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Dedicated to Professor Nobuo Nobusawa on his 60th birthday

We prove several commutativity theorems for unital rings with polynomial con-
straints on certain subsets, which improve and generalise the recent results of
Grosen, and Ashraf and Quadri.

0. INTRODUCTION

Recently Streb [11] gave a classification of non-commutative rings. We have applied
the classification to the proof of some commutativity theorems, in [9] and [10]. The
classification is effective in our present paper, too. As is easily seen from the proof
of [11, Korollar (1)], if R is a non-commutative ring with unity, then there exists a
factorsubring of R which is of type (i), (ii), (iii) or (iv):

... fGF(p)

(ii) Ma(K) = I ( ° ) | a, b £ K \ , K is a finite field with a non-trivial
( \ 0 <r(a)) J

automorphism a.
(iii) A non-commutative ring with no non-zero divisors of zero,
(iv) 5 = (1) + T, T is a non-commutative subring of 5 such that T[T, T) =

[r, r]r = o.
This result gives the following

META THEOREM. Let P be a ring property which is inherited by factoTSubrings.

If no rings of type (i), (ii), (iii) or (iv) satisfy P, then every ring with unity and satisfying

P is commutative.

Meanwhile, in her thesis [4], Grosen generalised some known theorems on the
commutativity of a ring R with unity and satisfying polynomial identities by assuming
that the identities hold merely for the elements of a certain subset of R rather than for
all elements of R. The major purpose of this paper is to prove several commutativity
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452 H. Komatsu and H. Tominaga [2]

theorems which improve and generalise the results of Grosen [4, Section 1] as well as
the main results of Ashraf and Quadri [2].

Throughout the present paper, R will represent a united ring (a ring with unity).
We use the following notation:

C = C(R) = the centre of R.

D = D(R) = the commutator ideal of R.

N = N(R) = the set of nilpotent elements in R.

N* = N*(R) = {x G R | x2 = 0}.

U = U(R) = the multiplicative group of units in R.

CR(M) = the centraliser of a subset M of R in R.

For x, y G R, we define extended commutators [x, y]k as follows: let [x, y]o = x, and
proceed inductively: [a;, y]k = [[x, J/]*-i, y] • Finally, let Q be the intersection of the set
of non-units of R with the set of quasi-regular elements of R (that is, Q = (1 -f- U) \ U ).
Obviously, Q contains N and the Jacobson radical of R.

1. PRELIMINARIES

Let n be a positive integer. We consider the following conditions:

Qi(n) (xy)n = xnyn and (xy)n+l = xn+1yn+1 for all x, y G R \ Q.

<?2(n) {xy)n = xnyn = ynxn for all x, y G R \ Q.

Q*(n) {xy)n = (yx)n for all x, y G R \ Q.

Q's(n) [{xy)n — (yx)n, x] = 0 for all x, y G R \ Q.

Qi(n) Uxy) , x] = 0 for all x, y G R\ Q-

Ql(n) For each x, y G R \ Q, there exists a positive integer k

such that [(zy)n, a;]* = 0.

Q5(n) [(yx)n, x] = 0 for all x, y G R \ Q.

Q6(n) [yn, x]=0{oTeJlx,y€R\Q.

Qio(n) [xn, yn] = 0 for all x, y G R \ Q.

Qu (n) (xy)n = xnyn for aU x, y G R \ Q.

Qi2(n) [x - xn, y - yn] = 0 for all x, y G R \ Q.

In the above conditions, if R \ Q is replaced by R, we get the conditions Pi(n)

which have been studied by many authors (see, for example [6] and [7]). Furthermore,
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we consider the following conditions:

Q(n) Ux,yER and n[x, y] = 0 then [x, y] = 0.

(C) For each x, y G R, there exist f(X), g(X) G X2Z[X] such

that [x - f(x), y - g{y)} = 0.

Now, in preparation for proving our main theorems, we state nine lemmas.

LEMMA 1 . 1 .

(1) l-QQU CR\Q.
(2) CR(R\Q) = C.
(3) R is commutative if (and only if) R\Q is commutative.

