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Abstract

It has been known for over twenty years that every planar graph is Pfaffian. Recently a characterisa-
tion of planar graphs in terms of strict maximal odd rings has been discovered. This paper attempts to
elucidate the connection between the Pfaffian property and planarity by characterising Pfaffian
bipartite graphs in terms of maximal odd rings.

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 70.

1. Introduction

All graphs considered in this paper are finite. Let G* be a directed graph with an
even number of vertices, and let F be the set { fv... ,fk} of its 1-factors. For all i
write/ , = {(ua,wn), (ui2,wi2),...,(uin,win)} where n = \\V(G*)\ and, for ally,
(utj, wtj) denotes an edge directed from vertex «,y to vertex w^. Associate with/ a
plus sign if Unwnui2wa ''' umwin is a n even permutation of unwnuuWi2 ' ' "
ulnwln, and a minus sign otherwise. If G is an undirected graph, we say that G is a
Pfaffian graph if there exists a directed graph G* with vertex set V(G) and edge
set E(G) such that all the 1-factors of G* have the same sign.

The idea of affixing signs to the 1-factors of a directed graph in this manner is
due to Kasteleyn [2], who showed that every planar graph is Pfaffian. Pfaffian
bipartite graphs have been characterised in [3]. In order to describe this char-
acterisation, we need some more notation. Let G be a bipartite graph with
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[2] Pfaffian bipartite graphs 133

bipartition {V,V}. (In other words, every edge of E(G) joins a vertex of V to one
of V.) Let / b e a 1-factor of G. Then Gf denotes the directed graph obtained from
G by orienting each edge of/away from the end in V and each edge of E{G) - f
toward the end in V. Furthermore, let H be the directed graph of Figure 1. Then
the following theorem is the characterisation given in [3].

THEOREM 1. A bipartite graph G is non-Pfaffian if and only if there exists a
1-factor f of G such that some subgraph of Gf is isomorphic to a subdivision of H.

Figure 1

The connection between planarity and the Pfaffian property described above is
perhaps rather unexpected. In this paper, we attempt to elucidate that connection
by appealing to a recent characterisation of planarity. We turn now to a
description of that characterisation.

If 5 is a set of circuits of G, then the circuits in S are consistently orientable if G
can be oriented so that they are all directed circuits. A ring of circuits in G is a set
S of consistently orientable circuits such that

(a) |S| > 3,
(b) there is a cyclic ordering (Co, Cl5... ,Cn_1? Co) of the n circuits in S such

that £(C,) n E(Cj) # 0 if and only if j = i, j = i - \ (mod n) or j = i + 1
(mod «), and

(c) no edge of G belongs to more than two circuits of S.
A ring S is said to be odd if \S\ is odd. A ring (Co, . . . ,Cn_l} is said to be

maximum if there does not exist a ring { CQ, ..., C'm_ l} for which m > n and

U E(CJ) c U E(CJ).
7-0 7-0

The ring (Co, . . . ,Cn_x} is strict if |K(C,) n F(C,)| < 1 whenever £(C,) n £(C,)
= 0 .

The following characterisation of planar graphs has been proved by Chernyak

[1].
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134 Charles H. C. Little [3]

THEOREM 2. A graph is non-planar if and only if it contains a maximum strict odd
ring.

Chernyak's proof depends on work by Holton and Little that has not yet been
published. See [4] for a self-contained proof for cubic graphs.

In the subsequent sections, we characterise Pfaffian bipartite graphs in terms of
rings. The reader is referred to [4] for definitions and notation not explained here.

2. Some preliminary results

Our aim is to characterise Pfaffian bipartite graphs. We shall re-interpret the
problem as one about cubic graphs, and shall solve the resulting problem
concerning cubic graphs.

Throughout the following, G is a bipartite graph and / is a 1-factor of G. We
denote by G*f the cubic directed graph constructed from Gf in the following way.
Delete every vertex of valency 1 (and the edge incident on it). Let u be any vertex
of valency 2, and let ul and u2 be the vertices adjacent to u. Since no vertex of Gf
of valency greater than 1 is a source or sink, we may assume that (Uj, u) e E{Gf)
and («, M2) G E{Gf). Then replace u, (uv u) and («, u2) by the single edge
(«!, u2). In this way, we remove all vertices of valency 2. Finally, let v be a vertex
of valency y > 3. Let vv.. .,Vj be the vertices adjacent to v, and let (vv v) be the
unique edge of Gf directed toward v. Replace (vv v), (v, v2), (v, v3),... ,(v, Vj)
and v by the edges (vx,w2), (w2,v2), (w2,w3), (w3, i>3), (w3,w4), (w4, u4),
(w4, w5),. . . ,(wj_2, Vj_2), (wj_2,Wj_1), (wj_1, vJ_1), (wJ_1, Vj), where w2,
w3,...,Wj_1 are new vertices not in V(Gf).

