ax; N € A}: independence shall mean that ar2 (auu € F) =0
whenever F is a finite subset of A and X ¢ F; residual independence shall mean
that @y > (au; p ¥ N) = 0 for every \; and strong independence shall mean that
H)\Z(an;ﬂ #=\) = 0.

Strong independence is sufficiently restrictive that, even without assuming
continuity of the lattice operations, many of the continuous geometry argu-
ments remain vaild. For example, if {a\, bx; A € A} is strongly independent
and for each M\ there is given a perspective mapping of [0, ax] onto [0, &],
then these mappings can be imbedded in a single perspective mapping of
[0,>a)] onto [0,X &].

§ 3 is devoted to a discussion of independence.

1.4. Suppose L is complemented, modular, and countably complete. Von
Neumann's arguments (3, Part I, Theorem 4.3) show that L is finite, that is,
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Q denotes the least ordinal number whose corresponding cardinal power is
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an independent sequence {a,} of pairwise perspective elements with a; & 0
cannot exist, if the lattice is Wo-continuous (this means: the lattice is both
upper No-continuous and lower ¥,-continuous).

If No-continuity does not hold, then such sequences {a,} can occur. But
we find the paradoxical result: the existence of such sequences actually forces a
certain type of comtinuity to hold. This situation is described more precisely
in the following paragraph.

A homogeneous sequence is defined to be a strongly independent sequence
{a,} of pairwise perspective elements. We draw attention to two important
special cases:

(i) Type (A): all a, have a common complement, that is, for some element
A4,0,® 4 =1

(ii) Type (A*): all ¢*, = >_(an; m % n) have a common complement.*

In § 5 we show: Suppose {a,} is a homogeneous sequence; then the lattice
[0,2_a,] is upper X¢-continuous if and only if {a,} is of type (A), lower No-
continuous if and only if {a,} is of type (A¥*). Thus, if {a,} is of both types (A)
and (A*), the above-mentioned result of von Neumann shows that all a,
must be 0.

In § 8 we show that the types (A) and (A*) are mutually exclusive in a
stronger sense, namely: If {a,} and {b,} are homogeneous sequences of types
(A) and (A*) respectively, then X a, and X b, are completely disjoint (this
means: a perspective to b with ¢ <> a, and b < Y b, can occur only when
a = b =0). On the other hand, these two types are exhaustive in the
following sense: every homogeneous sequence {a,} has a unique decomposition
@, = b, + ¢, with {b,}] a homogeneous sequence of type (A) and (c,) a
homogeneous sequence of type (A*).

From these facts about homogeneous sequences we can deduce (see § 8):
If L is complete then L has a direct sum decomposition L = Ly + Ly 4+ L3
where L, = (0, a,) with each @, in the centre of L, and with L; upper No-
continuous, L, lower No-continuous and L; finite.

1.5. Now suppose L is even X-complete for a given infinite X. We call L
locally R-continuous if for every a £ 0 there exists some 0 # ¢; < ¢ with
[0, a1] N-continuous. We show (see Corollary 1 to Theorem 7.1): If L is
locally R-continuous and finite then L must be R-continuous.

1.6. In §§ 4, 6 we establish, among other properties of finiteness and con-
tinuity, that they are additive, that is, if [0, a] and [0, 8] enjoys one of these
properties then so does [0, a + 5].

1.7. Finally, in § 9 we prove theorems somewhat more general than that
of Kaplansky (1). Kaplansky proved: (i) every countably complete ortho-

4If (ay, . . ., an) is a finite independent family of pairwise perspective elements, then (i) and
(ii) both hold, that is, the a» have a common complement and the a*, have a common
complement.
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complemented modular lattice is finite and (ii) every complete orthocom-
plemented modular lattice is necessarily continuous.

Our work gives lattice theoretic proofs for generalizations of both of these
results. In particular, (ii) is strengthened to (ii)’ every N-complete ortho-
complemented modular lattice is X-continuous.

More generally, we prove, generalizing (i):

THEOREM 9.1. 4 countably complete, complemented modular lattice is finite,
if (*): for every a # 0 there exists an anti-automorphism ¢ of L such that b
perspective to a subelement of a occurs for some b = 0 with b ¢(a) = 0.

(*) holds, for example, if L possesses an orthocomplementation, or even, in
the case that L is complete, if L possesses an anti-automorphism which is an
orthocomplementation on the centre of L (see Corollary 1 to Theorem 9.1).

We prove, generalizing (ii)’:

THEOREM 9.5. An K-complete complemented modular lattice is R-continuous
if 1t 1s finite and possesses an anti-automorphism ¢ of period two with the follow-
ing continuity property: (**) for every limit ordinal number @, < Q, x5 + ¢(xg) =1,
x50 (x5) = 0 for all B < @y and x5 < %, for all B < v < Qi together imply
(Xxp) + 6(Xap) = 1, (Zxp)0(Xx5) = 0.

Clearly every orthocomplementation ¢ has the property (**).

1.8. An alternative (but still lattice theoretic) proof of the Kaplansky's
finiteness theorem for the orthocomplemented case (see (i) in § 1.7 above) is
given in an Appendix. This Appendix can be read independently of the rest
of this paper and it is somewhat related to Kaplansky’s original method.

2. Preliminaries.5

2.1. Let L be a set of elements partially ordered by a relation a < & (written
also b > a). By definition, partial ordering means: ¢ < b, b < cimply a < ¢,
and a < b, b < a hold if and only if ¢ = & (that is, @ and b are the same
element).

When ay is in L for each N € A we call a the union of the a) and write
a = 2 a0 (or 2ay) if @ is an element such that: x > a, for every X is equiva-
lent to x > a. We call a the meet of the a, and write ¢ = Il,,ax (or Iay) if
a is an element such that: x < ay for every M is equivalent to x < a (each of
union and meet is clearly unique if it exists at all).

The zero (unit) in L written as 0(1), is defined to be the element (if 1t exists)
such that 0 < x(x < 1) holds for all x in L.

The dual to any statement or construction concerning elements of L is
obtained by replacing < by >; 2, 11 byll, 3 respectively and 0, 1 by 1, 0,
respectively. L’ denotes the partially ordered set dual to L. Any theorem
implies its dual.

5This section is mostly based on the original material of J. von Neumann (see (3) or (2) ).
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L is called complete if S ax, 1oy exist for all families {an; N € A}; R-complete
if these elements exist whenever A < NX;® a lattice if it is 2-complete (hence
n-complete for every n = 2,3,...).

A lattice is called modular if a(b + ¢) = b + ac whenever a > b (equiva-
lently, if: a(b + ¢) = a(b(a + ¢) + ¢) for all a, b, ¢).

When a < b we write L(a, b) or [a, b] to denote the sub-partially-ordered
set of all x with ¢ < x < b; clearly, it has a, b as zero and unit respectively.

2.2, Let L be a lattice with zero element. Elements a, b are called disjoint if
ab = 0 (® shall mean + but shall imply that the summands are disjoint).

If @ < ¢, [¢c — a] will denote any element A, to be called a complement of
a in ¢ (sometimes called a relative complement of a in ¢), for whicha @ 4 = c.
If L has a unit, {1 — a] (if it exists) is called a complement of a.

L is called complemented if 0, 1 exist in L and every a has at least one com-
plement. L is called orthocomplemented if 0, 1 exist in L and L possesses an
anti-automorphism ¢ of period 2 with ¢(a) ® @ = 1 for all a.

If L is complemented and modular, a relative complement [¢ — a] exists
always (¢[1 — a] will do); then, whenever ab = O there exists a complement
A of @ with 4 > b (indeed, b + [1 — (a + b)] will do for 4).

If L is modular and 4 is a complement of a then [0, a] and [4, 1] are lattice
isomorphic under the mutually inverse mappings:

(21) a1—>a1+Aifa1<a; A1—>aA1ifA1>A.

2.3. Let L be a modular lattice with zero element. The elements a and b are
called perspective with axis x (we write a ~ ), if a® x = b® x; we may
replace x by x(a + b) to obtaina @ x = b® x =a + b.

If a, b are perspective with axis x then [0, a] and [0, 8] are lattice isomorphic
under the mutually inverse perspective mappings:

a;— (@ +x)bifar <a; by— (bi+x)aifby < b
(clearly, a; ~ b; with the same axis x). We note:
(2.2) ar~c, c~b, (¢ +c)b=0 imply a ~ b;
forifa@x=x@c=a+cand c®y=y® b =c-+ b then
a® x+ @+ =00 (x+y0@+?d.

Elements a, b are called projective (we write ¢ = b) if ¢ = a1 and b = a,
for some finite family ay, . . ., a, with a; ~ a1 for 2 < m.
We shall say that an element e can be doubled in L if

(2.3) a ~ u holds for some % in L with ua = 0.
If a modular lattice L with zero has a unit, we shall say the lattice L can
¢A denotes the cardinal power of A. For every family of lattice elements {ax; A € A} which

we consider, we shall suppose that A < NX. Von Neumann defines L to be an N-lattice if it is
Ni-complete for every Ni < X (see (3, Part I1I, Definition A. 1)).
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be doubled if there exists a modular lattice L; with zero such that for some u
in Ly, L is lattice isomorphic to [0, #] and # can be doubled in L;. Clearly if
a can be doubled in L, the lattice [0, a] can be doubled.

We write (as in von Neumann (3, Part II, Definition 3.4)), (a, b, x)C to
mean: a@ x =b@ x =a® b.

We call @ and b completely disjoint and write (a, b)P to mean:

(2.4) a1~ by, a1 < a, b < b together imply a; = 0.
Clearly (a, b)P implies ab = 0.

We say:
(2.5) a is in the centre of L if (a, b) P holds whenever ab = 0.

2.4. Let L be a complemented modular lattice. Then (a, b) P holds if and only if:
(2.6) every complement of b contains a.

(Suppose (2.6) fails: if B is a complement of & with B > a false, then
a1 = la —aB]# 0 and a1~ (B + a1)b (with axis B) so (a, )P does not
hold. Suppose, on the other hand, (2.6) does hold: then if a; < a, b; < b,
and a; ~ b; with axis x, we have in succession: a1d < ab = 0; b(a1 + b1)x = 0;
there exists a complement B of & with B > (a; + b1)x; B > (a1 + b)x + ai;
B > b;; by = 0; a; = 0; hence (a, b)P holds.)

(2.6) is also equivalent to: every complement of @ contains b (consequently,
a is in the centre of L if and only if it has a unique complement, necessarily
also in the centre of L, and a is in the centre of L if and only if it is in the
centre of L').

Hence in a complemented modular lattice, if (e, b)P holds for every A,
and X b, exists, then every complement of @ contains ) by along with all
by so (a,>_b\)P holds; therefore, if > ax and >_b, both exist and (3>_an, > b,)P
is false, we must have (ay, b,) P false for some particular A, u.

Consequently, although this fact is not needed in the present paper, if &,
are all in the centre of L then > b, if it exists, is also in the centre of L and,
by duality, I1s,, if it exists, is also in the centre of L.

If, in a complemented modular lattice, (a, b)P is false and b ~ ¢ then
(a, ¢)P is also false; this follows from:

2.7) a~b,b~c, a5 0 together imply a; ~ ¢; for some a1 < a, ¢1 < ¢
with a; % 0.

Clearly, we need prove (2.7) only for the case ac = ba = bc = 0. Because
of (2.2), we may also suppose ¢ < b + ¢, ¢ < a + b.” Now it follows that
a®b=c®bsoa~c (axis b).

Hence, in a complemented modular lattice, (a, b)P holds if and only if

"For example, if ¢ < b + ¢ is false then a’ = la — a (b +¢)] 0, and o’ ~¥’, b’ ~ ¢’ for
some b’ < band ¢’ < ¢. Since a’ (b’ + ¢’) < a’ (b + ¢) = 0, it follows from (2.2) that a’ ~ ¢’.
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ac = 0 whenever ¢ ~ b. Indeed, (a, )P and b ~ ¢ imply ac = 0 by (2.7).
On the other hand, if ac = 0 for all ¢ ~ b then (a, )P does hold; for then
ab =0, and if a1 < @, b, < & with a; ~ b we have b ~ (a, + [b — 8,]) (use
(2.2)); since a(ay + [b — b1]) = a1, then we must have @, = 0, proving
(a, b)P does hold.