PROOF: Almost dear. D

LEMMA 1 . 2 . Let a G R. Suppose that for each x G R\Q, there exist integers
n ^ 0, n< > 0 (t - 1, • • • , r) such that (m, • • • , nP) = 1 and xn[o, xni] = 0. Then a
is in C.

PROOF: Let x G R\Q. We can choose integers 1 ̂  k < r, n ^ 0, n< > 0, m; ̂  0

(t = 1, • • • , r) such that

+ mt+ in t+ i H h m r n r = 1

and xn[a, xni] = 0 . Then

= rn[a, imHini+i+i"+m'n'] = 0.

If x + 1 G (?, then x eU &nd[a,x]=0. If x + 1 $ Q, then (z + l)n'[o, z] = 0 for

some positive integer n'. Hence, by [2, Lemma 3], we see that [a, x] — 0. Thus a $C,

by Lemma 1.1 (2). D

LEMMA 1 . 3 . ([4, Lemma 1.3]). Let a € R. Suppose that for some positive
integer n, (i) [a, un] = 0 for all u G U and (ii) n[a, c] = 0 implies [a, c] = 0 for all
c € N. Then a E CR(N) . In particular, if [x, un] = 0 for all x G R, u € U, and if R
satisfies Q(n), then N QC.

PROOF: Let c G N, and let k be the least positive integer such that [a, cr] = 0

for all r > k. Suppose k > 1. Since 1 + c*"1 G U, we see that 0 = [o, (l + c*"1)"] =

n[a, c*"1], and so [a, c*"1] = 0, contradicting the minimality of k. Thus, k = 1, so

[a, e] = 0. D
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LEMMA 1 . 4 . C?i(n) =• Q 4 (n) , Qi{n) => Q3{n) =* Q4(n), and Qi(n) =• Q\{n).

PROOF: Obviously Qi(n) implies Qs(n). Now, suppose Qi(n). Let x, y G -R\Q-
Then

«[*", 2/]yn = x n + 1 y " + 1 - xyxV* = x n + 1 y n + 1 - (xy)n+1 = 0.

In case y + 1 G # , we have x[xn, 1/] = 0. On the other hand, if y + 1 $ Q then
x[xn, y](y + 1)" = 0 , and so x[xn, y] - 0 by [2, Lemma 3]. Now, let x e R\Q and
y 6 Q. Then x[xn, y] = -x[xn, 1 - y] = 0, by the above. We have thus seen that
x[xn, y] = 0 for all x G R \ Q and y € R. Hence, for each x,y £R\Q,we get

[x, (xy)n] = x((xy)n - (yx)n) = x[x", yn] = 0.

Also, this shows that (?j(n) implies Qt(n). Finally, suppose Q'3(n). Then, for each
x,yeR\Q, [[(xi/)",x],x] = -[«((«»)"-(»»n,«]=0. D

LEMMA 1 . 5 . Let n be a positive integer. If R satisfies one of the conditions
Qi(n), Q5(n) and Qe(n), then un G C for all u e U, and D C N.

PROOF: F i r s t , we consider t h e case t h a t R satisfies Qi(n). Let u,v £ U. T h e n

(1.1) [«",»] = [(vv-1u)n
yv} = 0.

Now, let x e R\Q. If u"xx G Q then, by (1.1), - M " 1 ^ " , X] = [wn, 1 - u~lx) = 0,
and so [x, un] = 0. If u^x $. Q then

(1.2) [u,xn} = [u,{u-u-1x)n) = Q.

In case u i " " 1 G Q, we have -u[un, x""1) = [un, 1 - wz""1] = 0 (by (1.1)), and
so [x""1, un] = 0. This together with (1.2) implies that i " " 1 ^ . " 1 = [xn, un] -
[ x " " 1 ^ " ] ! = 0. In case uir""1 g Q, we have zn*+1[x, un] = [x,xn'+1wn] =
[x, x(uxn)n] = [x, (x • «xn"1)nx] = [x, (x • ux"-1)"]* = 0 (by (1.2)). Therefore

xn'+1[x, un] = 0 for all x e R \ Q and u G U.

