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COMMUTATIVITY THEOREMS FOR RINGS WITH
POLYNOMIAL CONSTRAINTS ON CERTAIN SUBSETS
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Dedicated to Professor Nobuo Nobusawa on his 60th birthday

We prove several commutativity theorems for unital rings with polynomial con-
straints on certain subsets, which improve and generalise the recent results of
Grosen, and Ashraf and Quadri.

0. INTRODUCTION

Recently Streb [11] gave a classification of non-commutative rings. We have applied
the classification to the proof of some commutativity theorems, in [9] and [10]. The
classification is effective in our present paper, too. As is easily seen from the proof
of [11, Korollar (1)}, if R is a non-commutative ring with unity, then there exists a
factorsubring of R which is of type (i), (ii), (iii) or (iv):

(i) ( G{.'(p) gig; ) , P a prime

() M,(K)= {(g (b )) la,be K} , K is a finite field with a non-trivial
o\a

automorphism o .
(i) A non-commutative ring with no non-zero divisors of zero.
(iv) §=(1)+T, T is a non-commutative subring of S such that T[T, T] =
(T, TT = 0.
This result gives the following

META THEOREM. Let P be a ring property which is inherited by factorsubrings.
If no rings of type (i), (ii), (iii) or (iv) satisfy P, then every ring with unity and satisfying
P is commutative.

Meanwhile, in her thesis [4], Grosen generalised some known theorems on the
commutativity of a ring R with unity and satisfying polynomial identities by assuming
that the identities hold merely for the elements of a certain subset of R rather than for
all elements of R. The major purpose of this paper is to prove several commutativity
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theorems which improve and generalise the results of Grosen [4, Section 1] as well as
the main results of Ashraf and Quadri [2].

Throughout the present paper, R will represent a unital ring (a ring with unity).
We use the following notation:

C = C(R) = the centre of R.

D = D(R) = the commutator ideal of R.

N = N(R) = the set of nilpotent elements in R.
N*=N*(R)={z € R|z* =0}.

U = U(R) = the multiplicative group of units in R.
Cr(M) = the centraliser of a subset M of R in R.

For z, y € R, we define extended commutators {z, y]i as follows: let [z, y]o = 2, and
proceed inductively: [z, y]x = ([, ¥]k—1, y]. Finally, let @ be the intersection of the set
of non-units of R with the set of quasi-regular elements of R (thatis, @ = (1 + U)\U).
Obviously, Q contains N and the Jacobson radical of R.

. 1. PRELIMINARIES

Let n be a positive integer. We consider the following conditions:

Qi(n) (zy)* =z"y" and (zy)""' =2 'y"* forall z,y € R\ Q.
Q2(n) (zy)" =z"y* =y"z" forall z, y € R\ Q.
Qs(n) (zy)" = (yz)" forall z,y € R\ Q.
Qs(n) [(zy)" - (yz)",z]=0forall z, y € R\ Q.
Qs(n) [(zy)",z]=0forall z,y € R\ Q.
Qi(n) Foreachz,y€ R\ Q, there exists a positive integer k
such that [(zy)", z]x =0.
Qs(n) [(yz)*,z]=0forall z,y € R\ Q.
Qs(n) [y*,z]=0forallz,y€ R\ Q.
Qio(n) [z",y"]=0forall z,ye R\ Q.
Qui(n) (zy)" =z"y" forall z,y € R\ Q.
Qi12(n) [z—2z",y—y*]=0forallz,y€ R\ Q.

In the above conditions, if R\ Q is replaced by R, we get the conditions P;(n)
which have been studied by many authors (see, for example [6] and [7]). Furthermore,
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we consider the following conditions:

Q(n) Ifz,y€ R andn[z, y] =0 then [z, y] =0.
(C) For each z, y € R, there exist f(X), g(X) € X?Z[X] such
that [z — f(z), y — g(y)] = 0.

Now, in preparation for proving our main theorems, we state nine lemmas.

LEmMmMa 1.1.
(1) 1-QCUCR\Q.

