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1. Introduction. A semigroup S with 0 and 1 is termed completely right injective provided
every right unitary S-system is injective. A necessary condition for a semigroup to be com-'
pletely right injective is given in [2]; namely, every right ideal is generated by an idempotent.
An example in section 3 of this paper shows the existence of semigroups with 0 and 1 satisfying
this condition which are not completely right injective. In [3], it is shown that the condition
that every right and left ideal is generated by an idempotent is necessary and sufficient in the
case that S is both completely right and left injective (called completely injective). Such a
semigroup is an inverse semigroup with 0 whose idempotents are dually well-ordered.

The purpose of this paper is to give a characterization for semigroups which are completely
right injective and a union of groups and to determine a decomposition for such semigroups.
We first develop several properties concerning the two-sided ideals of a semigroup which
satisfies the condition that every right ideal is generated by an idempotent. We give equivalent
conditions for semigroups of this type to be a union of groups. Using these properties, we
are able to prove the characterization. The main theorem states that a semigroup S is com-
pletely right injective and is a union of groups if and only if every right ideal I of S is generated
by an idempotent which commutes with all the elements of S not in I. It is shown that a semi-
group of this type is a chain of right groups. In addition, all completely right injective
semigroups which have a finite number of right ideals are unions of groups.

We follow the definitions and notations introduced in [2] and [3] and use freely the results
proved there; otherwise the notation and terminology is that of Clifford and Preston [1].
Throughout this paper all semigroups will have 0 and 1 and all S-systems will be right unitary
S-systems.

2. Completely right injective semigroups. In this section, with the exceptions of Theorems
2.10, 2.11, and 2.12, S will always denote a semigroup with 0 and 1 such that every right ideal is
generated by an idempotent. In the aforementioned theorems, S will denote a completely right
injective semigroup. As in [3], the lattice of right ideals of S under set inclusion is dually well-
ordered. In addition, 5 is a regular semigroup [1, p. 27]. An inverse of an element s in S will
usually be denoted by s', i.e., s = ss's and s' = s'ss', although s' need not be unique. Con-
sequently, if seS and sS = eS for some eeE(S), where E(S) denotes the subsemigroup of all
idempotents in 5, there exists an inverse s' of s such that ss' = e. Moreover, sS = ss'S and
Ss = Ss's.

Since the right ideals of S are linearly ordered we have

2.1. PROPOSITION. IfSe = Sf, for e, fe E(S), then e=f.

2.2. PROPOSITION. IfeeE(S), seS, then Ses = Ss'es.
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Proof. We need only show that Ss'es contains es. If sS 2 eS, then s(s'es) = (ss')es = es.
If sS s eS, then es = 5 and es(s'es) = er.

For each eeE(S), we have s'eseE(S). Consequently, 2.1 and 2.2 imply

2.3. PROPOSITION. 7/V and S" are inverses of an element s in S, (hen s'es = s"es.
As defined in [1, pp. 47-48], Jf, 31 and if, / will denote Green's equivalence relations

on the semigroup 5. La[Ra, Ha] denotes the Sf-[@-, Jf-] class of S containing the element a.

2.4. PROPOSITION. Each S£'-class of S contains exactly one idempotent.

Proof. Since 5 is regular, every if-class contains an idempotent. By 2.1, it is unique.
The following proposition is true for any regular semigroup.

2.5. PROPOSITION. IfxsS = sxS, where x is an inverse of s, then there exists an inverse s'
of s such that s's = ss'.

Proof. Now xsS = sxS implies that (sx)(xs) = xs and xss = J. Set s' = x2s. Then

ss's = (sxXxss) = sxs = s,
s'ss' = x(xss)(x2s) = (xy*)(xs) = x2s = s',

ss' = (sx)(xs) = xs = x(xss) — (x2s)s = s's.

2.6. PROPOSITION. a^Cb implies a'M' for all a, beS.

Proof. Now aSCb implies Sa'a = Sb'b. By 2.1 we have a'a = b'b. Thus a' = a'aa' =6 ' t a
and a'S E Z>'5. Similarly, b'S £ a'S.

The following results give some special properties concerning (two-sided) ideals of S.

2.7. PROPOSITION. Let I be an ideal of S and a,b,ce S.

(i) If a el, then every inverse a' of a is in I.
(ii) If a $ I and eel, then Sac = Sc.

(iii) / is a prime ideal of S. [2, p. 40].
(iv) The relation p, defined by apb if and only if either a, bel and a!£ b or a,bfl, is a right

congruence on S.

Proof. The first part follows from the fact that a' = a'ad and / is an ideal of 5. Now
ail implies a'a^I. If c e /, then we have cS £ a'aS so that a'ac — c. This proves (ii). More-
over, either a'aS £ cc'S or cc'S £ a'aS. The former implies a = a{cc'){a'a) and the latter
c = (a'a)(cc')c. Consequently, acel implies either ael or eel. This completes the proof of
(iii).

The relation p defined in (iv) is clearly an equivalence relation on S. Suppose apb and
ceS. Since i f is a right congruence on S we may assume a,b$I. If eel, then, by (ii), Sac =
Sc = Sbc. If c$I, then (iii) implies that ac and be are not elements of /. In either case we
have aepbe.
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Let D(S) denote the subset of £(5) consisting of all elements which generate the (two-
sided) ideals of S. Since the collection 3(5) of all ideals of S is a dually well-ordered set with
respect to set inclusion, then we can write the chain of all ideals in the following manner.

(2.8) S = d0S=>dlS=>d2S=>...=>daS =>...,

where the subscripts belong to the set My of all ordinals less than the ordinal y of the dual of
) , and dxeD(S).