Hence un G C for all u G U, by Lemma 1.2. Now, it is easy to see that R satisfies the
polynomial identity

[X, (XY)n}W[(l - X)n, (1 - Y)n] = 0.

Since X = en , Y = e\\ +ei2, W = C21 fail to satisfy the above identity, [6, Proposition
2] shows that D C N. Similarly, we can prove the statement for Qs(n) and Qt(n). D

The following two lemmas are obvious by the proofs of [8, Lemma 1] and [6,
Theorem 1], respectively.
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LEMMA 1 . 6 . Let mi and mi be relatively prime positive integers. Let a, b be
elements ofa group G. If oTO*6m- = 6m<om-, om'(a6)m < = (a6)m'om- and 6m<(a6)m< =
(ob)mibmi (i = 1, 2) , then ab = ba.

LEMMA 1 . 7 . Let m i , • • • , m r be positive integers such that 1 < m,- < 6
(i = 1, • • • , r ) . Let n i , • • • , n r be positive integers, and d = (ni , • • • , n P ) . if R

satisfies P m i (n i ) , ••• , Pmrinr) and Q(d), then R is commutative.

LEMMA 1 . 8 . Suppose that for each x,y G R, there exist positive integers
ni (1 ^ i < r) such that (ni, • • • , nr) — 1 and that for each i, one of the following
holds: (xy)ni = (yx)ni, [x, (xy)ni] = 0 and [x, (yx)"*] = 0. Then R is commutative.

( GF(p) GF(p) \
PROOF: We consider the ring I I , p a prime; and put x =

\ 0 GF(p) J

I 1 and y = I 1. Then for any positive integer n , (xy)n — (yx)n ^ 0,

[x, (xy)n] ^ 0 and [x, {yx)n] ^ 0. Therefore, in view of Meta Theorem and [3, Theo-
rem 3], we can apply the argument employed in the proof of [10, Lemmas 1 and 2] to
obtain the assertion. U

The next result generalises [1, Theorems 2 and 3].

LEMMA 1 . 9 . Let n > 0 (respectively n > 1 ) be an integer such that

(xy)n - ynxn = (yx)n - xnyn G CR{x)

(respectively (xy)n - xnyn = (yx)n - ynxn G CR{X))

for all x,y e R. If R satisfies Q(n(n + 1 ) ) (respectively Q(n(n-1))), then R is
commutative.

PROOF: Since R satisfies the polynomial identity

[{XY)n - YnXn, X] = 0 ( respectively [(XY)n - XnYn, X] = 0),

[6, Proposition 2] enables us to see that D C N. Now, let B = ({xn \ x G R}).

Obviously,

- y n * n } * - *{(y*)n - *nyn) = o

(respectively x[xn~\ yn]x = x{{yx)n - ynxn} - {(xy)n - xnyn}x = 0)

for all x, y G R; in particular,

[« n + 1 , yn] = 0 (respectively [tt""1, yn] = 0)
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for all u G U and y G R. Since R satisfies Q(n + 1) (respectively Q(n — 1)), Lemma
1.3 shows that [N, B] = 0, and so N(B) C C(B). Combining this with D C JV, we
obtain D(B) C C(5) . Now, let s,t£B. Then ;

1, tn]=0

(respectively (n - l)sn[s, tn] = *2[an~\ *n] = i^""1 , tn]« = 0).

Hence [s, tn] = 0 by Q(n + 1) (respectively Q{n - 1)) and [2, Lemma 3]. This together
with Q{n) implies the commutativity of B (Lemma 1.7), and so

(xj/)n - (yx)n = -[xn, yn] (respectively [*», y»]) = 0

for all x, y E R. Therefore R is commutative, again by Lemma 1.7. D

2. GENERALISATIONS OF GROSEN'S RESULTS

We begin this section with generalising [4, Theorem 1.2] and Hongan's conjecture
[8, p.21] as follows:

THEOREM 2 . 1 . Suppose that for each x\, x*, x3 G R \ Q, there exist positive
integers m, n such that (m, n) = 1 and [xj", xf] = 0 = [x", «"] (i, j = 1, 2, 3).
Tien R is commutative.