If L is complete then for each element a there exists a central element
z > a (namely, z = > a’ for all o perspective to subelements of a) such that:

(2.8) (a, b)P holds if and only if 20 = 0. This 2 is the least element in the
centre with property z > a.

2.5. Let L be an R-complete lattice. A family {ay; N < @y} with Q; < Q, either
increasing, that is, N < p implies a) < a, (written ayTa to denote also
a = Y ay) or decreasing, that is, A\ < wimplies ay > a, (written ay | @ to denote
also @ = Ilay) is said to converge continuously if for every x, 3 (xa\) = xa or
II(x + a)) = x + a, respectively; L is said to be upper N-continuous or lower
NX-continuous if every such increasing or decreasing family respectively, con-
verges continuously (upper N-continuity of L is clearly equivalent to lower
N-continuity of L'.8

If ax T continuously, then for every ¢, cax T continuously; indeed, for every
x, x(>can) = cx(Can) =2 (ex)an = > x(cay).

L is called X-continuous if it is both upper and lower X-continuous.

2.6. Let L be a complemented, modular, and NR-complete lattice. If {ar\} is
increasing or decreasing, then {a,} does converge continuously if: xay = 0
for every X implies x3"a\ = Oorif x 4+ a) = 1 for every A impiles x + [la, = 1,
respectively. Also, L is upper N-continuous if ax T 1 implies a\ converges
continuously, lower R-continuous if a) | 0 implies a) converges continuously.

2.7. Let L be an X-complete lattice with zero. L is called locally N-continuous
(upper N-continuous, lower N-continuous) if a % 0 implies [0, a1] is N-con-
tinuous (upper N-continuous, lower N-continuous) for some 0 # a: < a.

If L is also complemented and modular, then L is locally R-continuous
(upper X-continuous, lower R-continuous) if and only if the dual L' is locally
X-continuous (lower X-continuous, upper NX-continuous); for if 4 # 1, let
a be a complement of A. Then a # 0, and [0, a1] is NR-continuous (upper
N-continuous, lower R-continuous) for some 0#a;<a. Let A1=A4+[a—a1].
Then 4 < 41 # 1 and [44, 1] is NX-continuous (upper R-continuous, lower
N-continuous) by (2.1). This shows that L’ is locally R-continuous (lower
X-continuous, upper X-continuous) since < in L means > in L'

$Transfinite induction shows that L is upper N-continuous if and only if, for arbitrary
{ax; X € A} and for every x, Zp(xZ(ax; N € F)) exists and equals x2 ax (F varies over all
finite subsets of A), lower N\ -continuous if and only if, for arbitrary {ax;\ € A} and for every
x, IIp(x + II(ax; N € F)) exists and equals x + Ilay.

An equivalent definition of continuity in terms of directed families {ar} was given by
U. Sasaki who used a lemma of T. Iwamura (see (4) or (2, Appendix II) ).
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If [0, a\] is X-continuous (upper X-continuous, lower X-continuous) for
every A then [0,Y.a\] must be locally N-continuous (upper X-continuous,
lower N-continuous); for if x % 0 and x < Xa) then (x,a\)P is false for
some A, so [0, x4] is lattice isomorphic to [0, @)\'] for some a)’ < a) and some
x1 # 0 with x; < x. But [0, a)'] is R-continuous (upper N-continuous, lower
N-continuous) along with [0, a,], so [0, x;] has the same property. This proves
that [0, X ax] is locally X-continuous (upper X-continuous, lower R-continuous).

3. Independence theory. In this section we assume L is an N-complete
modular lattice with zero. Since we do not make any continuity assumptions
we need to refine the von Neumann independence theory.? in so far as it
applies to infinite families of elements. In particular, in Theorem 3.1 below,
we use a complementation argument to replace the usual “‘continuity’ argu-
ment.

If {ax; N € A} is a set of elements in L we use the following notation:

ax denotes Y (au; 1 = N),
ardenotes > (ax; N €T) if T C A,
ot denotes 3 (ax; A ¢T) if T C A (in particular, ay = 0).

Definition 3.1. A family {ax; A € A} is called independent if ayar = 0 when-
ever F is a finite subset of A and \ ¢ F; residually independent if axax = 0
for every A.

Definition 3.2. If {a\} is residually independent the residual element of
{ar} is defined to be Ilay; an element « is called a residual element in L (more
precisely, an X-residual element in L) if x is the residual element of some
residually independent family {ax; N € A} with A = X.

If {a\} is residually independent with residual element 0 then {a,} is called
strongly independent.

Because of the modular law, the following statements follow easily:

Independence of {a\} is equivalent to: ara¢ = 0 whenever F, G are finite,
disjoint subsets of A, and also to:

HTZ(G')\;)‘ € Fr) ‘_"Z(a)\;)\ € mFr)

for every finite collection of finite subsets F, of A.

Residual independence implies independence and is equivalent to: azay = 0
for every finite subset F of A.

Strong independence implies residual independence and is equivalent to
the single condition Tle* = 0. (It will follow from Theorem 3.1 below that
strong independence of {a\} is equivalent to: for every collection of subsets
L of A, ILY (ax; N € I,) exists and equals 3" (ax; N € N 1,).)

9The von Neumann theory of independence can be found in (3, Part I, chapter II).
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If ai(ai 4+ ... 4 aw1) =0 for 7 > 2, then the finite or infinite family
{an,; n > 1} is independent. Hence:

f by, .oy bmy @,y ..., ar) isindependentandc, 4+ ...+ ¢, < b+ ...+ bn
and {cy, ..., c,} is independent, then {ci,...,cp a1, ...,a,} is independent;
a generalization of this fact is proved in the Corollary to Theorem 3.1.

If by < ax for each N and {a\} is independent (residually independent,
strongly independent), then {6} is independent (residually independent,
strongly independent).

If {&y, oa; A € A} is independent (residually independent, strongly indepen-
dent) then {& + ¢} is independent (residually independent, strongly inde-

pendent).
{a.;nm = 1,2, ...} isresidually independent if and only if @, (an; m > 1) =0
for every w = 1,2, ..., strongly independent if and only if residually inde-

pendent with IL,(3 (a,;m > n)) = 0. If {a,} is strongly independent, then

3.1) a< Y ay c<f) ai> -0

i=n i=n+1

for every »n imply {c,} is strongly independent.

If {a\},{b\} are both independent (residually independent) and (3-a)) (3-5)) =0
then {ax 4+ &; N € A} and {ax, b; N € A} are both independent (residually
independent) (the Corollary to Theorem 3.1 below shows that if {a)},{&\} are
both strongly independent with (3>-a))(2.8) = 0 then {ax + &; N € A} and
{ar, by; N € A} are both strongly independent).

If L is upper R-continuous then independence implies strong independence
for families {ay; A € A} with A < N (this was shown first by von Neumann
(3, Part I, Chapter II)).

THaEOREM 3.1. Suppose {ar} is strongly independent and for an arbitrary set
of u, arp < ax for all N, u. Then 1 an , exists for each N if I1,(Than ) exists. On
the other hand,

HM(Z)\ ) = Z)\(Hu )

(that s, both sides exist and are equal) provided that for each \, the element
ey, exists and has a complement in ay (in particular, if 11ar, = 0 for
every \).

Proof. 1. If Il,a,, exists let it be denoted as .
Clearly, if IL,(Zxan ) exists, then for each »,

avH#(Z)\a’)\,IL) = Hﬂ(av,u + 0)

since {a)} is strongly independent, so b, exists for each ».

2. Clearly Xaax . > 2aby for every u. So we need only show: if for some
x, 2@, > x for all g, then x < 2 \ba.
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But if for all g, 2 xaxr . > x then for all \, g,
% < oy + ar,
@+ a)ar < (@au + a)ar = ar;
then for every X,
(x + at)ar < ILas, = by,

<2+ an < b +an
finally,

x < IL(b + ax).

Thus the theorem will be completely proved if we establish

Hx(bx + a‘:) = b
3. Now suppose ¢, @ b, = ay for each A\. Then

Th+Tao> 1 + df) > 2 b,

and the modular law now shows that we need only prove

I + a)) (Zer) = 0.
And this does hold because (b + a*\)(Za) < a*) for each A, and ITa*, = 0.

COROLLARY. (Strong independence under substitution). Suppose L is an
N-complete modular lattice with zero, {ax; N € A} is strongly independent and
T, A, ... are mutually disjoint subsets of A. If {c.}, {d.}, ... are each sirongly
independent with sets of indices u, v, . . . each of cardinal power < Xand ar>3 ¢y,
ap > 2.4y, ..., then the set of all elements {all c,, all d,, ...} is strongly inde-
pendent.

Proof. Since a*y < II(a*\; N € T) the meeta*ra*, ... <Il(a*; A € A) = 0.
So {ar, aa, . ..} is strongly independent.

To prove {all ¢, all d,, ...} strongly independent we form the union 3_*
of all c,, all d, omitting one of these elements and we need only prove that all
such >_* have 0 as meet.

But if ¢, is omitted, > * = ¢*, + a*;. Then Theorem 3.1, applied to the
family {ar, aa, ...} shows that

Ny = +11d +...=04+0+...=0.

Remark. In the case that L is complemented Theorem 3.1 is equivalent to
the statement: if {a\} is strongly independent, then the set L, of all >_x, with
x\ < ay, is a sublattice of L, isomorphic by the correspondence > x) <> {xa}
to the direct product of the lattices [0, a\]; Lo has the property that if any
family of elements in L, has a union or meet in L, then this union or meet
is in L,.

At this point we introduce an important generalization of the conjointness
relationship ‘“‘(a, b, ¢)C"’ of von Neumann (see § 2).
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Definition 3.3. A family of ordered triplets {(xx, &, b)), X € A} is called a
C-system (more precisely, an X C-system if A = X, and sometimes a C-sequence
if A is countable) if:

(i) (xa, &, ba)C for every A, as defined in § 2;

(i1) {>_%u, ba; N € A} is strongly independent.

We shall write: {(x\, &, b); N € A}C to denote that {(xx, &, b); N € A} is a

C-system.
Clearly, if x denotes 3_x, and {(xx, o, b)} C, then:
(ii1) xx = x(en + b)) for every A,
(iv) x® cn = x @ by for every A,
(v) * <Xo + b
Conversely, if some given x, {f}, {a} satisfy (iv), (v), and
(ii)" {x, bx; N € A} is strongly independent then, with x, defined by (iii),

it is so that {(x\, &, 1)} C holds.
Thus in a C-system the x, are uniquely determined by the elements

{ex, ba; A € A} and the union 3_x,. We shall sometimes write {(x|c\, b))} C with
x = Y x, in place of {(xx, &, b0)}C.

LemmaA 3.1. If {(x|ex, b)) C holds, then {c\} is residually independent and has
restdual element xy_c».

Proof.
o < b+
Hence, (by (iv), Definition 3.3),
oo < albr +x) (0 + %) = ox
and (by (ii1), Definition 3.3),
aox = oxy = 0. A
Thus for each A, axc® = 0 and hence {c} is residually independent. Next,
*Xo = 2o + a) (e + %) = x(o + ala + %) = x(6 + abl + ).

But {b,, b*,, x} is independent, so, by the Corollary to Theorem 3.1, {c,, b*,, x}
is independent; thus c,(b*, + x) = 0 and

*
XD 00 = X Cu for each p.

Thus 23 e = xl1,c*, < (residual element of {c}). On the other hand,

(residual element of {a}) = Iy < Iy + %) =«
since {x, b; A € A} is strongly independent. Thus

(residual element of {a}) < Ca)x

and so equality holds.
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Definition 3.4. A C-system {(xy, &, b))} is called a residual C-system, if
> x» = (residual element of {c\})
equivalently (by Lemma 3.1), if Y xx < Xo.

Remark. It is easy to see that a residual C-system with A finite must have
all xy, o, b\ identically 0. But a non-trivial residual C-system can be con-
structed whenever there exists an increasing sequence {a,} which does not
converge continuously (this will follow immediately from Theorem 3.6 and
the Corollary to Theorem 3.2 below).