We use the corresponding procedure if there is a unique edge of Gf directed
away from v. In this way all vertices of degree greater than 3 are elminated.

The following two lemmas are easily proved.

LEMMA 1. G*f contains a subdivision of H if and only if Gf does.

LEMMA 2. G*f contains a maximum odd ring if and only if Gf does.

We conclude this section with a lemma that is proved in [3].

LEMMA 3. Let f and f be distinct l-factors of a bipartite graph G. Then Gf is
obtained from Gfby reversing the orientation of every edge off © / ' .
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[4) Pfaffian bipartite graphs 135

Here / ffi / ' denotes the symmetric difference of / and / ' . Note that it is the

union of vertex-disjoint circuits.

3. The main theorem

We can now state and prove our main theorem.

THEOREM 2. A bipartite graph G is Pfaffian if and only if, for every l-factorf, Gf
does not contain a maximum odd ring.

REMARK. Clearly any ring in Gf is strict.

PROOF. From Theorem 1 and Lemmas 1 and 2, it suffices to prove that a
necessary and sufficient condition for the existence of a 1-factor/such that G*f
contains a maximum odd ring is the existence of a 1-factor / ' such that G*f
contains a subdivision of H.

Suppose first that/ ' is a 1-factor of G such that G*f contains a subdivision of
H. Then G*f contains a maximum odd ring by the argument at the beginning of
the proof of the main theorem of [4].

Now let/be a 1-factor of G such that G*/ c o n t a m s a maximum odd ring. Let 5
be a maximum odd ring {C0,...,Cn_1} in G*f such that | U"IQ £(C/)| is minimal.
Without loss of generality, we assume that G = U"Io £}> f°r anY edge not in a
circuit of S is irrelevant. It follows that for any maximum odd ring S' of G*f, any
edge of G*f belongs to some circuit of 5'. Furthermore, let Co, C1,...,Cn_1, Cobe
the cyclic ordering of the elements of 5 that satisfies condition (b) of the
definition of a ring.

As each circuit of S is a directed circuit, the argument now follows closely the
proof of the main theorem of [4]. The condition that G is planar is replaced by the
condition that G*f contains a subdivision of H. If G*f does not contain a
subdivision of H, then it can be shown as in [4], with only very minor modifica-
tions, that every C^C^-chord contains edges in common with C, + 2

 a nd every
C,C,_ j-chord contains edges in common with C,_2. The reorientations of edges
that occur in the proof can be justified by appealing to Lemma 3 to show that
they merely amount to choosing a new 1-factor for G. In case IA(2), the graph

A: k-2

U ^, U U C,(uJ+2, Wj) U C,-( wl5 wk^)
7-0 y-1

becomes a subdivision of H upon the reorientation of every edge of every circuit
Pj(uj, WJ)C;(WJ, Uj) for all odd/ such that/ > 1.
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136 Charles H. C. Little [5)

As in [4], we now distinguish two cases, but the discussion of them is more
involved.

Case I. Suppose \S\ > 5. Since no edge belongs to more than two circuits of S,
it follows that C, ¥= C,+1 because £(C,+1) n E(Ci+2) * 0 . Hence for any value
of / there must be a C,C,+j-chord. We now introduce two subcases.

Case I A. Suppose that for some value of / there exist a CtCt + 1-chord Px with
origin u and terminus y and a C,C, +^chord P2 with origin w and terminus x, and
that there vertices occur on C, in the cyclic order x, v, w, u, x. We have
E(PX) n E{Ci+2) =* 0 since Pj is a C,C,+1-chord. Let >>, z be two internal vertices
of Px such that Px(y, z) is a C,+1C;+2-chord.