PROOF: By Lemma 1.6,

(2.1) U is commutative, and so Q is commutative.

CLAIM 1. D C N, and so N is a commutative ideal, by (2.1).

PROOF: If x, y £ R\Q, then there exists a positive integer m such that [xm, ym] =
0; if x, y G Q, then [x, y) = [1 - x, 1 - y] = 0, by (2.1). Now, let x E Q and y <£ Q.
Then there exist positive integers m, n such that (m, n) = 1 and [(1 — x)m, ym] —
0 - [(1 - x)n, yn]. Noting that [(1 - x)m, ymn] = 0 = [(1 - x)n, ymn], 1 - x E U and
(m, n) — 1, we can easily see that [a;, j/mn] = —[1 — x, ymn] = 0. We have thus seen
that for each x, y E R there exist positive integers h, k such that [xk, yk] — 0. Hence
D C N by [5, Theorem].

CLAIM 2. N* c C.

PROOF: Let c G AT* and as G ^ \<? . If x + [c, x] G Q, then [c, x] = [c, x + [c, x]] =
0, by Claim 1. If x + [c, x] <fc Q, then there exist positive integers m, n such that
(m, n) = 1, [(x + [c, x])ro, *•»] = 0 = [(« + [c, x])n, x"] and [(1 + c)m, *•»] = 0 =
[(1 + c)n, x"]. Noting that iV2 C C by Claim 1, we can see that [[c, xm], xro] = 0 =
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[[c, x% xn] and m[c, xm) = 0 = n[c, xn). Hence [c, xm*] = r M m ' - m [ c , xm] = 0 and
[c, x n ' ] = 0. Hence JV* C (7, by Lemma 1.2.

Now, by (2.1) and Claim 1, D[U, R] C [U, DR] + [Cf, D)R = 0, and so [U, R] C
JV* C C, by Claim 2. Let « £ P and x 6 -R \ Q, and choose positive integers m, n
such that (m,n) = 1 and [um, xm] = 0 = [un, a:"]. Then m2xm~1[u, xju™-1 =
rM m " 1 [ i ( m , x] = [wm, xro] = 0, and so m 2 x m n ~ 1 [« , x] = 0; similarly n2xmn~1[u, x] =

0. Hence x" " 1 " 1 ^ , x] = 0. Now, we see that U C C, by Lemma 1.2. This implies that
Q Q C, and so, in the hypothesis of our theorem, R \ Q may be replaced by R. Hence
R is commutative, by [10, Theorem 1]. D

THEOREM 2 . 2 . (1) Suppose that for each x, y £ R\Q, there exist positive

integers n1} •• • ,nr such that (n j , • • • , n r ) = 1 and that for each i, either [x, (xj/)n'] —

0 or [x, (yx)ni] = 0. Then R is commutative.

(2) Suppose that for each x, y € R\Q, there exist positive integers ni, • • • ,nr

such that (m, • • • , nr) = 1 and [x, yn«] = 0 (t = 1, • • • , r ) . Then R is commutative.

PROOF: (1) Let u £U, and x £ R. If u~xx € Q then there exist positive integers
ni> • • • > «r such that (ni, • • • , nr) = 1 and that for each i,

or
- ( 1 - u - 1 * ) " 1 ! * - 1 ^ , u n ' ] ( l - u~lx) = [1 - u " 1 ! , {(1 - • U - I x)~ 1 u( l - u - 1 ! ) } " ' ] = 0.

Hence, in either case, we have [x, u"'] = 0, and therefore [x, u] — 0. If u~lx £ Q,

then there exist positive integers n i , • • • , nr such that (ni , • • • , n r ) = 1 and that for
each i,

or u " 1 ^ , xn ']u = [u, (u-1! • u)" ' ] = 0.

Hence, in either case, we have [u, x71'] — 0, and therefore U C C, by Lemma 1.2. This
means that Q C C, so that, in the hypothesis, iZ\ <3 may be replaced by R, and ii is
commutative by Lemma 1.8.