THEOREM 3.2. If {a\} is residually independent and ar > by ® c\ for every
\, then the residual elements a, b, ¢ (of {ar}, {b\}, {cn} respectively) satisfy:

(i) o) (Xa) = be;

(i1) @ > b 4+ ¢ with equality if ax = by @ ¢\ for every \.

Proof. Each of {b\}, {c\} is residually independent along with {a\}. Now:
(i) For each fixed u, {a*,, b,, c,} is independent. Hence

(Zh) (Za) = bue () (Za) = ALs) ALE) = be.

(i1) @ > b 4+ cis clear. But if ax = 5@ ¢\ for every A then alsoa < b + ¢
for:

@+ Th)(Za) < G + o)) (Tan) = o
Hence
c> @+ 2Zh)(Xa),
) +c> @+ Zh)(Za+ Zh) > a.
Similarly (3-c) 4+ b > a. Thus
a < (Zh) +o((Za)+d) =b+c+ Zh)Za) =b+c

CoOROLLARY. If L is complemented and {a\} is residually independent with
residual element x, there exists a residual C-system {(x|cy, b))} with o < aa.

Proof. 1. Choose X to be a complement of x and define:
o = [an — anX],
o= (x+ o)X.

2. Then a) = &xX @ o, and each of {&xX}, {a} is residually independent
since {a,} is residually independent by hypothesis.
But

(residual element of {axX}) < (residual element of {a\}) = x;

also < X, so < xX = 0. Now Theorem 3.2 shows that {c} is residually
independent with x as residual element.
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3. {x, ba; A € A} is strongly independent because

* * *
h<x+oa =aqa,

IIe < Il = «.
But 1%, < X, hencell#*, < xX = 0. Therefore {b)} is strongly independent.
Since 630, < X = 0, the Corollary to Theorem 3.1 shows that {x, b; A € A}
is strongly independent.
4. ox < axx =0, byx =0 and

hdrx=(x®a)(X +x) =x® o,
Finally, 2-6\ + 2_cx > «x since, as we have already shown, {c\} is residually

independent with x as residual element. Thus (iv), (v), and (ii)’ of Definition
3.3. hold and it follows that {(x|c\, &)} is a residual C-system, as required.

THEOREM 3.3. Suppose {ar} is residually independent with residual element t.
Ift=x®yand Y is an element with ¥V > x and Y® y > > ay, then

{Y(arn + 9}
s residually independent with residual element x.
Remark. If L is complemented, ¥ could be chosen to be x + [(Zay) — ¢].

Proof. Put by = Y(ar + y). Then
bht+y=a-+yb+y=a +y=a,
NS Yaf(a;\ + ) = Y(afax +y)=Yy=0.

Thus {&} is residually independent.
Now b*\ < YV, and Yy = 0, so b*\ = YV (b*\ + v) = Ya*\. Hence

(the residual element of {5}) = II(Ya*) = Vt = x + Yy = «.

COROLLARY 1. If L is complemented then every subelement of an W-residual
element is also an R-residual element.

COROLLARY 2. If L is complemented and {a\} is residually independent there
exists a strongly independent family {b\} with 3 by < 2 ax and by perspective to
ay for every N, with a common axis of perspectivity.

Proof. Let ¢t be the residual element of {a\} and choose ¥ = [(3_an) — ¢],
that is, let x = 0, y = ¢ in Theorem 3.3. Then b, = Y(a\ + y) satisfies our
requirements and for every A, by is perspective to a, with axis Y.

THEOREM 3.4. Additivity of perspectivity. Suppose {an + by; X € A} s
residually independent and ax ~ by for every \. If {an} and {b\} are both strongly
independent (in particular, 1f {an + b} is strongly independent),'® then there

10Strong independence of {ax + by} obviously implies that of each of {ax}, {bn}. The
interested reader can verify, using Theorem 3.1 and Theorem 3.2, that if L is complemented
then residual independence of {ax + &)} together with strong independence of each of {ax},
{bp}, actually forces {ax 4+ b} to be strongly independent.
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exists a perspective mapping of [0,2_b\] onto [0,X ar] which maps by on ay for
each N\. If {b\} is strongly independent and L is complemented then 3_by is per-
spective to a subelement of Y ay.

Proof. Suppose a, ® x\ = b @ x, and {ay}, {b} are both residually inde-
pendent. Then for every fixed u, (e, + b.)(e*. + 0*.) = 0. Hence

*

oxn) (b)) = xuby + xfbf =0+ x,afb,i,e < by
a) (2h) < (residual element of {b}).

Similarly,
XCx) (Can) < (residual element of {ay}).

Thus if {8)} is strongly independent, 3_b, is perspective to [>ax — _x) (3 an)]
with axis X x. If {ax} is also strongly independent then (X x\)(X_ay) = 0;
in this case (2 b)) ~ (2_a») with axis X x,, and the corresponding perspective
mapping maps b, on a, for each A.

Remark. If (3_b)(>ax) = 0 and {5} is strongly independent, then residual
independence of {a, + &} is equivalent to residual independence of {a\}, by
application of Theorem 3.1.

COROLLARY. Suppose {ar}, {b\} are both strongly independent families.

@A) If an ~ by for each N and (3_arn)(3_by) = O then there is a perspective
mapping of (0,2 ar\] onto (0,3 ] which maps an on by for each .

(i) If an = by and L can be doubled then there is a lattice isomorphism of
[0,>"ax] onto [0,> br] which maps ax on by for each \; if also 3 by < X ar and L
is complemented then [> ar — Y b\] is a member of an independent sequence of
mutually perspective elements.

Proof of (i): Theorem 3.4 shows this since {a) + b} is strongly independent
by the Corollary to Theorem 3.1, under the present hypotheses.

Proof of (ii): We may suppose that L = [0, ¢] with ¢ an element in a modular
lattice L; such that [0, ¢] can be mapped by a perspective mapping ¢ onto
[0, ] for some % in L; with cu = 0. Then ay ~ ¢(8)) for each X (by repeated
applications of (2.2)).

Since (3ay) Q¢ (b)) = 0, there exists, by (i) above, a perspective mapping
¥ of [0,>a,] onto [0,X ¢ ()] which maps each ay on ¢(b)).

Now ¢~y is a lattice isomorphism of [0,> a)] onto [0,> 5] as required.

If finally 38 < X2 ax and L is complemented, let x; = [an) — Cb)];
and for » > 1 define x,,1 by induction:

Xnt1 = ¢—1‘l/(xn)

Then {x,} is an independent sequence since x,(X (x,;m > n)) = 0 (this
follows from repeated applications of ¢~y to the identity x; (3 (x,; m > 1)) <
x1(2h) = 0).
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Since x, ~ ¢(x,) and ¢(x,) ~ x,41 and {x,, ¢(x,), %41} is independent for
each =z, therefore x, ~ x,41. Then by (2.2), x, ~ x,, for all n, m. This proves (ii).

THEOREM 3.5. Extension of perspeciive mapping.

Suppose {(xx, cr, b))} and {(x\, c\, B')} are both C-systems and Y x\ < x,
Sx’ <« and {x + x',2 0,2 b} is independent. Then any perspective map-
ping of [0, x] onto [0, x'] which maps xx on x)\' for every \, can be extended to a
perspective mapping of [0, x + 2 b\] onto [0, x" + > b\'] which maps by on by’
and c\ on ¢\ for every \.

Proof. 1 The given perspective mapping of [0, x] onto [0, x’] is determined
by some axis of perspectivity a with:

t@e=x"@a=x+x"
2. We shall choose y\ below so that
3.2) NObh=n @k =b @®b,;

it will then follow immediately, as in the proof of Theorem 3.4, that the axis
a + > y\ gives a perspective mapping of [0, x + > 5] onto [0, x" + > 4]
which fulfills all our requirements except possibly for the requirement:

(3.3) o should be mapped onto ¢\’ for each A.

3. Our choice of y, is:

»n=(a+ o+ )+ b)
and we verify that (3.2) holds, as follows:
€] ntbh=(@+bh+oa+d)d+H)

and

et+bh+ata=at+nt+thta=act+x+ht+a=a+x+ b+ &
SO Y + b)\ = b)\ + b)".

Similarly I + b)\’ = b)\ + b)\' SO W\ + b)\ = W + b)" b b)‘ + b)".

(ii) The hypotheses imply that {b\, &', x 4+ «’} is an independent family
for each . Now successive applications of the Corollary to Theorem 3.1 show
in turn that each of the following is independent:

{bn, b, xx, a},  {by ok, %, e,
{by, c2y %\, 0}, {by o, o, a}.
Therefore
b = (@ + o+ )by = 0.
Similarly

b)‘y)‘ = 0.
(i) and (ii) prove that (3.2) holds.
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4. Finally, we verify that ¢ + Yy, does satisfy (3.3), as follows:

(themapof &) = (@ + Ty, + o) (x" + Xby)
>et+ntax=@a+a+d)d+i+ae+a)a
> B+ 0+ a)d > B+ )l =,

that is, (map of &) > ¢. Similarly: (map of &) > c\. Since the mappings
are inverse perspective mappings, equality must then hold in the preceding
two relations and the theorem is completely proved.

THEOREM 3.6. Suppose L is complemented and R'-continuous for every X' < X.
Suppose also that {cg; B < @} is an increasing family with xcg = 0 for every
B < Q for some fixed x with x <Y cg. Then there exists a residually independent
Sfamily {ag; B < @} such that:

3.4) > a, = for ever 8 < Q,
<8

(3.5) the residual element of {asg} is > x.

Proof. By transfinite induction we shall define for each 8 < € a complement
Cs of ¢g such that Cg > x and C, > Cg for all v < 8.

We choose C; to be any complement of ¢; with C; > x. Then for 8 > 1,
by transfinite induction, we choose Cs to be a relative complement
HT;<5Cs — ¢s(I11525C5)] with Cs > x. This is possible since, by the inductive
assumption, IT;<5Cy > x and xcs(I1;45Cs) < xcs = 0; this choice of Cs does
give a complement of ¢z because

(ILc)y+a=I] G+w =T ®=1
8B 3<B 3<8
due to the assumption that L is lower N’-continuous for X’ < N.
Now choose a; = ¢;, and for 1 < 8 < @, choose a3 = Cp(H5<pC5).
Then (3.4) holds; for by transfinite induction on g, it follows that for

every f3:
(Zat+tIlo)y=Tl (Za+tc)y=T 0=1
v<8 3B 8<B \ y<p 3<B
Cp=Cp(yZ<ﬂC-y+ I&:IB C;) = ;ﬁ&,ﬁ‘c‘p(gﬂ Ca) = %01+a‘3= 72(3 ag.

Next, {ag; 8 < @} is residually independent; for
ag(X(ay; vy # B)) = ascs(X(ar; v # B))
= ap(X(ay; v < B) + cs(X(ay; v > 8))Co)
=as(X(ar;7v <B) =0

since L is upper N’-continuous for X’ < N.
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Finally, for each v < Q,
x = x(2cs) < Cy(Xag) =2 (ag; 8> )
so (3.5) holds.

CoRrOLLARY 1. Suppose L is a complemented, No-complete modular lattice.
Then L is upper No-continuous if and only if every residually independent
sequence 1is strongly independent. More generally, if L is a complemented N-
complete modular lattice, and L is N'-continuous for all X' < N, then L 1is
upper N-continuous if and only if every N-residual element is 0.1

COROLLARY 2. Suppose L is complemented and N'-continuous for every
N < X. If {a\} is independent then there exists a sirongly independent family
{b\} such that ay = by for each \.

Proof. We may suppose the a) are well-ordered and indexed as {ag; 8 < Q}.
Let ¢g = Y (ay; v < B). Then since {ag} is independent and L is upper N’-
continuous for every X’ < N it follows that for every 8 < Q,

a2 (cysy <B) =0, ag+2X(cr;v <B) = cp
Now apply Theorem 3.6 (with x = 0) to the increasing family {c}; it
follows that there exists a residually independent family {a’; 8 < @} with
2 (@5 vy <B) =c¢s for every 8 < Q.

Clearly for every B, ag ~ ag’ with axis 3_(¢cy; v < B).

Now let the residual element of {as’} be denoted as y and let ¥ be a com-
plement of y. Then by Theorem 3.3 the elements b = Y(ag’ + y) form a
strongly independent family.

Since bs ~ as’ (with axis y) for each 8, and a5’ ~ as (as shown above),
therefore b = ap and so the b; satisfy our requirements.