(2) Cr(R\Q)=C.
(3) R is commutative if (and only if) R\ Q is commutative.

PRrOOF: Almost clear. 0

LeEMMA 1.2. Let a € R. Suppose that for each z € R\ Q, there exist integers
n>0,n;>0 (i=1,---,r) such that (ny, -+ ,n,) =1 and z"[a, z™] = 0. Then a
isin C.

ProOF: Let z € R\ Q. We can choose integers 1 <k <r,n>20,n; >0, m; 20
(i=1,---,r) such that

—-ming = — MENg + Mep1nkt1 + -+ Mmenp =1

and z"[a, z%] = 0. Then

zn+m1n1+---+mknk [a’ z] — zn[a, £1+m1u1+u-+mhnk]

= ;,_-"[a, zmk+l"k+l+“'+mr"r] =0.

Ifz+1€Q,then z€ U and [a,2z] =0. fz+1 ¢ Q, then (z+1)"'[a,z] = 0 for
some positive integer n'. Hence, by [2, Lemma 3], we see that [a, 2] = 0. Thus a € C,
by Lemma 1.1 (2). 0

LeMMAa 1.3. ([4, Lemma 1.3]). Let @ € R. Suppose that for some positive
integer n, (i) [a, u”] = 0 for all w € U and (ii) n[a, ¢] = 0 implies [a, c] = 0 for all
c € N. Then a € Cr(N). In particular, if [z, u"]| =0 forall z€ R, u € U, andif R
satisfies Q(n), then N CC.

PROOF: Let ¢ € N, and let k be the least positive integer such that [a, ¢"] = 0
for all » > k. Suppose k > 1. Since 1+ c*~! € U, we see that 0 = [a, (1 + c"‘l)"] =
n[a, ¢*~!], and so [a, c*~!] = 0, contradicting the minimality of k. Thus, k = 1, so
[a, ] = 0. 1]
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LEMMA 1.4. Qi(n) = Qi(n), Q:(n) = Qs(n) = Q4(n), and Q5(n) = Qi(n).
PROOF: Obviously Qz(n) implies Qs3(n). Now, suppose @1(n). Let z, y € R\ Q.
Then
1t n+l, n+l

2[z", yly™ = 2"y —ayay” = 2P — (o)™ = 0.

In case y + 1 € @, we have z[z", y] = 0. On the other hand, if y+1 ¢ @ then
z[z™, y)(y + 1)" = 0, and so z[z", y] =0 by [2, Lemma 3]. Now, let z € R\ Q and
y € Q. Then z[z",y] = —2z[z",1 — y] = 0, by the above. We have thus seen that
z[z",y] =0 for all z€ R\ @ and y € R. Hence, for each z, y € R\ Q, we get

[z, (z9)"] = 2((=y)" - (y2)") = z[=", "] = 0.

Also, this shows that Qs(n) implies Q4(n). Finally, suppose Qj(n). Then, for each
2,y € R\Q, [((z9)", 2], 2] = ~[=((=y)" - (¥2)"), 2] = 0. 0

LEMMA 1.5. Let n be a positive integer. If R satisfies one of the conditions
Qs(n), @s(n) and Qg(n), then u* € C forall u e U,and DC N.

PRroOF: First, we consider the case that R satisfies Q4(n). Let u,v € U. Then
(L.1) [, o] = [(o-v™*)", 1] = 0.

Now, let z € R\ Q. If 'z € Q then, by (1.1), —u"![u", z] = [u", 1 —u~'z] = 0,
and so [z, 4] =0. If u~'z ¢ Q then
(1.2) [uv zn] = [‘u,, (u' . u—lz)"] =0.

In case uz®"! € Q, we have —u[u™ z*] = [u", 1 —uz""!] = 0 (by (1.1)), and
so [z®71, u™] = 0. This together with (1.2) implies that z"~![z, v"] = [z", u"] —
[z, u")z = 0. In case uz™"! ¢ Q, we have 2z, u"] = [z, 2" tlu"] =
[z, z(uz™)"] = [z, (z - uz™!)"z] = [z, (- uz"!)" )z = 0 (by (1.2)). Therefore

2" +1[z, u"] =0 forall z € R\ Q and u € U.