(2) Let u G U, and x £ .R \ Q. Then there exist positive integers n\, • • • , nr

such that (ni, • •• , nr) = 1 and [x, wn«] = 0 (t = 1, • • • , r) , so that [x, u] = 0. Hence
{/ C C, by Lemma 1.1 (2). Now, as in (1), [10, Theorem 1] enables us to see that R is
commutative. D

COROLLARY 2 . 3 . Suppose that for each x,y £ R\Q, there exist positive

integers ni , • • • , n r such that (m, • • • , nP) = 1 and that for each t, either [x, (xy)n'] —
0 or [xy)n' — (j/x)n* = 0. Then R is commutative.
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PROOF: Since [a;, (yx)n] = {(xy)n — (yx)n}x for all x, y G R and any positive
integer n , this is clear by Theorem 2.2. Q

The next result includes [4, Theorems 1.1, 1.3, 1.4, 1.6 and 1.7].

THEOREM 2 . 4 . Let mi, ••• ,mT be positive integers such that 1 ^ TO,- ̂  6

(i = 1, • • • , r ) . Let n\, • • • , nT be positive integers, and d = (n\, • • • , nr).

(1) Suppose that R satisfies Qmi(ni), ••• , Qmr{
nr) and Q(d). Then R is com-

mutative.

(2) Suppose that R satisfies Qm^nj),-•• , QmT{nT) and Qu{d). Then R is

commutative.

PROOF: (1) In view of Lemmas 1.4 and 1.5, D C N and uni G C (t = 1, • • • , r)
for all u 6 U. Hence ud G C and D C N C C by Lemma 1.3. Accordingly, for
each u € U and x 6 R, we have dud~1[u, x] = [ud, x] = 0, whence [u, x] = 0
follows. Therefore we can easily see that Q C C. This means that R satisfies Pm<(nj)
(i = 1, • • • , r). Hence R is commutative, by Lemma 1.7.

(2) In view of Lemma 1.4, we may assume that 4 ̂  TO,- < 6. Then, by Lemma 1.5,
ud G C for all u G U, and so by Qi2(d) [u, x] = [u, xd] for all u G U and x G R\Q;
in particular, [u, v] = 0 for all u, v G U.

Let u eU, and x G -R\<3- If u - 1 x G Q, then [u, x] = -u\u, l - u ^ x ] = 0. Next,
we consider the case that u~1x £ Q. If m< = 4 then [u, xn«] = [u, (u • u~xx) '] = 0;
if TTi,- = 5 then [u, xn*] = u[u, u~1xn'u]u~1 = u[u, (u~1x • u)n']u~1 = 0. Hence
[u, xn«] = 0 (i = 1, . . . , r). Then U C C, by Lemma 1.2, and so Q CC. This implies
that .R satisfies Pi2(d) and N* C C. Now, R is commutative by [9, Lemma 2]. U

THEOREM 2 . 5 . Let m, n be positive integers. Suppose that R satisfies Ql(m),
Qio(n) and Q(mn). Then R is commutative.

PROOF: Let u, v G U. Then there exists a positive integer k such that [umn, u]k —
[(u-u~1vn} ,u]k = 0. Choose k as minimal, and suppose that k > 1. Obvi-
ously, [[[vmn,u]k-2,u],u] = [vmn, u}k = 0. Since [vmn, umn] = 0 implies that
[[vmn, u]k-2, umn] = 0, we get mnumn-1[vmn, «]*_! = mnumn-1[[vmn, u]k-2, u] =
[[vmn, u]jfe-2, u

mn] = 0. But this forces a contradiction [vmn, u]jt_i = 0. Therefore ifc
has to be 1, and so

(2.2) [vmn, u] = 0 for all u, v G U.

CLAIM 1. [D, U] = 0.

PROOF: Obviously, R satisfies the polynomial identity

[Xn, Yn)W[(l - X)n, Yn]W[Xn, (1 - F)n]W[(l - X)n, (1 - Y)n] = 0.
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However, no M2(GF(p)), p a prime, satisfies this identity, as a consideration of the
following elements shows: X = e n , Y = e n + ei2, W = en. Therefore, by [6,
Proposition 2], D C N. Since [N,U] = 0 by (2.2) and Lemma 1.3, we obtain
[D, U] = 0.