4, Additivity of continuity. In this section and in §§ 5, 6, 7, we assume
that L is a complemented, X-complete modular lattice.

THEOREM 4.1. Suppose ar T a, b T b, and both ax, by converge continuously.
If axby = 0 for every N (equivalently, if ab = 0), then ax + by also converges
continuously.

Proof. We may suppose x(ay + b) = 0 for every A (which implies x (ar-+b,)
=0, (x + a\b, = 0 for all \, ») and need only prove that x(a + b) = 0.
But the continuous convergence of b, yields for every X\, (x 4+ a\)b = 0, and
so (x + b)ax = 0; continuous convergence of ay yields (x 4+ d)a = 0, hence

x(a + 8) = x(a(x + 8) + b) = xb = > (xb)) = 0 as required.
THEOREM 4.2. If [a, 1] is upper R-continuous and ¢cx T 1 in L thenY_ (acy) = a.

Proof. 1. First consider the case that for every A, acy = 0. We shall show

uln the case ¥ = N o 70 continuity assumption is implied.
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that in this case (a, ¢,)P holds for each u. Then since Y ¢, = 1, this implies
(a, 1)P, hence a = 0, as required.
To show (g, ¢,)P holds we let C, be an arbitrary complement of ¢, and we
need only prove that C, > a (see 2.6)). But if A > g,
C\ = C)‘(Cp@ C,‘) = Cu + C)\C,‘.
Hence
C,.@ C,‘ =1= Z)\C)\ = Z)\(C,. + C)\C,.)
=ao® Z)\(C)\Cu)
by the definition of lattice union. Since C, > > x(anC,), the modular law implies
that C, = Y x(aC,). Hence a + C, = a + X1 (aC) = Xa(a + aC,), by the
definition of lattice union. Then
((I + Cn) (d + Cu) = (Z)‘(d + C)\Cu)) ((1 + Cu)
= Z)\((a + CACu) (@ + Cu))
since [a, 1] is upper X-continuous,
= Zk(a + C“(d + C)\CM))
=a
because
Cu(a + C)\CM) = Cu(a(cn + C)\Cn) + al) < Cﬂ(ac)\ + C) = C#(O + Cu) = 0.

Thus, in turn,

(a + C“)C,‘ = ((I + Cu) ((L + CM)CI‘ = ac, = 0;

(@ + Ce + Cu = Cy;
a4 C,=Cy
a < C,

as required.

2, In the general case, let ao = X_x(acy). Then ao < @ and (a0 + an)a = ao
for every \. Since (ao + &) T1 in the lattice [ao, 1], we can apply the argument
of the preceding paragraph with [a,, 1] in place of L. We obtain: ¢ = a,, that
is, 2_(acr) = a, as required.

THEOREM 4.3. Additivity of upper N-continuity. If both [0, a], [0, d] are
upper N-continuous then [0, a + b] is also upper R-continuous.

Proof. We may clearly suppose ¢a® b =1, c»T1 and need only prove
(xcn) T x for every x. But ac, bon both converge continuously; hence, by
Theorem 4.1, acy + bcx converges continuously.

By (2.1), [a, 1] is lattice isomorphic to [0, 8] and hence is upper NX-con-
tinuous. Then, by Theorem 4.2, 3 (ac\) = a. Similarly Y (bcy) = b. So
S(acn+bc)) =a+b=1.
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But we have shown that ac\ 4+ bcy converges continuously; so for every
x, x > 2 (xc) > 2 x(acx + ban) = x. This shows that (xc\) T x and proves
Theorem 4.3.

THEOREM 4.4. (Generalization of Theorem 4.3.) Suppose L is upper
N'-continuous for some X' < X and [0, a,] is upper R-continuous for each
p € T with T < N, Then [0, a,] is upper N-continuous.

Proof. 1. We may suppose that X’ is infinite since Theorem 4.3 shows that
Theorem 4.4 holds for finite N’.

2. We shall prove Theorem 4.4 by transfinite induction on X’; we may
therefore suppose that Theorem 4.4 holds for all cardinals less than the
given infinite N'.

3. We may now suppose that the indices u are arranged as the set of
ordinal numbers 8 < @, where @, is the least ordinal number of corresponding
cardinal power X’

4. Since [0, (as; B < v)] is upper N-continuous for every y < @; (by
the inductive assumption), we may assume that {as} is mcreasmg, say ag ] a.

5. Thus we may suppose:

(i) ForeachB < @, [0, as]is upper X-continuousand as T @ thh continuous
convergence (since L is assumed to be upper R’-continuous).

And we need only prove that [0, a¢] is upper X-continuous.

It is sufficient to prove:

(i1) ¢y T a, xc, = 0 for all ¥ < @ for some @, < Q together imply xa = 0.

6. For each 8, (cyag) T s where g = 3 ,(cya5) < as.

Clearly {dg; 8 < @} is an increasing family, along with {as}, and con-
verges continuously since L is assumed to be upper X’-continuous. Hence,
for every v,

¢y (2pds) = 2p(cyap).
Now
2as =2y 6(crap) = 25 (Lpcras)
= > ,(cya) since ag T @, continuous convergence,

=Y, since ¢, < a for every 7,
=a since ¢, T a, by hypothesis.

Thus dz T a and the convergence is continuous.
Next, for each 8,

xdp = x4 (C4ap)
> ,(xcyag) since [0, ag] is upper X-continuous,

I

=3 ,(0) since x¢, = 0 for very 7,
= 0.

This proves the theorem.
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5. Homogeneous sequences. We assume, as in § 4, that L is a comple-
mented N-complete, modular lattice but most of this section involves only
the complemented countably complete modular lattices.

Definition 5.1. A sequence {a,} is called homogeneous if {a,} is strongly
independent and the a, are pairwise perspective.

Definition 5.2. If {a,} is a sequence in L then for any complement 4 of
> a,, the sequence {a*, + A4} is called a dual sequence of {a,}.

Remark 1. Each dual sequence of {a@,} is strongly independent in L'; if
{a.} is strongly independent in L then each of its dual sequences, considered
in L', has the original {a,} as a dual sequence.

Remark 2. 1f {a,} is homogeneous in L then each of its dual sequences is
homogeneous in L'.

Definition 5.3. A homogeneous sequence {a,} is said to be of type (A) if
all the a, possess a common complement (equivalently, a common relative
complement in Y_a,), that is, there exists an element 4 such thatae,® 4 = 1
for all n.

A homogeneous sequence {a,} is said to be of type (A¥*) if all the a*, have
a common complement (equivalently, a common relative complement in
2.a,).

Remark 1. Clearly if {a,} is strongly independent, then {a,} is homogeneous
and of type (A), or (A*), if and only if one (hence all) of its dual sequences
is homogeneous and of type (A*), or (A) respectively, in L.

Hence, if every homogeneous sequence in L is of type (A), or if every
homogeneous sequence in L is of type (A*), then every homogeneous sequence
in L’ is of type (A*) or (A), respectively.

Remark 2. If {a,} is a homogeneous sequence and x; < a;, then any set
of perspective mappings of [0, a;] onto [0, a@,] when applied to x; will yield
a homogeneous sequence {x,} (Theorem 5.1 below and its Corollary 1 will
imply that if {a,} is of type (A), or (A*), then {x,} has the same property).

Remark 3. If {a,} is a homogeneous sequence then every infinite subsequence
is also homogeneous; and if {a,} is of type (A), or (A*), then every infinite
subsequence is of the same type.

LeEmMa 5.1. If {ao, @1, ...;Qn ...} 15 @ homogeneous sequence of type (A)
there exists at least one C-sequence {(ao|cq, an)} such that a) c, = 0.

Remark. From Theorem 5.1 below it will follow that under the hypothesis
of Lemma 5.1 every C-sequence {(aclc,, a,)} has the property aoy.c, = O.

Proof. Let A be a common complement of the a,. Choose ¢, = 4 (a¢ + a,)
for n > 1. Then

Qo = @y = 0, W@, =00®D Cy = ¢, @ a,.
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The lemma follows since {ao, a1, . . .} is strongly independent (by hypothesis)
and apy_c, < ad = 0.

LeEMMA 5.2. Suppose {ao, a1, . ..} is a homogeneous sequence of type (A) and
Ada, = 0. If x < A, (x,2_a,)P together imply x = 0 (in particular, if A is
perspective to a subelement of 3 a,), then [0, A] 1s upper NRo-continuous.

Proof 1. By Corollary 1 to Theorem 3.6 we need only prove that every
residually independent sequence in [0, 4] has residual element zero. We may
therefore suppose that x; (5% 0) is the residual element of some residually
independent sequence in [0, A] and we need only derive a contradiction.

2. The hypotheses imply that (x1,2>.a,)P is false; therefore (xi,a,)P is
false for some 7, hence (xi, ao)P is false since a, ~ ao. Thus there exists
x # 0 with x < x; and x perspective to a subelement of ao. Theorem 3.3
shows that x is the residual element of some residually independent sequence
in [0, 4].

By Remark 2 following Definition 5.3 we may suppose (by replacement
of a, by suitable subelements) that x is perspective to ao, say by a perspective
mapping é.

3. By the Corollary to Theorem 3.2 there exists a residual C-sequence
{ (x|cns bn)} With 2c, +2°0, < 4; then x is the residual element of {c,} and
x = Y x, for suitable x, such that {(x,, ¢,, 8,)}C holds.

4. By Lemma 5.1 there exists a C-sequence {(a¢|d,, a,)} with aoy_d, = 0.
We shall derive a contradiction in the following way: we shall construct a
C-sequence {(x,’, ¢,/, b,')} with:

) % = ¢(xa)
(ii) en < d, by < .

(i) will imply that > x,” = ¢(3x,) = ¢(x) = ap and (ii) will imply that
) Cx,') = 0. Then the “‘extension of perspective mapping’’ Theorem
3.5 will apply and give an extension of ¢ (which we write again as ¢) such
that ¢(c,) = ¢, for all n. This will yield:

o(x) = ¢(x Xcn) = o(x) X o(ca)
Qo EC;L < ao Zdn =0

and imply that x = 0, the desired contradiction.

5. The reader can verify easily that the elements x, =¢(x,), ¢.’ = (x," +a,)d,,
b, = (ao+c,')a, form a C-sequence satisfying (i), (ii) above. Thus Lemma 5.2
is proved.

LEMMA 5.3. Suppose {x,a,;n > 1} and {x,b,;n > 1} are homogeneous
sequences with {x, > a,, >.b,} independent. Then S = {x, a1, b1, as, by, . ..} is
a homogeneous sequence. Moreover if both {x,a,;n > 1} and {x, b,; n > 1} are
of type (A) then S s also of type (A).
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Proof. S is strongly independent, by application of the Corollary to Theorem
3.1. Moreover, all of x, a,(n > 1), b, (n > 1) are pairwise perspective so S is
a homogeneous sequence.

Now suppose 4 and B are common relative complements of each of x, a,
in x 4> a, and of each of x, b, in x + Y b,, respectively.

Then A4 4 B is a common relative complement of each of x,a,, b, in
x 42 a, + 2 b,; for if ¢ is x or a, then

c(A+B) =c4 =0 since B(x +XYa,)(x+2b,) = Bx = 0.
Similarly ¢(4 + B) = 0ifcis b,. Itisclearthatc + A + B = x + Y. a,+2. b,
if ¢ is x, a,, or b,. This proves Lemma 5.3.

Now we shall prove:

THEOREM 5.1. The following conditions are equivalent for a homogeneous
sequence {a,}:
1) [0,>a,] is upper No-continuous.
(i) X_i=1a+ converges continuously.

(iii) {aa} is of type (A).

Proof. 1. (i) tmplies (ii): this is trivial.

2. (ii) implies (iii): By Lemma 5.3 it is sufficient to prove that {as,} is of
type (A).

Suppose (@a,%n,82.+2) C. Then {x,} is a homogeneous sequence with x,~as,_1
for all > 1 (use (3.1) and (2.2)). Since (T x,) (Caom—1) < (azm) (Casm—1) =0,
Theorem 3.4 shows that there exists a perspective mapping of [0,> x,] onto
[0,>"a2,—1] which maps x, on ag,_;.