Hence u™ € C for all © € U, by Lemma 1.2. Now, it is easy to see that R satisfies the
polynomial identity

(X, (XY)")W[(1 - X)", (1~ Y)"] =0.

Since X =e31, Y = €11 +e12, W = ez fail to satisfy the above identity, [6, Proposition
2] shows that D C N. Similarly, we can prove the statement for Qs(n) and Qg(n). O

The following two lemmas are obvious by the proofs of [8, Lemma 1] and [6,
Theorem 1], respectively.
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LEMMA 1.6. Let m; and m; be relatively prime positive integers. Let a, b be
elements of a group G. If a™ib™i = b™ia™i, a™i(ab)™ = (ab)™ a™ and b™i(ab)™ =
(ab)™b™ (i =1,2), then ab = ba.

LEMMA 1.7. Let m,,---,m, be positive integers such that 1 € m; < 6
(i=1,---,7). Let ny,---,n, be positive integers, and d = (ny,---,n,). If R
satisfies Pm,(n1), -** ; Pm,(n,) and Q(d), then R is commutative.

LEMMA 1.8. Suppose that for each z,y € R, there exist positive integers

n; (1 <i<r) such that (ny,---,n,) = 1 and that for each i, one of the following
holds: (zy)™ = (yz)™, [z, (zy)™] =0 and [z, (yz)™] = 0. Then R is commutative.
GF(p) GF(p)
0 GF(p)

11 1 n n
(0 1) and y = (0 g) Then for any positive integer n, (zy)" — (yz)" # 0,

[z, (zy)"] # 0 and [z, (yz)"] # 0. Therefore, in view of Meta Theorem and (3, Theo-
rem 3], we can apply the argument employed in the proof of [10, Lemmas 1 and 2] to

PROOF: We consider the ring ( ), p a prime; and put z =

obtain the assertion. 0
The next result generalises [1, Theorems 2 and 3].
LEMMA 1.9. Let n >0 (respectively n > 1) be an integer such that

(zy)" — y"z" = (yz)" — z"y" € Cr(z)
(respectively (zy)" — z"y™ = (yz)" — y"z™ € Cr(z))

for all z,y € R. If R satisfies Q(n(n +1)) (respectively Q(n(n —1))), then R is

commutative.

PROOF: Since R satisfies the polynomial identity
(XY)"-Y™"X™, X]=0 ( respectively [(XY)" — XY™, X]=0),

[6, Proposition 2] enables us to see that D C N. Now, let B = {{z™ | z € R}).
Obviously,

2%, 37 = {(zv)" - y"2"}z — 2{(y=)" —2"y"} = 0
(respectively 2[z"", 3]z = 2{(y2)" — y"2"} — {(29)" — 2"y"}z = 0)
for all z, y € R; in particular,
[un+1

,¥"] =0 (respectively [u~?, y"] =0)
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for all u € U and y € R. Since R satisfies Q(n 4 1) (respectively Q(n — 1)), Lemma
1.3 shows that [N, B] = 0, and so N(B) C C(B). Combining this with D C N, we
obtain D(B) C C(B). Now, let s,t € B. Then

(n+1)s"[s, t*] = [s"*1, 1] =0
(respectively (n — 1)s™[s, t?] = s%[s"1, t"] = s[s™ "1, t"]s = 0).

Hence (s, t”] =0 by Q(n + 1) (respectively Q(n — 1)) and [2, Lemma 3]. This together
with Q(n) implies the commutativity of B (Lemma 1.7), and so

(zy)" — (y2)" = —[z™, y"] (respectively [z", y™]) =0

for all z, y € R. Therefore R is commutative, again by Lemma 1.7. 1]

2. GENERALISATIONS OF GROSEN’S RESULTS

We begin this section with generalising [4, Theorem 1.2] and Hongan’s conjecture
(8, p.21] as follows:

THEOREM 2.1. Suppose that for each z;, 2,25 € R\ @, there exist positive
integers m, n such that (m,n) = 1 and [z]*,2]'] = 0 = [z}, 2}] (4,5 =1, 2, 3).
Then R is commutative.