Suppose the choice of >» and z is not unique. Clearly z is determined if >> is given
and vice versa (since C,+1C,+2-chords are by definition of maximal length);
therefore let us suppose that there a.rey', z', where {y', z'} n {y, z) = 0 , such
that /V.y', Z') is a C,+1C,+2-chord. By the definition of a C,+1C,+2-chord, these
vertices must occur on Px in the order y', z', y, z or _y, z, y', z'. Without loss of
generality we choose the former order. Therefore Px{z', y) is a C,+2C,+1-chord
and hence must contain edges in common with C,. It does not do so, however,
because it is a subpath of a C,C,+ 1-chord. This contradiction shows that the
choice of y and z is unique.

Therefore £(C,+2) n E^P^ = E[Px{y, z)]. Since \S\ > 5, E(Ci+2) n £(C,) =
0 . However E(Ci+2) n E(P2) * 0 since P2 is a C;C,+1-chord. Therefore P2

contains vertices a, b such that P2(a, b) is a C, + 1C, + 2-chord. As before, a and 6
are chosen uniquely. In summary, paths Ci+2(z, a) and Ci+2(b, y) have no edges
in common with PY, P2 or C,. Hence the graph

C,(x, u) U Ci+1(w, a) U C ^ ^ J I , y) U C/+1(z, «) U C,+1(£>, x) U C/+2

is a subdivision of //.
Ca^e IB. The only other possibility is the case where, for every value of i and

every CtCi+x-chord Px with origin ux and terminus vx, there does not exist a
C,C, +j-chord with origin in VlC^v^ MJ] and terminus in FfC^Mj, i^)]. Clearly
there is no C,C/ + j-chord with origin in VlC^u^ vt)] either, for if there were, there
would then have to be a C,C, + 1-chord with origin in V[Ct{vly ux)\ and terminus in
V[Ct{ux, Uj)], since C, + 1 is a circuit. This property will be referred to as the
non-interlocking property of C,C,+ 1-chords.

Without loss of generality, let / = 0 so that Px is a QCj-chord. We have
E(PX) n E(C2) ¥= 0 , so that Px contains a CxC2-chord P2 with origin u2 and
terminus y2. As before, there is only one choice for P2. There must be a
C2C3-chord since C2 # C3. In particular, since no two C2C3-chords can interlock,
and since E{CX) n £(C3) = 0 , there must be a C2C3-chord P3 with origin M3 and
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terminus v3 in C2(v2, «3). Again since no two C2C3-chords can interlock, the path
C2(«3, v3) is a C3C2-chord, and therefore contains a unique subpath, namely P2,
which is a QCj-chord. Since P3 is a C2C3-chord, it contains a C3C4-chord P4 with
origin M4 and terminus i>4. Since C5 =t Ct, there must be a C4C5-chord. Since no
two C4C5-paths can interlock, and since E(C3) P\ E(CS) = 0 , there must be a
C4C5-chord P5 with origin w5 and terminus i>5 in C4(v4, us). We proceed in this
manner until a path Pk is found, where A; = \S\ — 1. Since A: is even, P .̂ must be a
Q^Q-chord.

Now we consider Ck. Let u0 be the first vertex of the path Ck(vk, uk) that
belongs to V(C0). Let v0 be the last vertex of Ck(vk, uk) belonging to V(C0).
Since G*f is cubic, we have {w0, v0) n { M1; ux} = 0 . There are now six subcases,
corresponding to the six possible cyclic orderings of the vertices u0, v0, w1( vx on
Q-

(1) Suppose that the vertices occur on Co in the cyclic order vx, u0, ux, v0, vv

Clearly u0 is the origin of a CgQ-chord. Such a chord cannot contain edges in
common with Cv Since the edge of Co with negative end uY and the edge of Co

with positive end vx are both in Q, it follows that there must exist a CgQ-chord
with origin o lying on the path C0(vly ux) and terminus t lying on the path
C0(«i, v\)- The fact that no two C0Q-chords can interlock implies that o e
V[C0(u0, Ul)] and t e V[C0{ux, v0)].

Since EiCJ D E(Ck) = 0, there must be a C0Crchord with terminus y e
V[C0(o, MX)]. Choosey so that the length of the path C0(o, y) is minimal. This
QCj-chord must have edges, and therefore vertices, in common with C2; let x be
the last such vertex. Therefore x is the terminus of a CjC2-chord; call the origin of
this chord x'. Since C2(«2, v2) is, as we have seen, the unique C^-chord which is
a subpath of C2(w3, v3), it follows that x and x' lie on C2(v3, w3). The vertex x' is
the terminus of a CjQ-chord, and this chord must have vertices in common with
Co; lety' be the last such vertex. Thus Cx(y', y) is a CoQ-chord.