But Y i-1a2:-1 converges continuously: to see this, observe that for every v,

2n

y Z a2i-1 = <3’ Z an—l)(Z a,) = gl <3’ E 021_1><;1 aj>
-5 (% wn).

Therefore, Y %—1x; converges continuously. But as,».i-1x; = 0 for every
n, so x = y_x; satisfies ayx = 0 for every p. Obviously azp + x = > as, for
every p so the as, all have x as common relative complement in Y as,. This
proves that {a,,} is of type (A) and shows that (ii) implies (iii).

3. (iii) e#mplies (i): In Lemma 5.1 use 4 = >_aa,. Since {@,—1} is of type (A)
and A4AY axy_1 =0, A ~ Y as,_1, therefore Lemma 5.1 applies and shows that
[0, > as,] is upper No-continuous. Similarly [0, a2,—1] is upper Xo-continuous.

Now by Theorem 4.3 (the additivity of continuity), [0,> a,] is upper
No-continuous.

COROLLARY 1. The following are equivalent for a homogeneous sequence {a,}
(1) [0,Xa,] is lower Ro-continuous.

(1) > F=na; converges continuously.

(iii) {a@.} s of type (A*).
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Proof. Apply Theorem 5.1 to {a*,} in the lattice dual to [0, X a,].

COROLLARY 2. If a homogeneous sequence {a,} is of type (A) and also of
type (A*) then all a, = 0.

Proof. Let A be a common relative complement of the a*,, in 3_a,. Since
AY e < Aa* 1 = 0, and 37— 1a; converges continuously by Theorem 5.1,
therefore A = 0. Then a*,, = X_a,, an < ana*, = 0, so all a,, are 0.

CorOLLARY 3. If {a,} is a homogeneous sequence of type (A) and [0, a,) is
upper N-continuous for every n, then [0,> a,] is also upper N-continuous.

Proof. This follows from Theorem 4.4.

Remark. Corollary 3 applies, in particular, if each a, is an atom.

6. Additivity of finiteness. We assume, as in §§ 4, 5, that L is a
complemented NX-complete modular lattice.

Definition 6.1. L is called finite if every independent sequence of pairwise
perspective elements has all its elements zero.!?

THEOREM 6.1. If {c,} is an independent sequence of pairwise perspective
elements there exists a homogeneous sequence {d,} with di = c1, dn ~ ¢, for all

m,n and Y.dn < cn.

Proof. By Theorem 3.6, applied to our X i_ic; with x = 0 (no continuity
is required in the hypotheses for the case X = Ny), there exists a residually
independent sequence {a,} with

2The following possible definitions of ‘“finiteness’ for a modular lattice with zero:

(F1): as in Definition 6.1,
(F2):a =b,b <a,implya =0,
(F3)ta~c,c~bb<aimplya =0b
are related as follows:
(i) (F.) implies (F3) always.

(i) (F:) implies (F2) if the lattice is also complemented.

(iii) If the lattice is also complemented and countably complete then (F,), (F2), and (F3) are
all equivalent.

(iv) If the lattice is not countably complete then ( F3) need not imply (F;); this is shown by
the example of footnote 14 where the lattice is even orthocomplemented and perspectivity is
actually transitive.

(1) is trivially true.

To prove (ii): suppose there is a projective mapping ¢ of [0, al onto [0, b} with b < a and
b # a. The argument used to prove (2.7) actually shows that for some 0 5 x, < [a — 8] we
have x; ~ x; where x» = ¢ (x1). Let x, = ¢ (¥n—1) for n > 1. Then repeated application of ¢
to the relation x; ~ x, shows that {x.} is independent and pairwise perspective, so (F,) fails
to hold. This proves (ii).

To prove (iii): suppose {a.} pairwise perspective and independent. By Theorem 6.1, with
the same a;, we may assume even strong independence. Then by Theorem 3.4,

Z(aom—1;n > 1) ~Z(ag;n > 1), Z(asm;n > 1) ~Z(amer;n > 1).

Now (F,) would force a; = 0, so (F;) implies (F,) and (iii) follows from the previous remarks.
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n n
2 ai= 2 ¢
-

i=1

for every n > 1. We observe that

n—1 n—1
a1 = ciand forn > 1,a, ~ c,.<axis 21 a; = 21 C¢>'.
i= i=
Now the a, are pairwise perspective; for if p > # then ¢,(a, + ¢,) = 0 so
(2.2) implies a, ~¢,. If m # n and p > m and p > n, then {an, a,, c,} is
independent, a, ~ ¢, ~ a,, so by (2.2), an ~ a,.
If p <n then a,(a, +¢,) =0 so a, ~a, a,~ ¢, yield by (2.2) that
a, ~ ¢p. Thus a, ~ ¢, for all n, p and ¢, = 1.
Now let y be the residual element of {a,} and let ¥ be a relative complement
of yinYa,=%c¢, with YV >a,=c¢,. Letd, = (y +a,)7Y.
Then Theorem 3.3 shows that {d,} is strongly independent. Now d, is the
map of a, in a perspective mapping of

m m
[0, Z ai] onto [O, Z di:‘
i=1 i=1
with axis v, for any m > n. Hence the d, are pairwise perspective, along with

the a,. Thus {d,} is a homogeneous sequence.
The definitions show that d, = @, = ¢, and for every =,

y+ 2 di=y+ 12_:1m=y+zlct.

If > 1, then d, ~ ¢, with axis y + 3 i=i""lc; (use: 3> i=i"Ci = 32 i=1"a; = 0
and 3 _1"d; < yY = 0).

But then d, ~ ¢, for all m # n; for d, ~d, = ¢c1 ~ ¢, and {dn, ¢, ¢;} is
independent, so (2.2) yields d,, ~ c,.

Since Y"d, < Y ¢, obviously, Theorem 6.1 is proved.

COROLLARY. If every homogeneous sequence has all its elements zero then the
lattice 1s finite.

LeEMMA 6.1. Suppose L is R'-continuous for all X' < R and suppose L can
be doubled. If {ag; B < Q} is strongly independent and x < Y_ag but x3_(a,; v<B)
= 0 for all B < Q then x is a member of a homogeneous sequence.

Proof. Let X = [(Zas) — x] and define @z = (ag + x)X. Then {dg} is -
obviously an independent family and ag ~ dz for each 8. Now Corollary 2 to
Theorem 3.6, applied to [0, X], gives a strongly independent family {bs}
Wlth bﬁ < X and a"ﬂ = bﬁ.

Since {ag}, {ds} are both strongly independent and as = bg for every §,
and Y bs < X as, therefore (ii) of the Corollary to Theorem 3.4, together
with Theorem 6.1, show that [>_as — 2 bs] is a member of a homogeneous
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sequence. But the relative complement [} as — > 8] could be chosen > x
so (use Remark 2 following Definition 5.3) x itself is a member of a homo-
geneous sequence, as stated.

THEOREM 6.2. The following properties are equivalent:

(1) every homogeneous sequence in L is of type (A),

(ii) for every stromgly independent sequence {a,} for which [0, a,} can be
doubled, 3 —"a; converges continuously.

Proof. 1. (ii) implies (i): Let {x,} be a homogeneous sequence. Then each
of {xs.}, {®2—1} is strongly independent (in fact, a homogeneous sequence)
and each of > xs,, > %21 can be doubled (in fact, (> x,) (X x2—1) = 0 and
(X x2,) ~ (2-x9n—1) by (i) of the Corollary to Theorem 3.4).

Now if (ii) holds, then each of

n

n
Z X214y Z X2i—-1

i=1 i=1

converges continuously so by Theorem 5.1, each of [0, xs,], [0,> %2.—1] 1is
upper No-continuous; hence [0, x,] is upper NXo-continuous by Theorem 4.3.
Finally {x,} is of type (A) by Theorem 5.1. So (ii) implies (i).

2. (1) implies (i1). Suppose (i) holds. We may suppose that {a,} is strongly
independent and that the lattice [0, a,] can be doubled and we need only
prove that Y ;_i"a; converges continuously.

We may suppose that there exists an element x # 0 such that x < > a,
and x)_i—1"a; = 0 for all » and we need only derive a contradiction.

3. By replacing each a, by a,(x + a*,) we may even suppose that a, is
perspective to a subelement of x (observe: 2 a,(x 4+ a*,) <2 a, so
[0,>a,(x + a*,)] can be doubled and has property (i) along with [0, a,];
also {a,(x + a*,)} is strongly independent, along with {a,}; finally,
a,(x + a*,) ~ [x — xa*,] with axis a*,).

4. We shall show now that [0,> a,] is upper N¢-continuous; this implies
that x = 0 and gives the desired contradiction.

5. In the present situation, Lemma 6.1 applies, with [0,2 a,] in place
of L, and shows that there exists a homogeneous sequence {x,} in [0, a,]
with x = x;. The validity of (i) in [0, >_a,] then implies that {x,} is of type (A).

6. Since [0,X.a,] can be doubled we may (and shall) assume that [0, a,]
is identified with [0, »] in some modular lattice with zero, Li, in such a way
that there exists a perspective mapping ¢ of [0,> a,] onto [0, #] for some
u in Ly with #>_a, = 0 (we do not know that L, is complemented and has
property (i) but [0 ,2"a,], but so also [0, #], does have these properties). Then
{¢(x,)} is a homogeneous sequence of type (A) along with {x,}.

Since a, is perspective to a subelement of x, and x is perspective to x, and
(@n + x + x)0(x,) =0, (2.2) and x, ~ ¢(x,) imply that a, is perspective
to a subelement of ¢(x,).

By (i) of the Corollary to Theorem 3.4, > a, is perspective to a subelement
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of 2 ¢(x,). But [0, ¢(x,)] is upper No-continuous by Theorem 5.1, hence
[0, 2"a.] is also upper Ro-continuous. This completes the proof of Theorem 6.2.

LemMA 6.2. If {c,} is a strongly independent sequence and a is an arbitrary
element, there exists a decomposition ¢, = c,' @ ¢, with the properties:
(1) ¢ ~ dn for some strongly independent {d,} withY d, < a(Tcy),
(i) ac' = 0.
Proof. 1. Put
€ = cn(a + 2 Cn) vl =l — el

m>n

2. (ii) is immediate since

(£8)-delr 5954

m=n m>n m>n
— 44 .
=a Z Cm;
m>n

a(Xen) =aX(mm>2)=...=aX(chim>n)
=all, X (chim > n) <Iler =o0.

3. To prove (i) we note that

DY tn<at+ 2 Cn

m>n m>n

hence

(61) C:L("Bzcm-:dn@z Cm

m>n m>n
for suitable d, < a.
Now (6.1) shows thatd, ~ ¢,’ (axis 3_nm>atm) and {d,} is strongly independent
by (3.1).
Since each d, < X.¢,, and < @, therefore >.d, < @@_c¢, and Lemma 6.2 is
proved.

TueoreM 6.3. If in [0, a] and in [0, b] every homogeneous sequence is of
type (A) then this is true in [0, a + b].

Proof. We may suppose a ® b = 1. By Theorem 6.2 we need only prove:
if {c,} is strongly independent and [0, ¢,] can be doubled, then X "¢,
converges continuously.

We shall use the decomposition of ¢,, ¢, = ¢,’ @ ¢’ and the d,, provided
by Lemma 6.2 for the present a. We shall show:

(i) X si"ci converges continuously,

(ii) X i=1"c;/’ converges continuously.

It will then follow from Theorem 4.1 that Y %, converges continuously,
proving the theorem.
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To prove (ii): We note that [0,> ¢,"] is mapped by a perspective mapping
(axis @) on a sublattice of [0, b]. Since this sublattice can be doubled (it is
lattice isomorphic to [0,2 ¢, ] and Xc,”" < X ¢y, (ii) follows from the assumed
properties of [0, b].

To prove (i), we observe that (ii) of the Corollary to Theorem 3.4 applies
to the lattice [0, ¢,] since {d.}, {c,’} are each strongly independent, d, ~ ¢,"’
for each n, d, <X cm, ¢’ < 2_c¢n and [0, ¢c,] can be doubled. Thus [0, 3 c,”]
is lattice isomorphic to [0,> d,].

Since [0,%.d,] can be doubled (along with [0,> ¢,”’], along with [0,3 c,])
and since >_d, < a, it follows from the hypothesis that > ,_,"d; converges
continuously. Hence ) ,—i"¢;” also converges continuously.