PRrooF: By Lemma 1.6,

(2.1) U is commutative, and so @ is commutative.

CLAIM 1. D C N, and so N is a commutative ideal, by (2.1).

PROOF: If z, y € R\Q, then there exists a positive integer m such that [z™, y™] =
0;if z,y€ Q, then [z,y] =[1 —z,1 -y =0, by (2.1). Now,let z€ Q and y ¢ Q.
Then there exist positive integers m, n such that (m,n) = 1 and [(1-z)™, y™] =
0=[(1-=z)", y*]. Noting that [(1-2)",y™*|=0=[1-2)",y™],1 -z € U and
(m, n) = 1, we can easily see that [z, y™*] = —[1 — z, y™"] = 0. We have thus seen
that for each z, y € R there exist positive integers h, k such that [z*, y*] = 0. Hence
D C N by [5, Theorem].

CrLamM 2. N*CC(C.

PROOF: Let c€ N* and z € R\ Q. If z+]c, z] € Q, then [¢, z] = [¢, z+ ¢, z]] =
0, by Claim 1. If z + [¢, z] ¢ @, then there exist positive integers m, n such that
(m,n) = 1, [(2+[c, 2)™ 2™ = 0 = [(z +[¢, 2])", 7] and [(1+ )", a™] = 0 =
[(1 4+ ¢)®, z™]. Noting that N2 C C by Claim 1, we can see that [[c, z™],z2™] =0 =
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[le, z"], z"] and m[c, z™] = 0 = n[c, z"]. Hence [c, z™ | = mz™ ~™[c, z™] = 0 and
e, z"’] =0. Hence N* C C, by Lemma 1.2.

Now, by (2.1) and Claim 1, D(U, R] C [U, DR} + [U, DR = 0, and so [U, R] C
N*C C, by Claim 2. Let u € U and z € R\ @, and choose positive integers m, n
such that (m,n) = 1 and [u™,2™] = 0 = [u™, z"]. Then m2z™ [y, zju™"! =
mz™ ™, z] = [u™, 2™] = 0, and so m2z™"" [y, z| = 0; similarly n%z™"" !y, z] =
0. Hence 2™ ![u, z] = 0. Now, we see that U C C, by Lemma 1.2. This implies that
Q C C, and so, in the hypothesis of our theorem, R\ Q may be replaced by R. Hence
R is commutative, by [10, Theorem 1). 0

THEOREM 2.2. (1) Suppose that for each z,y € R\ Q, there exist positive
integers n,, -+ - , n, such that (ny, --- , n,) = 1 and that for each i, either [z, (zy)™] =
0 or [z, (yz)™] =0. Then R is commutative.

(2) Suppose that for each =,y € R\ Q, there exist positive integers ny, --- , ny,
such that (ny, --- ,n,) =1 and [z,y™]=0(i=1,---,r). Then R is commutative.

PROOF: (1) Let u € U, and z € R. If ™!z € Q then there exist positive integers
ny, --- , n, such that (ny, ---, n,) =1 and that for each i,

—u Mz, uM)=[1-uwTlz, {1-u"l2)- (1 - u_lz)—lu}"‘] =0
-(1-u"'z) —lu'l[z, uS(1-utz) =1 —ulz, {(1 -u ') _lu(l —u"lz)}™] =0.

Hence, in either case, we have [z, u™] = 0, and therefore [z,u] = 0. If u™'z ¢ Q,

then there exist positive integers n,, --- , n, such that (ny, ---, n,) =1 and that for
each 1,

[u, z™] = [u, (u- u'lz)"i] =0
or v Hu, z%u =[u, (u”'z-u)™] = 0.

Hence, in either case, we have [u, z™] = 0, and therefore U C C, by Lemma 1.2. This
means that Q@ C C, so that, in the hypothesis, R\ Q may be replaced by R, and R is
commutative by Lemma 1.8.