Because no two CoQ-chords can interlock, we have;/ e V[C0(v1, y)]. Suppose
y' G V[C0(o, y)]. Then since y' is the terminus of a CoCj-chord, and since
£(Cj) O E(Ck) = 0 , there must exist some vertex on the path C0(o, y') which is
the terminus of a CgC -̂chord. This result contradicts the choice of y. Therefore
y' G V[C0(vv o)]. We distinguish two subcases,

(a) Suppose/ e F[C0(M0, O)]. (See Figure 2.)

Then S' — (CQ, C[,...,C'n_x) becomes an odd ring of directed circuits upon the
reorientation of the edges of Co, where Cj = Cj for all even j such that 2 < j < k,

Cj = Cj(uj, V^CJ^^VJ, Uj) for all odd j such that 2 < j < k, Q =
C0-\Vl, ux)Cx(ult vj, C[ = C0'

l(t, o)Ck(o, t), d = Cx{y', y)C0'\y, y') and C'k
= Ck(v0, UO)CQ1(UO, VQ). Furthermore |S'| = |5 | and so 5" is a maximum odd
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138 Charles H. C. Little (71

ring. However, there are edges of G*f that are not in any circuit of S'. An
example is the edge of C2 with positive end «3. The minimality property of S is
contradicted.

(b) Suppose y' e V[C0(vlt u0)]. (See Figure 3.)Then Co(»1; v0) U C^u^ u2)
U Q(i>2, vx) U C^x, y) U d(y', x') U C2(i>3, «2) U U ^ C ^ ^ , ^ , )
U UJt'2

2)/2 C2j(v2J+l, u2J) U Q(«o, MA) is a subdivision of H.

(2) Suppose the vertices occur on Co in the cyclic order vx, ux, v0, u0, vx. Clearly
Ck(u0, u0) is a C0Q-chord; since no two such chords interlock, it follows that
Co^o* "o ) i s a QQ-chord. Therefore £ ( Q ) n £[C0(u0, «0)) ^ 0 .

Figure 3
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Now we consider the CoQ-chords and the cyclic order in which they occur on
Co and on Cx. One such chord has terminus ux; it is succeeded on Cx, and
therefore on Co also because of the prohibition of interlocking CgC^-chords, by
one whose origin is vx. Hence there is no subpath of C0(ux, vx) which is a
CoC^chord. This fact contradicts the conclusion of the preceding paragraph.

(3) Suppose that the vertices occur on Co in the cyclic order vx, ux, u0, v0, vx.
Then a subdivision of H can be produced after a suitable reorientation of edges.

The remaining possibilities reduce to the ones already considered after reorien-
tation of the edges of Co. The case where |5| > 5 is now complete.

Case II. Suppose \S\ = 3. Let S = {Co, Cx, C2}. First we consider Co and Cx.

Case IIA. Suppose there exist a CgCj-chord with origin ox and terminus tx and
another CoQ-chord with terminus t e V[C0(ox, tx)].

Since Cx is a directed circuit, it is then obvious that there must be a CgQ-chord
with origin o2 e V[C0(tx, ox)] and terminus t2 G V[C0(ox, tx)\, for otherwise
every edge of E(CX) n £(C0) would be on the path Co(?1, Oj) and this result
would contradict the existence of t. There may be many choices for this CQC^-
chord; we choose the one such that the length of Cx{ox, t2) is minimal. Since C\ is
a directed circuit, it is again clear that some subpath of Cl(t2, ox) is a CgCj-chord
with origin o3 e V[C0(ox, tx)] and terminus t3 e V[CQ{tx, ox)]. We choose this
path so that the length of Cx(t2, o3) is minimal. There now arise several cases and
subcases.

(1) Suppose o3 G V[C0(ov t2)].
(a) Suppose t3 t= V[C0(tx,_o2)].
(i) Suppose there exists a CoC -̂chord with origin o4 e V[C0(t2, tx)] and terminus

t, e V[C0(ox, o3)].
Define the circuits
Q = C0(t4, o4)Cx(o4, /4),
C[ = Co(/3, o3)Cx(o3, t3),
C2 = C0(t2, o2)Cx(o2, t2).
Let 5' = {Cg, C'x, C2). Then S' is a maximum odd ring of directed circuits.