This proves (i) and completes the proof of Theorem 6.3.

CoroLLARY 1. If in [0, a] and in [0, b] every homogeneous sequence is of
type (A¥*) then this is also true in [0, a + b].

Proof. We may suppose a ® b = 1. Now Theorem 6.3 (for L’) implies: if
in each of [a, 1), [, 1) considered as sublattices of L', every homogeneous
sequence is of type (A), then this is true in [ab, 1]/, that is, [0, 1]’

But [a, 1), [b, 1]’ are anti-isomorphic to [0, 4], [0, a] respectively, by (2.1).
Thus, if every homogeneous sequence in [0, a] or [0, 8] is of type (A*) then
every homogeneous sequence in [8, 1]’ or [a, 1]’ is of type (A) (use the Remark
1 following Definition 5.3); hence every homogeneous sequence in [0, 1]’ is
of type (A); finally every homogeneous sequence in [0, 1] is of type (A¥)
(again using Remark 1 following Definition 5.3).

This proves Corollary 1.

COROLLARY 2. Additivity of finiteness. If each of [0, al], [0, d] is finite, so
is [0, a + b].

Proof. If {a,} is a homogeneous sequence in [0, ¢ + &], then {a,} is of type
(A), and also of type (A4*) by Theorem 6.3 and its Corollary 1. Then, by
Corollary 2 to Theorem 5.1, all a, are 0.

Then, by the Corollary to Theorem 6.1, [0, @ + 5] is finite.

7. Unrestricted additivity of continuity in finite lattices.
We assume that L is a complemented X-complete modular lattice.

LEMMA 7.1. Suppose L is upper X-continuous. Then for every family {as; B < O}
there exists a strongly independent family {ag} such that as < ag and 3 ds = 2_ag.

Proof. Put as = [ag — agy_(ay; v < B)]. Obviously {a@s} is independent,
ds < ag and by transfinite induction on v, Y. (ds; 8 < v) = 2. (ag; 8 < v) for
all v < Q.

Strong independence of {dg} is equivalent to independence of {as} since L
is upper NX-continuous (see the last sentence preceding Theorem 3.1).
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COROLLARY. If x is an N-residual element and [0, x] is upper R-continuous,
then x can be doubled in L.

Proof. By the Corollary to Theorem 3.2 there exists a residual C-system
{(.’XJB, s, bg)} with x = > s

By Lemma 7.1, &3 = [xg — x2_(%y; v < B8)] has the properties: {Zs} is
strongly independent, s < x5 and x = > .

Let bg = bs(Zs + cs). Then {bs} is strongly independent (along with {}),
Zg ~ bg for each B and (%) (X bs) < x>_bg = 0. Now by (i) of the Corollary
to Theorem 3.4, x ~ 3 bs. Since x3_bg = 0 this proves that x can be doubled
in L.

LEMMA 7.2. Suppose x <y, y® Y = 1 with [0, V] upper R-continuous. If
there exists an increasing family {cg} with xcg = 0 for every B and x < X cs,
then there exists such an increasing family with 3 cs < ¥.

Proof. Let s’ = ¢s + [1 — 2 ¢y]. Then Y cs’ = 1. Now y¢s’ has the properties
specified:

2(eg) =y>x
(observe that [y, 1] is lattice isomorphic to [0, Y] by (2.1), hence upper
N-continuous, and use Theorem 4.2);

x(yes) = xcs = x(Ley)es = x(cs + 0) = 0.
COROLLARY. Suppose x is an R-residual element in L and L is N'-continuous
for every X' < R. If y®@ Y =1 with x < vy and [0, Y] upper R-continuous
then x is an N-residual element in [0, y].

Proof. By hypothesis, x is the residual element of some residually indepen-
dent family {ag; 8 < Q}.

Define ¢s = X (ay;v < B). Then xcs = 0 for each B since L is upper X’'-
continuous for all X’ < X. And x < X.¢s since Y.cs = 2 as > x.

Hence Lemma 7.2 shows that an increasing family {¢} exists with}.¢s < ¥,
x6s = 0 for every 8 and x < 3_é. By Theorem 3.6, applied to [0, y], x < ¢ for
some ¢ which is an X-residual element in [0, y]; hence x itself has this property,
by Theorem 3.3.

THEOREM 7.1. Suppose x 1s an N-residual element in L with [0, x] upper
N-continuous. If L is R'-continuous for all X' < N then x is a member of a
homogeneous sequence.

Proof. 1. By Theorem 6.1 it is sufficient to show that x is a member of
an independent sequence of pairwise perspective elements.

2. It is sufficient therefore to prove that if {x, x1,..., x,} is an independent
family of pairwise perspective elements and m > 0, then there exists some
Xm+1 ~ % such that {x, x1, ..., %¥m+1} is independent.

3. We choose V=%, + ...+ x, and y = [1 — V] with y > «.
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Since each [0, x;] is upper R-continuous, along with [0, x], so is [0, Y], by
Theorem 4.3. Hence, by the Corollary to Lemma 7.2, x is a residual element
in [0, y]. Now the Corollary to Lemma 7.1, applied to [0, y] shows that
X ~ Xty for some x,.1 < y with xx,.; = 0. Then

Xmp1(% + %1+ oo F ) = Ky F x4 %) = Xk +0) =0

so {x, %1, ..., Xns1} is independent.
This x,,4+1 satisfies our requirements and this completes the proof of Theorem

7.1.

CoRrOLLARY 1. If L is finite and locally R-continuous then L is R-continuous.

Proof. We prove this by transfinite induction. Hence we can suppose L is
N’-continuous for all X' < X.

By Corollary 7 to Theorem 3.6 it is sufficient to show that every N-residual
element ¢ must be 0.

But if ¢ ## 0 then for some non-zero x with x < ¢, [0, x] is X-continuous
(a fortiort, upper R-continuous). Then, by Theorem 3.3, x is also an NR-residual
element. Now Theorem 7.1 shows that x is a member of a homogeneous
sequence.

But L is finite, so x = 0. This gives a contradiction and shows that ¢ # 0
is impossible. Thus Corollary 1 must be valid.

Remark. The proof of Theorem 7.1 shows that if L is finite and locally
upper X-continuous and N’-continuous for all X’ < N, then L is upper
X-continuous. When X = N, this becomes: if L is finite and locally upper
No-continuous then L is upper Xo-continuous.

COROLLARY 2. If in L every homogeneous sequence is of type (A) and L is
locally upper Ro-continuous then L is upper No-continuous.

(Note: the Remark following Corollary 1 to Theorem 7.1 uses the stronger
condition that L be finite.)

Proof. Suppose, if possible, that L is not upper Xo-continuous. Then there
exists some ¢ % 0 with ¢ an NX¢-residual element in L.

By the hypotheses, there exists an x % 0 with x < ¢ and [0, x] upper
No-continuous. By Theorem 3.3, x itself is also an No-residual element in L.

Now Theorem 7.1 shows that x is a member of a homogeneous sequence
{x, ¥o, ¥1, . . .}, by the hypotheses necessarily of type (A).

Choose Y =319, and y = [1 — Y] with y > x. Then [0, Y] is upper
No-continuous by Theorem 5.1 so x is an No-residual element in [0, y], by
the Corollary to Lemma 7.2.

Now by the Corollary to Theorem 3.2 there exists a residual C-sequence
{ (x|cn, by)} With x 4+ > b, < v. Since b, is perspective to a subelement of x
and x is perspective to y, and (b, + %)y, < yY = 0 therefore (2.2) shows
that b, is perspective to a subelement of y,.
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Since x ~ yo and (x + X_b,) X y.) < yY = 0, therefore (i) of the Corollary
to Theorem 3.4 shows that x + b, is perspective to a subelement of }_y,.
But [0,>v,] = [0, Y] is upper Xo-continuous so [0, x + >_5,] has the same
property. Hence x = 5} ¢, = Y n=1”(x2 1=1"¢;) = 2. (0) = 0, a contradiction.
Thus Corollary 2 must be vaild.

8. Homogeneous sequences (continued). In this section we assume
that L is a complemented countably complete modular lattice.

LeMMA 8.1. Suppose {a,} is a homogeneous sequence with (@, %y, @ny1)C for
every n. Then

(1) a1(Xxn) = 0 implies {a.} is of type (A);

(i) a1 < Xx, implies {a,} is of type (A¥).

Proof of (i): We shall show that }_x; is a complement of every a, in > a.
Clearly a, 4+ 2.x; = >_a; so we need only prove a,».x; = 0 for each n. But
the axis x; + ... + x,_1 gives a perspective mapping of [0, a,] onto [0, a]
and by this mapping @,> x; is mapped on (@, x; + %1 + ... + x,_1)a; <
Xxg)ar = 0, so a,)_x; itself must be 0.

Proof of (ii): We need only show that {x,} is a homogeneous sequence of
type (A*). For the Corollary 1 to Theorem 5.1 will show that [0, x,] is
lower No-continuous; then [0, a,] will also be lower N,-continuous since
the hypothesis implies that >_a, < X_x,; then {a,} will be of type (A*), again
by Corollary 1 to Theorem 5.1.

To show that {x,} is homogeneous of type (A¥*) it is sufficient (by Remark
1 following Definition 5.3) to prove:

(8.1) {x,} is strongly independent,
(8.2) a, is a complement of every x*, in >_x,.

Now (8.1) follows from (3.1).
To prove (8.2) we verify:

a, = m(i a¢><$_:,l x;+ i x,)

i=1 i=1 i=n+1

n—1

=a; ), x;+0=0;
=1

01+x:=01+x1+---+xn—1+i X

i=n+1

=_l11+...+an—1+2 X4

i=n+1

so we need only show

(8.3) an < E %y for every =.
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But (8.3) holds for » = 1, by hypothesis. Also, (8.3) holds for » = 2 since

0 < (f ai>(a1+xl> < (f a)(i xi+xl>

: i= =2
= < xi) + <Z ai>x1(a1 + 02)

= < xi> +0 since x;a; = 0,
=2

=2

By repetition of this calculation, (8.3) can be proved for all #. This shows
that (ii) holds and completes the proof of Lemma 8.1.

TueoREM 8.1. (i) If {b,}, {c.} are homogeneous sequences of types (A) and
(A*) respectively then 3.b, and > c, are completely disjoint.

(it) If {a.} 2s a homogeneous sequence there is a umique decomposition
a, = b, ® ¢, such that {b,} and {c,} are homogeneous sequences of types (A),
(A*) respectively.

Proof of (1): Let b =2_b,, ¢ = 2_c,. We may suppose (b, c)P false and we
need only derive a contradiction. Clearly we may suppose (replacing b,, ¢,
by suitable subelements) &; ~ ¢; 5% 0. Then x < ¢, (x, b)P together imply
x = 0.

Let d = [¢c — bc]. Lemma 5.2 (with our d in place of 4 in Lemma 5.2)
shows that [0, d] is upper Xo-continuous. And [0, bc] is upper No-continuous
since bc < b and [0, b] is upper No-continuous. Then Theorem 4.3 shows
that [0, ¢] is upper Xo-continuous.

Hence, by Theorem 5.1, {c,} is of type (A). Since {c,} is also of type (A¥*),
all ¢, are 0 (by Corollary 2 to Theorem 5.1). This contradicts ¢; # 0 and (i)
is therefore established.

Proof of (ii): We need only obtain one decomposition as described, since
uniqueness will follow from (i).

Since {a,} is a homogeneous sequence, (a,, %, @,+1)C holds for certain x,.
Put x = > x, and let

1 = ax, by = (a1 — ax]
and for n > 1,
Cnt1 = (Cn + xn)an+l bpp1 = (bn + xn)an+1-

Thus, ¢,41, byy1 obtain from c,, b, respectively by the perspective mapping
of [0, a,] onto [0, a,y:] with axis x,.
It follows that {5,}, {c,} are homogeneous sequences and a, = b, ® c,.
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Now let
Yn = xn(bn + bn+l)» Zp = xn(cn + cn+1)-
Then as the reader can verify easily, (b, Y, b241)C, (Cny 2n, €2p1)C hold and
Xn = Yn @® Zp.