(2) Let w € U, and z € R\ Q. Then there exist positive integers n1, --- , n,
such that (n;,---,n,) =1 and [z, u™]=0(i=1, --,7), so that [z, u] = 0. Hence
U C C, by Lemma 1.1 (2). Now, as in (1), [10, Theorem 1] enables us to see that R is
commutative. 0

COROLLARY 2.3. Suppose that for each z,y € R\ Q, there exist positive
integers ny, - -- , n, such that (ny, --- , n,) =1 and that for each i, either [z, (zy)™] =
0 or (zy)™ — (yz)™ = 0. Then R is commutative.
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PROOF: Since [z, (yz)"] = {(zy)" — (yz)"}z for all z,y € R and any positive
integer n, this is clear by Theorem 2.2. 0

The next result includes [4, Theorems 1.1, 1.3, 1.4, 1.6 and 1.7|.

THEOREM 2.4. Let m,,---, m, be positive integers such that 1 € m; < 6
(i=1,---,r). Let ny, --- , n, be positive integers, and d = (ny1, - -+ , n,).

(1) Suppose that R satisfies Qm,(n1), -+ , @m,(n,) and Q(d). Then R is com-
mutative.

(2) Suppose that R satisfies Qum,(n1), -, Qm,(nr) and Qi2(d). Then R is
commutative.

Proo¥F: (1) In view of Lemmas 1.4and 1.5, DC N and 2™ € C (i=1,---,7)
for all v € U. Hence u® € C and D C N C C by Lemma 1.3. Accordingly, for
each u € U and z € R, we have du? ![u,z] = [u? z] = 0, whence [u,z] = 0
follows. Therefore we can easily see that @ C C. This means that R satisfies Pp;(n:)
(i=1,---,r). Hence R is commutative, by Lemma 1.7.

(2) In view of Lemma 1.4, we may assume that 4 < m; € 6. Then, by Lemma 1.5,
ud € C for all u € U, and so by Q12(d) [u, z] = [u,z¢] forall u € U and z € R\ Q;
in particular, [u, v] =0 for all u, v € U.

Let u€ U,and z € R\Q. If v~z € Q, then [u, z] = —u[u, 1 —u~"'z] = 0. Next,
we consider the case that v 'z ¢ Q. If m; = 4 then [u, 2] = [u, (u-u™'z)"] = 0;
if m; = 5 then [u, 2™] = u[y, v z™ulu"? = ufy, (u 'z -u)™ju"! = 0. Hence
[u,2™]=0 (¢=1,...,7). Then U C C, by Lemma 1.2, and so @ C C. This implies
that R satisfies Pjp(d) and N* C C. Now, R is commutative by [9, Lemma 2]. 0

THEOREM 2.5. Let m, n be positive integers. Suppose that R satisfies Q3(m),
Q10(n) and Q(mn). Then R is commutative.

PROOF: Let u, v € U. Then there exists a positive integer k such that [v™", u]r =
[(u-u‘lv")m,u]k = 0. Choose k as minimal, and suppose that £ > 1. Obvi-
ously, [[[v™", ulk-2, u],u] = [v™*, u]y = 0. Since [v™", u™"] = 0 implies that
([[v™", u]k—2, u™"] = 0, we get mnu™" " [v™, uli_; = mnu™ ™", u|p_y, u] =
[[v™", u]k—2, u™"] = 0. But this forces a contradiction [v™", u]i_; = 0. Therefore k

has to be 1, and so

(2.2) [v™", u] =0 for all u, v € U.

Cram 1. [D,U] =0.
PROOF: Obviously, R satisfies the polynomial identity

X", YWI(L - X)®, YIWIX™, (1- YW1 - X)", (1 - ¥)"] = 0.
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However, no M;(GF(p)), p a prime, satisfies this identity, as a consideration of the
following elements shows: X = e1;, ¥ = €17 + €12, W = ez;. Therefore, by [6,
Proposition 2], D C N. Since {N,U] = 0 by (2.2) and Lemma 1.3, we obtain
[D,U]=0.