CLAIM 2. u m n G C for all u G U.

PROOF: Let u G U, and x G .R\Q. Since [[as", «], u] = 0 by Claim 1, we see that
nit""1^", u] = [xn, un] = 0, and so

(2.3) [xn, «] = 0 for all u G U and x G i? \ Q.

If UJ:""1 e Q then [«n, x""1] = - u " 1 ^ " , 1 - rtx"-1] = 0, by (2.3). Since
[[x""1, «], u] = 0 by Claim 1, we have nu"" 1 ^ , i""1] = [un, x""1] = 0, namely
[u, x"-1] = 0. Accordingly, I ' - ' f a " , x] = [um, xn] = 0, by (2.3). If wx""1 £ Q, then
there exists a positive integer Jb such that [(x • ui*"1) , x]* = 0. Then, by (2.3),

xmn+1[um, x]k = [xmn+1um, x]k = [x(«x")m, x]k = [ (x t tx"- 1 )^ , x]k

= [(xux""1)"1, x]kx = 0.

We have thus seen that

(2.4) for each u G U and x G R \ Q, there exists a positive integer fc

such that xm n + 1[um, x)k = 0.

If 1 + x G Q, then x G U and [um, x]fc = 0, by (2.4). If 1 + x £ Q, then there exists a
positive integer Jb' > fc such that (1 + x)mn+1[um, x]k> = 0, by (2.4). Hence [um, x]k, =
0. We have thus seen that for each u g P and a: G R \ Q, there exists a positive integer
k such that [umn, x]k = 0 . Here, choose Jb as minimal, and suppose that Jb > 1. Then
[[[umn, x]k-2, x], x] = [umn,x]k = 0. Noting that [umn, xmn] = 0, we see that 0 =
[[umn, x]fc_2, xmn] = mna:mn-1[[wmn, x]ifc_2, x] = mnxmn-1[umn

t x]k-i. If 1 + x € Q
then [umn, x]*_i = 0, a contradiction. If 1 + x £ Q then [umn, (x + l)mn] = 0 and
[umn, x + l ] t = [umn, x)k=0. Hence mn(x + l)""1"1^™", x]*_! = 0. Combining this
with mnxmn~l[umn, x\k-\ = 0, by Q(mn) and [2, Lemma 3], we have a contradiction
[umn, x]fc_i = 0. Thus, Jb has to be 1, and [umn, x] = 0 for all u G U and xe R\Q.
Accordingly, umn £ C by Lemma 1.1 (2).

Now, let u G U and x G R. Since [[x, «], u] = 0 by Claim 1, we see that
mnw"1"-1^, x] = [umn, x] = 0 (Claim 2). Hence [«, x] = 0, and U C C. This
implies that Q C C, and so R satisfies Pio(n)- Then, by [9, Corollary 2], R satisfies
the condition (C). Furthermore, since N* C Q C C, [9, Lemma 2] shows that R is
commutative. D

Combining Theorem 2.5 with Lemma 1.4, we readily obtain the following, which
includes [4, Theorem 1.8].
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COROLLARY 2 . 6 . Let m, n be positive integers. Suppose that R satisfies
Q'3(m), Qio(n) and Q(mn). Then R is commutative.

Finally, the next result includes a generalisation of [4, Theorem 1.5] and [2, The-
orems 1 and 2].

THEOREM 2 . 7 . The following conditions are equivalent:

(0) R is commutative.
(1) There exists a positive integer n such that R satisfies Q(n(n + 1)) and

(zy)n + 1 - z n + 1 y n + 1 = {yx)n+1 - y ^ 1 * ^ 1 £ C for all x, y e R\Q.

(2) Tnere exists a positive integer n such that R satisfies Q(n(n + 1)) and

(*y)" - S/n*" = {yxF - xnyn eC foraUx,yeR\Q.

PROOF: It suffices to show that each of (1), (2) implies (0).