Since 512y, < bia;2 %, = 0, Lemma 8.1 (i) shows that {b,} is a homo-
geneous sequence of type (A).
Since

1= o = c1(Vu +2.24)
= 61(23% + (61 +Zyn)zzn) = Clzyn

(observe: (c1 4+ X322, < () (>_b,) = 0), therefore Lemma 8.1 (ii) shows
that {c,} is of type (A*).
This completes the proof of Theorem 8.1.

COROLLARY. If L 1is complete then L 1is a direct sum L, + L, + L; where
L; = 1[0, a;] with all a; in the centre of L, L1, 1s upper NRo-continuous, Lo is
lower No-continuous and L; is finite (a1, as, as are unique if L; is maximal
with the finiteness property).

Proof. Let a; = ) x where x varies over all elements perspective to mem-
bers of homogeneous sequences of type (A), let a; = >_y where y varies over
all elements perspective to members of homogeneous sequences of type (A*).
Then a1, a; are in the centre of L.

Let a3 = [1 — (a1 + a2)]. Then [0, a;] is clearly finite.

Now every homogeneous sequence in [0, a;] is of type (A). For otherwise
a1 # 0 and some y # 0 with y < ¢; would be a member of a homogeneous
sequence of type (A*), by Theorem 8.1 (ii). Also (y, x)P would be false for
some x perspective to a member of a homogeneous sequence of type (A)
hence for some x which is itself a member of a homogeneous sequence of
type (A). But Theorem 8.1 (i) shows that (y, x)P holds in such circum-
stances. This contradiction proves that every homogeneous sequence in
[0, a1] is of type (A).

Also [0, a1] is locally upper Ro-continuous. For if y # 0, y < a; holds, then
as in the preceding paragraph (y, x)P is false for some x which is a member
of a homogeneous sequence of type (A), so [0, x] is upper No-continuous
(using Theorem 5.1). Then for some y; # 0, y; < ¥, the lattice [0, y:] is
perspective to [0, x;] for some x; < x so [0, y:1] is also upper No-continuous.
This proves [0, ;1] to be locally upper Ro-continuous.

Then Corollary 2 to Theorem 7.1 shows that [0, a;] is upper No-continuous.
Similarly, using the dual to Corollary 2 to Theorem 7.1, [0, a.] is lower N,-
continuous.

Remark 1. If L is X-complete but not necessarily complete we can show
that L is a sublattice of such a direct sum L; 4+ L, + Ls.
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Remark 2. If L is complete and irreducible then L must be upper No-
continuous, or lower Xo-continuous or finite.’® (See the Note added at end of
this paper.)

9. Kaplansky’s theorem.

THEOREM 9.1. Suppose L is a complemented countably complete modular
lattice.'* Then L 1s finite of it has the property:

(9.1) for every a # O there exists an anti-automorphism ¢ of L such that (a, b)P
is false for every complement b of ¢(a).'s

Proof.1® By the Corollary to Theorem 6.1 it is sufficient to show that if
{a.} is a homogeneous sequence in L then a; = 0. By Theorem 8.1 (ii) we
may suppose that {a,} is-of type (A) or (A¥*).

Suppose if possible that a; ¢ 0. Let ¢ be an anti-automorphism of L (as
provided by (9.1)) such that (a., b)P is false whenever 6 ® ¢(a;) = 1. Then
{#(a,)}, considered in L', is homogeneous of type (A) or (A¥).

Hence every dual sequence {,} of {#(a,)} is homogeneous of type (A*) or
(A) respectively, in L. Therefore (a1, 8;)P holds by Theorem 8.1 (i).

But 4, is a complement of ¢(a;) by the definition of dual sequence, so this
gives a contradiction to the property assumed for ¢.

Thus a; # 0 is not possible and Theorem 9.1 is proved.

Remark 1. (9.1) is obviously implied by the property:

(9.2) for every a 5= O there exists an anti-automorphism ¢ of L such that
a < ¢(a) s false.

Hence, if L is a countably complete, orthocomplemented modular lattice, then L
must be finite (see the Appendix for a direct proof of this result).

Remark 2. 1f L is a complemented, complete modular lattice, then (9.1) is
implied by the property:

(9.2)' for every z #~ 0 with z in the centre of L, there exists an anti-automorphism
¢ of L such that z < ¢(2) 1is false.

To derive (9.1) from: (9.2)" suppose a #% 0 and let z be the least central
element with z > a. Then there exists an anti-automorphism ¢ of L (as
provided by (9.2)") such that z < ¢(z) is false.

B]rreducibility for a lattice L means: L = L, + L, (direct sum) only if L, or L; consists of
one element. If L is complemented and modular, this is equivalent to: 0, 1 are the only elements
in the centre of L (it was shown first by von Neumann (3, Part I, Theorems 5.2, 5.3) that for
complemented modular lattices, irreducibility in the above sense is equivalent to: 0, 1 are the
only elements with unique complements).

“Theorem 9.1 (and also its Corollary) may fail to hold if L is not countably complete. This
failure occurs in the orthocomplemented modular lattice consisting of all the linear subspaces
of finite dimension and their orthogonal complements in Hilbert space.

BIf (a, b)P is false for one complement & of ¢(a) then (a, )P is necessarily false for every
complement b of ¢(a).

15See footnote 23.
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Since z < 2; for every central element z; > a¢ the anti-automorphism ¢
yields: ¢(2) > 2 for every central element z; < ¢(a). Since ¢(2) > z is false,
therefore z < ¢(e) must be false, also. Hence zb > 0 for some complement b
of ¢(a).

Using (2.8) we have: (a, )P is false for at least one complement & of
¢(a), hence for every complement & of ¢(a).!” Thus (9.1) has been derived
from (9.2)".

COROLLARY.'® A complete complemented modular lattice L is mecessarily
Jfinite if it possesses an anti-automorphism ¢ which is an orthocomplementation
on the centre (that is, ¢(2) ® z = 1 for every central element 2), in particular
if L 1s irreducible'® and possesses at least one anti-automorphism.

Definition 9.1. For a lattice L the property (SI)N shall mean:
(SI)N: For every increasing family {cs; 8 < @} there exists a strongly
independent family {az; 8 < @} such that ¢s =3 (a,; v < B) for all 8 < Q.

THEOREM 9.2. An orthocomplemented N-complete modular lattice has the
property (SI) X

Proof. Suppose a — ¢(a) denotes the orthocomplementation. If {¢g} is an
increasing family, choose a; = ¢;, and for 1 < 8 < Q, ag = ¢slL(¢(c)); v < B).

Then {ag} is strongly independent; for v < 8 implies that a, is orthogonal
to ags; hence a, is orthogonal to a*,, I1a*, is orthogonal to every as, hence to
Sas. Since Ila*, < Yas this implies Ila*, = 0, so {as} is indeed strongly
independent.

By transfinite induction on 8 it is easy to show that ¢ = Y (ay; v < B) for
all B < Q.

This proves Theorem 9.2.

THEOREM 9.3. Suppose L is a complemented N-complete modular lattice with
the property (SI) NS If L is finite and can be doubled then L is upper N-con-
tinuous.

Proof 1. We may suppose xcg = 0 for all 8 < Q; for some ; < @ and
¢g 71 and we need only prove x = 0.

Let X be a complement of x and let ¢5’ = (x 4+ ¢5)X. Then [0, ¢5] is mapped
onto [0, ¢s’] by the perspective mapping with axis x.

Since L is assumed to have the property (SI)N' there exist strongly inde-

pendent families {az}, {as'} such that ¢s =3 (a,; v < B), ¢s' =2 (a)/;v < B)
for all B < Q.
Then ag ~ (x + ag)X (with axis x). Since ag @ Y_(ay; v < B) = c¢s, that is,
ag® Y (¢cy; v < B) = ¢g therefore (by the perspective mapping with axis x),
17See footnote 15.

18See footnote 14.
1See footnote 13.

https://doi.org/10.4153/CJM-1959-047-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1959-047-6

514 ICHIRO AMEMIYA AND ISRAEL HALPERIN

(x+a)X ®@X(cr;v<B) =¢ch

so (v + ap)X ~as' (with axis 3(a,';v <B8) =X (/s v <B)).

Therefore as = ag’ for each 8 < Q1,2 a5 =2 ¢s =1 >>as and L can be
doubled.

If x50, then >a’ < X <1 s0o [Tas —Xas'] #0 and by (ii) of the
Corollary to Theorem 3.4, [>_as — > ag’] is a member of an independent
sequence of pairwise perspective elements. This would contradict the assumed
finiteness of L.

Hence x = 0 as required and Theorem 9.3 is proved.

TuEOREM 9.4. If L is orthocomplemented N-complete and modular then L is
X-continuous.?

Proof. L is finite by Remark 1 following Theorem 9.1. Thus, by Corollary 1
to Theorem 7.1 it is sufficient to prove local X-continuity of L. Since L possesses
an anti-automorphism it is sufficient to prove that L is locally upper N-
continuous.

We may suppose x is an element of L with x # 0 and we need only show
that for some element y, with 0 5 y < x, the lattice [0, y] is upper R-continuous

Now if there exists an element 0 # y < « such that [0, y] can be doubled
then, since [0, ¥] has the property (SI)N' Theorem 9.3 shows that [0, y] is
upper X-continuous.

On the other hand, if 0 # y < x implies that [0, y] cannot be doubled
then (y, 2)P holds whenever y < x, 2 < ¥ with yz = 0.2! Now if {ag} is an
increasing family in [0, x] and yag = 0 for every B, then (y, ag)P holds for
every B, so (¥, as)P holds, hence 3> _ag = 0. This proves that [0, x] is itself
upper N-continuous.

This completes the proof of Theorem 9.4.

THEOREM 9.5. Suppose L is a complemented R-complete modular finite lattice
which possesses an anti-automorphism ¢ of period two with the following con-
tinuity property: ¢(xg) ® xg = 1, x5 T x together imply ¢(x) ® x = 1. Then L
is N-continuous.

Remark. Such ¢ generalize orthocomplementation.

Proof 1. We prove this theorem by transfinite induction on X so we may
suppose L is X’-continuous for all X’ < N.

20This is a strengthened form of Kaplansky’s theorem (1). In a letter to one of us dated
June 13, 1957, Kaplansky conjectured that any complemented complete modular lattice is
continuous if it possesses an anti-automorphism of period two which is an orthocomplementa-
tion on the centre. Our Theorem 9.1 establishes finiteness under even weaker conditions but
our Theorem 9.5 establishes continuity only under conditions somewhat more restrictive than
those of Kaplansky’s conjecture.

2]n this case [0, x] is a complemented modular lattice in which every element has a unique
complement, that is, a Boolean algebra.
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2. It is sufficient to prove that L is locally upper X-continuous, for the
anti-automorphic character of L will show then that L is locally lower N-
continuous, hence locally R-continuous. Since L is assumed to be finite,
Corollary 1 to Theorem 7.1 will then show that L is R-continuous.

3. Thus we may suppose a # 0 and we need only prove that [0, 8] is
upper N-continuous for some 0 # b < a. We shall prove below:

(1) If ¢(x) > « is false for every 0 # x < @ then [0, a] possesses an ortho-
complementation # — a¢(#) (Theorem 9.4 then shows that [0, a] itself is
N-continuous).

(i1) If ¢(x) > x holds for some 0 # x < a then [0, x] is upper X-continuous.

4. To prove (i): We note that

d(x¢(x)) = ¢(x) + x > xp(x).

Since x¢(x) < x the assumption of (i) implies that x¢(x) = 0 for all x < a.
Then also x + ¢(x) = 1. Thus x + ad(x) = a, ap(ap(x)) = a(e(a) + x)
=x 4+ a¢(a) = x so x = ad(x) is an orthocomplementation on [0, a]. This
proves (i).

5. To prove (ii): We may suppose a5 Tx(8 <), yag =0 for all and y < x
we need only prove y = 0.

We can choose b by transfinite induction on 8 so that b; = [x — a,], and
for g > 1,

= [II(dy; v < B) — asl1(d,; v < B)],

and so that s > y for all B.22 Then a3 ® b3 = « for all 8 since [0, x] is lower
NX’-continuous for all X’ < N.