CLamM 2. u™ e C forallucU.
ProoF: Let u € U, and z € R\ Q. Since [[z", u], u] = 0 by Claim 1, we see that

nu™~z", u] = [z", u"] = 0, and so

(2.3) [z",u]=0foralu e U and z € R\ Q.
If uz~! € Q then [u™, z"'] = —u~![u" 1 — uz™!] = 0, by (2.3). Since
[[z*~?, u),u] = 0 by Claim 1, we have nu™ [y, 2" = [u®, 2" '] = 0, namely

[u, z"~!] = 0. Accordingly, z*~![u™, 2] = [u™, ™| = 0, by (2.3). If uz™~? ¢ Q, then
there exists a positive integer k such that [(z-uz""!)™, z]x = 0. Then, by (2.3),
s 2k = [2™ ™, 2] = [2(uz™)™, 2k = [(zu2™ ) "z, 2]k

= [(zuz™ )™, z]az = 0.

zmn+1 [um

We have thus seen that

(2.4) foreach u € U and z € R\ Q, there exists a positive integer k

such that z™"*t1[y™, z], = 0.

fl+z€Q,then z €U and [u™, 2]y =0,by (2.4). If 1+ 2 ¢ Q, then there exists a
positive integer k' > k such that (1 + z)™"*[u™, z]p = 0, by (2.4). Hence [u™, z]u =
0. We have thus seen that for each u € U and z € R\ Q, there exists a positive integer
k such that [«™", z]; = 0. Here, choose k as minimal, and suppose that k£ > 1. Then
[[w™", z]g—2, z}, z] = [u™",z]x = 0. Noting that [u™", z™"] = 0, we see that 0 =
[w™", Z]k—2, 2™"] = mnz™" " [[u™", z]k_3, 2] = mnz™* Hu™ z|4_. f 1+ 2z € Q
then [u™", z]g—1 = 0, a contradiction. If 1 +z ¢ Q then [u™*, (z+1)™"] = 0 and
[4™*, z+1]; = [u™", 2], = 0. Hence mn(z + 1)™" ' [u™", z]s_; = 0. Combining this
with mnz™*~1[u™", z],_; =0, by Q(mn) and [2, Lemma 3], we have a contradiction
[u™", z]t—1 = 0. Thus, k hasto be 1, and [u™",z] =0 forall uc U and z € R\ Q.
Accordingly, 4™" € C by Lemma 1.1 (2).

Now, let » € U and z € R. Since [[z, u],u] = 0 by Claim 1, we see that
mnu™" [y, z] = [u™", z] = 0 (Claim 2). Hence [u,z] = 0, and U C C. This
implies that Q C C, and so R satisfies Pip(n). Then, by [9, Corollary 2], R satisfies
the condition (C). Furthermore, since N* C Q C C, [9, Lemma 2] shows that R is
commutative. 0

Combining Theorem 2.5 with Lemma 1.4, we readily obtain the following, which
includes [4, Theorem 1.8].
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COROLLARY 2.6. Let m, n be positive integers. Suppose that R satisfies
Q4(m), Qio(n) and Q(mn). Then R is commutative.

Finally, the next result includes a generalisation of [4, Theorem 1.5] and [2, The-
orems 1 and 2].

THEOREM 2.7. The following conditions are equivalent:

(0) R is commutative.

(1) There exists a positive integer n such that R satisfies Q(n(n + 1)) and
(zy)™*? —zntiyntl = (yo)"t! —yntizntl € C forall z,y € R\ Q.

(2) There exists a positive integer n such that R satisfies Q(n(n + 1)) and
(zy)" —y"z" = (yz)" —z"y" € C forall 2,y € R\ Q.

PROOF: It suffices to show that each of (1), (2) implies (0).
(1) = (0). As was shown in the proof of Lemma 1.9,

(2.5) [u™, y** ] =0forall u €U and y € R\ Q.
This implies that [u®, v™(**1)] = 0 and [u"t?, v™"+1)] = 0, so

(2.6) [u, v™™* V] =0 for all u, v € U.