However, no edge of the path Cx(ox, tx) belongs to any circuit of S'. This result
contradicts the minimality property of S.

(ii) Suppose there is no C0Cx-chord with origin lying on C0(t2, tx) and terminus
lying on C0(ox, o3). Since Cx is a directed circuit, there must be a CoCj-chord with
origin ux e V[C0(t2, tx)]. Let vx be the terminus of this path. Since ux e
V[C0{t2, tx)], ux # o3 and therefore if we choose ux so that ux G V[Cx{t2, o3)],
then, by the choice of o3, vx cannot he on the path C0(tx, ox). By the assumption
defining case (ii), vx cannot lie on the path C0(ox, o3). If we choose ux to be the
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last vertex of the path Cx(t2, o3) that lies on the path C0(t2, t^, then vx cannot lie
on the path CQ(t2, tj either. Hence vr G V[CQ(o3, t2)\.

Again since Cl is a directed circuit, there must be a subpath of C^u^ o3) which
is a CoQ-chord with origin u2 G V[C0(VV t2)]. Again we can choose u2 to be the
last vertex of CY{t2, o3) lying on C0(vx, t2). If the terminus of this CoQ-chord is
v2, then as before v2 G V[CQ{OX, VX)]. Suppose v2 G V[C0(O3, I ^ ) ] . Then, since Q
is a directed circuit, there must be a subpath of Cx{v2, o3) which is a C0Crchord
with origin u3 G V[C0(v2, v^)]. Let the terminus of this path be v3. We choose w3

again so that it is the last vertex of C^t^ o3) lying on the path C0(v2, i>j). Then
v3 G VlC^o^ v2)]. If v3 G V[C0(o3, v2)], then we repeat the argument. By the
finiteness of the graph, there must exist an integer n s* 2 such that vn e
V[C0(olt o3)].

Define the following circuits:

Cj = Co(oj, UJMUJ, Vj) for a l ly e {1,2,...,n),

Q ' + l = Q(*3> 03)Cl{03,t3),

Cn + 2 = Q)(<2>O2)Cl(°2>'2)-

Let 5" = {C[, C2,... ,Cn ' + 2} . Then |5 ' | = n + 2 > 4. Now 5" is clearly an odd
ring of directed circuits, and so the maximality of 5 is contradicted.

(b) Suppose t3 G V[C0(o2, o^]. (This is the only other possibility since by
assumption t3 G V[C0(tv o^].) In this case, we define vertices «, and o, as in Case
(a)(ii) for all / e { l , 2 , . . . , n } . Again vn e VlC^o^ o3)] but in this case n s= 1.
Now define the following circuits:

Cy' = Q(« / . ,« > )C 1 (« > , i ; y ) foraUye ( 1 , 2 , . . . , « } ,

Q'+i = Q(r3, 03)^(03,/3),

Let 5" = {C[,Q,..., Q ' + 3 } . Then |S'| = n + 3 > 4. Again the maximality of 5 is
contradicted.

(2) Suppose o3 G V[C0(t2, t^]. There are two subcases.
(a) Suppose t3 G V[C0(O2, oj]. Then Co U Cx{Ol, tY) U d ( o 2 , t2) U ^ ( 0 3 , r3)

is a subdivision of.//.
(b) The only other possibility is the case where t3 G F [ C O ( / 1 , O2)].

Define ux = o2, vx = t2, u2 = ov v2 = tx, u3 = o3, v3 = t3. Since we have

disposed of all the other possibilities we are free to assume that all CgQ-chords
considered in Case A satisfy Case (2)(b).

Since Cl is a circuit, there must clearly be a CgCj-chord with origin w4 G
V[C0(u3, v3)] and terminus v4 G F[C0(t;3, M3)]. We choose u4 so that the length
of the path Cx(u2, u4) is minimal. Furthermore u4 G V[C0(V2, V3)], because if
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[iol Pfaffian bipartite graphs 141

M4 G V[C0(u3, v2)}, then the QQ-chords C1(u3, v3), C^u^ V2) and Cx(u4, v4)
together would satisfy Case (1).