(1) ^- (0). As was shown in the proof of Lemma 1.9,

(2.5) [wn, yn+1] = 0 for all u G U and y G R \ Q.

This implies that [un, v
n^n+1)] = 0 and [un+1, «"(n+1)] = 0, so

(2.6) [u, vn<~n+1)] = 0 for all u, v G U.

CLAIM 1. u" '" + 1 ' G C for all u e U, so that N C C by Lemma 1.3.

PROOF: Let ueU, and y € R. If uy G Q, then (2.6) shows that [it"("+1), y) =
- t t - ^ u " ^ 1 ) , 1 - uy) = 0. Similarly, if y G Q or uny G Q, then [u"<n+1), y] = 0.
Henceforth, we assume that uy (f: Q, uny $ Q and y £ Q. Then yn £ Q, and the
hypothesis and (2.5) show that

_ yn{n+l)un(n+l)yn+l + yn(n+l)gi + z - ^ ^ + y z + z

with some z, z' G C, and so y(n+1)2-i[u"("+i)) y]2 = 0. We have thus seen that

1/(n+i)J-i[un(n+i\ y]2 = 0 for all u G tf, y G R. Hence, by [2, Lemma 3]

(2.7) [un(n+1) , y]2 = 0 for all u G U and y G .R.

As was noted above, if y G C? then [«"(n+1), y] = 0, and so [ttn(n+1), yn+1] = 0.
This together with (2.5) shows that [un(n+1>, yn+1] = 0 for all u G U and y G -R.
Combining the last with (2.7) and Q(n + 1), we can easily see that [u"(n+1), y] = 0,
namely un(n + 1) G C. Combining the hypothesis with Claim 1, we readily see that R

satisfies the polynomial identity

[{XY)n+1 - Xn+1Yn+1, X]W[{1 - X)n{n+1\ (1 - Y)n{n+1)] = 0.

https://doi.org/10.1017/S0004972700029294 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029294


[11] Commutativity theorems for rings 461

However, no Mi(GF(p)), p any prime, satisfies this identity, as a consideration of
the following elements shows: X = en + e j i , Y = en + ei2, W = e2i (p = 2);
X = en + e u , Y = e22 + ei2, W — e2i (p ^ 2). Therefore, by [6, Proposition 2]
and Claim 1, D C N C C. So, by Claim 1, 0 = [un(n+1>, y] = n(n + l y * * 1 ) " 1 ^ , y],
namely [w, y] = 0 (u G 17, y G .R) follows. Hence U QC, and s o Q C C , Thus, in the
hypothesis, we may replace R \ Q by R. Now, the commutativity of R is clear, by
Lemma 1.9.

(2) => (0). As was shown in the proof of Lemma 1.9,

(2.8) [z n + 1 , yn] = 0 for all x, y G R \ Q.

This implies that [u, W
B(B+1>] = 0 for all u, v G £1.

CLAIM 2. tin<n+1> G C7 for all u G t^, so that N C C by Lemma 1.3.

PROOF: Let u EU, and y E R. As is easily seen, if {tty, u n + 1 y , y} D Q ^ 0 then
[un(n+i\ y] = 0. Henceforth, we assume that uy $ Q, u n + 1 y ^ Q and y <£ Q. Then
the hypothesis and (2.8) show that

with some z, z' G C, and so yn ~1[wn^n+1', y]2 = 0. Now, by making use of the same

argument as in (1) =» (0), we see that u
n ( n + 1 ) G C for all « G U.

Combining the hypothesis with Claim 2, we readily see that R satisfies the poly-

nomial identity

[{XY)n - YnXn, X]W[(1 - X)n{n+1\ (1 - y)n<n+1>] = 0.

However, no M2(GF(p)), p any prime, satisfies this identity, as a consideration of
the following elements shows: X = e n + e i 2 , Y = en + e2i , W = e2 i (p = 2);
X = e22 + ei2, Y = en + e i 2 , W = e2i (p ^ 2). Therefore, by [6, Proposition 2]
and Claim 2, D C N C C. The rest of the proof proceeds in the same way as the last
part of (1) => (0) did. D
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