CLamM 1. v™*t1) € C for all u €U, so that N C C by Lemma 1.3.

PROOF: Let u € U, and y € R. If uy € Q, then (2.6) shows that [u™("+1) y] =
—u~u™™+1) 1 — yy] = 0. Similarly, if y € Q or u™y € Q, then [u™"t1) y] = 0.
Henceforth, we assume that uy ¢ @, u"y ¢ Q and y ¢ Q. Then y™ ¢ Q, and the
hypothesis and (2.5) show that

y(n+1)’—1un(n+1)y =y (unyn+l)"uny = (y" .uny)ﬂ+1 _ yn(n+l)(uny)n+1 tz
— yn(n+1)un(n+l)yn+l +yn(n+1)z: +z= y(n+1)’un(n+1) + yn(ﬂ+1)zl +z

with some z,z € C, and so y("+1),'][u"("+1), y]z2 = 0. We have thus seen that
y(""'l)z'l[u“(”“), y]2=0forall u € U, y € R. Hence, by [2, Lemma 3]

(2.7) [u™™+1), y], =0 for all u € U and y € R.

As was noted above, if y € Q then [u™™*1), y] = 0, and so [u™"+1) yn+1] = 0.
This together with (2.5) shows that [u™"+1) y™*+1] = 0 for all w € U and y € R.
Combining the last with (2.7) and Q(n + 1), we can easily see that [u™"+1) 4] =0,
namely 4™"+1) € C. Combining the hypothesis with Claim 1, we readily see that R
satisfies the polynomial identity

(XY)"* - xmHy»H X w1 - X)"), 1 - )"t = 0.
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However, no Ma2(GF(p)), p any prime, satisfies this identity, as a consideration of
the following elements shows: X = e;; + €31, ¥ = €11 + e12, W = e (p=2);
X =e11+ea, Y =en+ea, W=en(p#2). Therefore, by [6, Proposition 2]
and Claim 1, D C N C C. So, by Claim 1, 0 = [u™"+1), 4] = n(n + 1)u™+1)1[y, 4],
namely [u,y] =0 (u € U, y € R) follows. Hence U C C, and so Q C C. Thus, in the
hypothesis, we may replace R\ Q by R. Now, the commutativity of R is clear, by
Lemma 1.9.

(2) = (0). As was shown in the proof of Lemma 1.9,
(2.8) [z**',y") =0forall z, y € R\ Q.

This implies that [u, v™"+1)] =0 forall u,v € U.

CLam 2. u™»*+1) ¢ C for all u € U, so that N C C by Lemma 1.3.

PROOF: Let u € U, and y € R. As is easily seen, if {uy, vy, y} N Q # @ then
[4™*+1) y] = 0. Henceforth, we assume that uy ¢ Q, u"*'y ¢ Q and y ¢ Q. Then
the hypothesis and (2.8) show that

yn3 _lun(n+1)y — yn—l (un+1yn)n—1un+1y - (yn_l . un+1y)n — (u"“y)"y"("_l) +z

— ynun(n+l)yn(n—1) + zlyn(n—l) +z= yn’un(n+1) + zlyn(n—l) +z

with some z, 2z’ € C, and so y“z_l[u"(““), y]2 = 0. Now, by making use of the same
argument as in (1) = (0), we see that u™™*) € C forall ue U.

Combining the hypothesis with Claim 2, we readily see that R satisfies the poly-
nomial identity

(XY)" -y X", X]W[1 - X)""*), 1 -Y)"*)) =0.

However, no M;(GF(p)), p any prime, satisfies this identity, as a consideration of
the following elements shows: X = e;; + €12, ¥ = e11 + e, W = en(p=2);
X =eate2, Y = €1 +ez2, W =exn(p#2). Therefore, by [6, Proposition 2]
and Claim 2, D C N C C. The rest of the proof proceeds in the same way as the last
part of (1) = (0) did. 0
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