Suppose v4 G V[C0(v3, Mj)]. Then since C1 is a circuit, there must be a
QQ-chord with origin w5 6 F[C0(w4, V4)] and terminus lying on the path
C0(v4, u4). Again, choose u5 in such a way that the length of the path C1(u3, «5)
is minimal. We have us G V[C0(V3, V4)] because if u5 G V[C0(U4, V3)] then the
CgCj-chords Cl(u4, v4), Cx(u3, v3) and C^u^ vs) together would satisfy Case (1).

If v5 G V[C0(v4, Mj)], we repeat the argument. By the finiteness of the graph,
there is an integer n such that vn £ V[C0(vn_l, t/j)]. Therefore there must exist an
integer m such that vn G V[C0(um, um+l)]. Since by definition vn £
V[C0(un_1, «„)], we must have m < n — 2.

(i) Suppose m = n - 2. Then Co U C^u^j, vn_2) U C^u^y, vn_y) U
C1(«n, vn) is a subdivision of H.

(ii) Suppose m < n - 2. Then the set

becomes an odd ring of directed circuits upon reorientation of every edge of Co.
Since m < « — 3, we have |S"| = « — w + l > 4 , so that the maximality of |S | is
contradicted.

Case IIB. We now assume that for every CoCj-chord with origin o1 and
terminus tx there does not exist a CgQ-chord whose terminus lies on the path
Q(°i> 'i)- I1 obviously follows that there is no CoQ-chord with origin in
V[C0(oy, /j)]. Thus no two C0Cx-chords interlock. We can clearly assume also
that no two CXCO-, C2CX-, CXC2-, C0C2- or C2C0-chords interlock either, for
otherwise we simply apply Case A to the appropriate pair of circuits.

We recall that every C0Cj-chord contains edges in common with C2. Of course,
corresponding statements hold for CXCO-, C0C2-, C2C0-, C2CX- and CiCj-chords.

Suppose there are distinct CoCj-chords Px and P2. Let Px have origin ux and
terminus vv Since Pv P2 are both CoCj-chords, each of them contains edges in
common with C2. Hence some subpath of Px is a CXC2 -chord; let this chord have
origin j>j and terminus zv Similarly, since C0(ux, vx) is a QCo-chord, it contains
edges in common with C2. Hence some subpath of C0(ux, vx) is a C0C2-chord; let
this subpath have origin wx and terminus xv

Define the following circuits:

Q = C0(Vl, u^C^u,, Vl), C[ = C ^ , M l )C 0 ( M l , vx).

Let S' = { CQ, C[, C2}. S' is clearly a maximum odd ring of directed circuits.
We now consider the set of CQC2- and C{C2-chords, and the cyclic order in

which they occur on the directed circuit C2. C0(w1, xx) is an example of a
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C{C2-chord. Since P2 is a CgCJ-chord, some subpath of P2 must be another
C1'C2-chord distinct from C^w^ XX). Therefore the C{C2-chord C0(w1; x^) cannot
be both preceded and followed on C2 by the CoC2-chord C1(yl, zx) without any
intervening CQC2- or C{C2-chords. For the sake of concreteness, suppose that
C0(M>J, XX) is followed on C2 by P3 without any intervening CQC2- or C{C2-chords,
where P3 # C^{yx, zx) and P3 is either a CQC2- or a C{C2-chord. Suppose the
former. Then P3 cannot be a subpath of C^Uj, vx) because Cx{yv zx) is the
unique QQ-chord which is a subpath of C^u^ vx). Thus if P3 is a CoC2-chord, it
is clearly a C0C2-chord. If />3 has origin o, then if follows from the definition of P3

that C2{xx, o) is a C0C2-chord that contains no edges in common with Cv This is
a contradiction; hence P3 must be a CJQ-chord. But now the path C2(xx, 0) is a
CjQ-chord containing no edges in common with Q , contradicting the fact that 5"
is a maximum odd ring. Thus we have a contradiction in either case. The
argument is similar if C0(wv xx) is not preceded on C2 by Cx{yx, zx) without any
intervening CQC2- or C{C2-chords.

We conclude that there is exactly one CgCj-chord, P, say. Let P have origin u
and terminus v. Then C2 must contain a CjQ-chord which is a subpath of P. Let
this chord have origin y and terminus z. Similarly C2 must contain a C0C2-chord
which is a subpath of C0(M, V); let this chord have origin w and terminus x. Then
C2(x, y) and C2(2, w) have no internal vertices in common with Cx or C2.
Therefore the graph Co U Q U C2 is a subdivision of H. The theorem is proved.
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