Now let X be a complement of x. Set ¢s = X¢(ag). Then ¢s |, csx < Xx = 0
and ¢z @ x = X¢(ag) + x = ¢(ag)(X + x) = ¢(ag) for all 8. Hence

(bs @ cs) ® ag = d(ap), o (bs + cs)p(ag) = as,

(bs + ca)p(bs + cg) = (bg + cp)p(ap)p(bs + cg) = (bs + cglag = 0,
so

(bg + co)9p(bg + cs) = 0
for all 8.
Suppose ¢(bs + cs) T d. Then d¢(d) = 0 and (bs + ¢5) 4 ¢(d). Since y < bg
for every B, therefore y < II(bs + ¢g), that is, y < ¢(d); but also
o (d) <IL(ds + cp) <Ilgp(as) = $(Tap) = ¢(x)

so d > x. Thus y < x¢(d) < d¢(d) = 0 as required.
ThlS proves that [0, x] is upper X-continuous and completes the proof of
Theorem 9.5.

22Choose b=y +[x — (v + a),
bg =y + [IL(by; v < B) — (v + ap) IL(by; v < B)].
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APPENDIX ON FINITENESS

THEOREM.? In an orthocomplemented countably complete modular lattice every
independent®* sequence of pairwise perspective elements must have all its elements
zero.

Proof. 1. We call an infinite sequence {x,; n > 1} residually independent if
%, (453 5% n) = 0 for all n, strongly independent 11,5 (x; 1 = »n) = 0. Since,
for every p,

0 (2431 # p) <ILX (wi;4 5 n)

strong independence implies residual independence.

We note that if the x, are pairwise orthogonal then {x,} is strongly inde-
pendent. Also, if {x,} is strongly independent and for every #,y, < X (x:;i>#n),
Yap_ (%557 > n) = 0 then {y,} is also strongly independent. If {x,} is strongly
independent then so is {(x*,)> x,} where x*, denotes >_(x;;7 # #n) and x+
denotes the orthogonal complement of the element x.

2. We may suppose {a,} is an independent sequence of pairwise perspective
elements with a; # 0 and we need only derive a contradiction. By replacing
a, for w > 1 by (a1 + ...+ alai+ ... + a,-1)+ we may even suppose
that {a,} is strongly independent.

3. By using suitable replacements for the a, we may even assume that
they have a common relative complement 4, thatis, a, + 4 =X an, a4 =0
for all #.2° To see this, suppose a, ~ a,41 (axis x,), that is, a, + x, =
Ayl + X = @y + Cpi1, Q% = Qpi1%, = 0. Let x =2 x,. We must consider
two cases: xa1 # ¢, and xa; = a1.

23This theorem (first proved by Kaplansky (1, Theorem 1), see footnote 25) is contained in
our Theorem 9.1 (see Remark 1 following Theorem 9.1) but we give here a direct (lattice-
theoretic) proof for this orthocomplemented case which can be read independently of the rest
of this paper provided the reader has some slight familiarity with complemented modular
lattices.

With slight modification this direct proof actually establishes Theorem 9.1 in full generality.

#A  family {xa;N € A} is called independent if for every finite subset F CA,
x2,2(xn; N € F) = 0 whenever u Q F.

2Kaplansky constructs a common relative complement 4 for every sequence {a.} of pairwise
orthogonal and perspective elements (of course, the Theorem will show finally that all a, must
be 0).

Kaplansky’s method is as follows: first, he replaces L by [0, Z a,[. Then he shows that
{ 2 (am4i; 7 > 1);2 = 0, 1,2,3} is a homogeneous basis of order 4 in the sense of von Neumann
(3, Part 11, Definition 3.1). Therefore L can be identified with the lattice of principal right
ideals of a suitable regular ring $R, by the coordinatization theorem of von Neumann (3,
Part II, Theorem 14.1).

Since L is orthocomplemented, there exists a conjugation operation in §: x — x* (that is,
(x + ¥)* = x* 4+ 9% (xy)* = y* x* and ** = «x) such that every lattice element a in L is of
the form (e), with e a unique idempotent which is Hermitian (that is, ¢* = ¢) and then
a+ = (1-¢), (all proved in von Neumann (3, chapter 1I, Theorem 4.5) ).

https://doi.org/10.4153/CJM-1959-047-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1959-047-6

COMPLEMENTED MODULAR LATTICES 517

If xay # a1, let a1’ be a relative complement of xa; in a1, let a1’ be obtained
from a,’ by the perspective mapping with axis x,, thatis, @,41" = (@.’ + %.)Cns1
and let x," = x,(a¢,’ + anti’), " =2 x,. Then {a,’} is strongly independent,
pairwise perspective and the a,” have x as a common relative complement.

If xa: = a4, then {x,} is strongly independent, pairwise perspective and
the ¥, =2 (x;;7 # ») have a; as common relative complement. Hence
{(x*,)*} is strongly independent, pairwise perspective and a;* is a common
relative complement.

4. Suppose now that our strongly independent sequence of pairwise per-
spective elements is written as two sequences a,, b,, and let 4 be their common
relative complement. The strong independence of the set {all a,, all 8,} implies
(Xan) (Xb) = 0.

Then a, ~ ay41 with axis ¢, = 4A(a, + any1) and a:X ¢, = 0.

5. We shall show below that there exists a residually independent sequence
of pairwise perspective elements {b,’} with b, ~ &;, (38,/)(>a,) = 0 and
axes of perspectivity d, between b,” and b,," such that 5, <> d,.

6. We will then derive a contradiction as follows: a; ~ b1, b; ~ b/ with
ai1(b; + b)) = 0 implies a; ~ b,'. Let ¢, be an axis of perspectivity for a;, b,
and define ¢,41 for » > 1, by induction as follows:

tn+1 = (tn + Cn + dn) (an + bflt)

Lett =X t,. Thent + Y.d, = t + > c,and (use: for each #, {a,,>_ (an; m > n),
by, 2. (bwm; m > n)} is independent since {a,} and {b,} are both residually

independent):
(tl + 22 ti)(al -+ 2 di) = b + (Z"_": ti>(i ai)
0 + < f ti)<z._o2 a,-) = ... < Hn<i di) = 0.

> a,

Thus the given a, must be of the form (e,), with all e, idempotent, Hermitian and
enem = 0 for n # m.

Kaplansky now constructs elements in i, namely w, ey, e;1 (for ¢ > 1) such that: e;; = ey;
for all 7, ei = e1em e, €161 = €1 and e;1€1 = €;; w = exw and we; = ey; for all ¢ (see
Kaplansky (1, Lemma 21).

Now (w)r, the set of all # such that wu = 0, is a principal right ideal, as shown by von
Neumann (3, Part II, Lemma 2.2).

This (w)T is a common complement of the a.. For w (e;1 — e1) = 0 for every %; so for every j,
(e;)r + (w)™ contains e;e;1 + (e;1 — €1) (— e1) = e1, hence it contains also, for every i,
(ei1 — 1) + €1 = ey, hence also e;; e1; = e;. Thus

(e;)r + (w)r = 1forall j.
Finally, if # is in both (e;), and (w)" then # = e;u and wu = 0; that is, we;u = e;; u =0, so
u = ej; (e1; ) = 0. This means the meet of (e¢;), and (w)r is 0, and proves that (w)" is a
common complement of all a, = (en),.
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Then
01 = 012dn = B0+ L)t + a1) = 81t + Cen)ad)

= bi(t 4+ 0) = bt = ity = 0.

This implies a; = 0 and gives the desired contradiction.

7. Thus we need only to construct {b,’} as described in 5 above. Since
A3 b, is a common relative complement of the b, we may suppose Y b, = 1
and write 4 again in place of AY b,. Now let a denote 4+ and let b, denote

(0*n)*.
We shall prove that the family {a, by, by, . ..} are pairwise perspective and
independent, b; < @ + X (b;;4 > 1), and b; ~ b,.
Indeed:
%k _
@ (abn)L=A+<me>L=A+Hb:=A+b,,=1
m#En m#En

since {b,} strongly independent implies that Il,,«,6*, = &,, and so ab*, = 0.
(i) (@4 b)* = Ab, = 0,s0a + b, = 1.

Since {b,} is strongly independent, (i) shows that {a, by, bs, ...} is inde-
pendent. Then (i) and (ii) show that @ ~ b, with axis b*, so all of {a, by, bs, . . .}
are pairwise perspective, and b; < a + b*; = 1. Finally, b; ~ b, with axis b*;.

Thus the 3,” will be available, as described in 5. if we prove the following
“orthogonalization’ lemma.

LEMMA.® Suppose {bo, f1,f2, ...} 1s independent and pairwise perspective. Then
there exists a sequence by, by, b, ... such that {b,;n > 0} is residually independent,
and for n > 0, b,_1 ~ b, with axis d,, sothat f1 + ... +fu=di 4+ ...+ dn
for every m (in particular if bo < 2 (fm;m > 1) then bo <2 (dn; m > 1)).

Proof. 1. Choose d, = fi. Then b, and f, have some axis of perspectivity u
and we choose b, = (bo + f1)u. Then 7

b()@ dl = b1® d1 = bo@ bl.
Hence we can choose By, a complement of by, so that

Bo = bl + {1 - (bl + dl)] Let B_]_ = 1.

26This ‘‘orthogonalization’’ lemma is proved here for every complemented countably complete
modular lattice. Even countable completeness need not be assumed if residual independence
of {x,} is defined to mean: for every n there exists an element X, such that x, X, = 0 and
Xn > am forall n < m.

27x @ y denotes the lattice union x 4+ y but implies that the meet xy is 0. When x < y the
symbol [x — y] denotes an arbitrary but fixed relative complement of y in x, that is,
x—9®y=x.
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2. We may suppose that for some 7 > 1, the following statements hold:

dyy...,dpyb1,...,b,,By,...,B,
have all been defined so that:
byp1~ b, with axisd, forn =1,...,7r;

W), di+...+d;=fi+ ...+ fsfors=1,...,r;
1=056® Bo;Bo=b66® By;...;B,5=0,..® B,_y;
Br—1> bn

and we need only show how to define d,t1, b,41, B, so that (W),;; holds. (Ob-
serve that (W), does hold for the di, 81, By defined in 1 above.)
3. Choose d;+1 = B,1(fi + ... + frs1).
Then
@O di+...+dpa=0@i+...+d:+B)(fi + ...+ fry1)
=+...+d+ 04+ B )i+ ...+ frs1)
=(d+...di+ba+ B )i+ ...+ frr1)
=(di+...di1+ B,o)(fi + ... F frr1)
co.=B (i +...+f) =i+ ... F frir

(i) dppr(bo 4+ b1+ ...+ 8;) = dryids
=dra(fi+ ..o+ Fr)be(bo+fr 4+ .00+ f)
=d,b, (i + ...+ f) =drpab, @i+ ... +d;) =0,
dr+1(fl + ... +fr) < dr+1(bo +b+...+ br) = 0,
SO dr+1 Nf7+1 (axisf1 + e —I—f, = d1 + PN + d,)
But fr41 ~ bo and bo(fry1 + drr1) < bo(fi + ... + fry1) = 0 s0 dry1 ~ bo.
Now {bo, b1, ..., b,;} is independent, &, 1~ b, for »n <r, and
drp1(bo+ ...+ b,) =0, so dry1~ b,
4. Since d,41 ~ b, there exists an axis # such that

b, ® u =d,1 ® u.
We choose b,41 = (b, ® d,+1)u. Then we have
b6, ®drp1 = 0,1 @ drp1 = 5, @ by
8o b, ~ b,4;1 with axis d,41.
5. Since b, + d,y1 < B,—1 we can choose
B; = byp1 + [Bro1 — (br + dryn)].

Then B, > b;41, and B,_1 = b,® B,.
Thus (W), is satisfied and so the Lemma is proved and hence the Theorem
is proved.

Note added in proof. A recent paper by Ornstein (Dual vector spaces,
Ann. Math., 69 (1959), 520-34) obtains the following result (his Corollary 5.1):
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Suppose L 1is a complete, atomic, centreless, complemented, modular lattice in
which 1 is the union of a countable number of atoms and O 1s the intersection of a
countable number of co-atoms; then L is either isomorphic or anti-isomorphic to
the lattice of all subspaces of a vector space of countable dimension.

Ornstein’s result can be deduced also from Remark 2 at the end of our § 8.
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