2.9. PROPOSITION. For each ordinal a. in My, let us define Tx = dxS\da+1S. Then Ta is a
subsemigroup of S for which aeTa implies that a'eTx, where a' is any inverse of a. Moreover
{Ta | ae My} is the set of all /-classes of S.

Proof Applying 2.7 (iii), one can easily show that Tx is a subsemigroup of S. Let
a e Ta. Since a' = a'aa', a e dxS, and daS is an ideal of S, it follows that a' e daS. On the other
hand, since a = aa'a, a$da+lS and da+lS is an ideal of S, we must have that a' $dx+iS.
Hence aeTx implies that a'eTx.

Let a G My. We show that Tx is precisely the ./-class of 5 containing the idempotent dx.
Let ae Tx. Then SaS £ SdxS = dxS. Since the ideals of S are linearly ordered and a$dx+ iS,
it follows that dx+ tS = Sdx+lS <= SaS. Therefore dx+lS <= SaS c dxS, and because dx+1S
is the maximal ideal of S contained in daS, this implies that SaS = dxS. Thus a/da. On the
other hand, if b is an element of S for which b/d^, then SbS = dxS which, in turn, implies
that&eJ..

Since each element of S belongs to some Ta, then the above implies that each ,/-class of
S coincides with some Tx. Thus the set, {Ta \ a eMy), is the set of all /-classes of S.

2.10. THEOREM. Let S be a completely right injective semigroup and let I be an ideal of S.
There exists an idempotent deS such that I = dS, and ds = sdfor

Proof. If / = S, the statement is trivially true. Thus we assume that / is a proper ideal
of 5. Let p be the right congruence on S defined in 2.7 (iv). We consider the right 5-system
Sjp consisting of all the p-classes of S, where the system product is given by (xp)s = (xs)p,
xpeSIp and seS. LetN={xp\xeI}. Since/is an ideal, Nis an S-subsystem of S/p. Also
we note that xp s / if xel.

Since S is completely right injective, the identity mapping \N:N-+N can be extended to
an S-homomorphism n: Sip -* N. By 2.4, if an equivalence class xp is in N, then it contains
one and only one idempotent; namely, the idempotent x'x. Consequently, we can write
n{\p) = dp, where dis an idempotent in /. If / = eS, where eeE(S), then dS £ eS. However,

ep = lN(ep) = n{ep) = n(lp)e = (dp)e = (de)p.

Thus e = de, and it follows that dS = eS = /.
Let s$I. lher\n(lp) = n(sp) = n(lp)s = (ds)p. By 2.2, we have [ds)p = (s'ds)p. There-

fore dp = (s'ds)p which, in turn, implies d = s'ds. Since s$I, then ss'$I, and we have sd =
s(s'ds) = ds.
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2.11. PROPOSITION. Let S be a completely right injective semigroup and let I be an ideal
ofS. Then K is a left [right, two-sided] ideal of I if and only ifK is a left [right, two-sided] ideal
of S contained in I.

Proof. Assume K is a left ideal of /. Let J e S, s $ K and k e K. \UeI, then sk e K, for K
is a left ideal of /. If si I, then sk = s(dk) = (sd)k — (ds)keK, where d is the idempotent,
defined in 2.10, which generates /.

Suppose K is a right ideal of /. Let seS, s$K and keK. Now keK implies k'kel
which, in turn, gives dk'k = k'k. Hence ks = k(dk'ks)eKI. Since KI £ K, we have kseK.

2.12. PROPOSITION. If S is completely right injective, then the semigroups Tx(a. < y) of
2.9 are simple.

Proof. Let K# 0 be a (two-sided) ideal of Tx. Then K\jda+iS is an ideal of dxS. By
2.11, K\jda+ jS is an ideal of 5 and da+ tS c= K\jdx+tS £ daS. It follows that Kuda+ ,5 = daS
which, in turn, implies K = Tx.

3. Completely right injective semigroups that are unions of groups. We begin with a
theorem which does not require the injective property.

3.1. THEOREM. Let S be a semigroup with 0 and 1 such that every right ideal is generated
by an idempotent. Then the following are equivalent.

(i) S is the union of groups.
(ii) Every <£-class of S is a group.

(iii) Every right ideal of S is two-sided.

Proof, (i) implies (ii). Since S is a union of groups, each j^-class of S is a group [1,
Theorem 4.3]. We will have (ii) provided we show that Jf = £C. Suppose a&b. Then
a, beLe, where, according to 2.4, e is the unique idempotent belonging to Le. Since Ha s Le,
Hb £ Le, and since both Ha and Hb contain idempotents, we have e e HanHb. Hence Ha = Hb

so that aJV b. This proves (ii). Since 5 is a union of its if-classes, (ii) implies (i).
(ii) implies (iii). Let eS, where eeE(S), be aright ideal of S. Let aeeS and seS. We

want to show saeeS. Since eS is a subsemigroup, we may assume that s£eS. This implies
that aS c eS c sS. Since S is a union of its if-classes, seLf for some feE(S). Because Lf

is a group with identity/, there exists teLf such that ts = / . From aS c sS =fS we conclude
that a =fa. Therefore a=fa = (ts)a — t(sa)eSsa. This implies that Sa = Ssa and hence
saeLa. Since La is a group, there exists ueLa such that sa = a«. Thus^aeeS.

(iii) implies (ii). Let Le be an if-class of S, where e is the unique idempotent of S contained
in Le. We show Le = He which, together with Theorem 2.16 of [1], implies that Lc is a group.
By 2.6, a&e implies that a'0te, where d is any inverse of a. However, a'S is a two-sided ideal
of S, so that a = aa'aea'S = eS. Hence aS £ eS. On the other hand, from a'aeLe and 2.4
we can conclude that a'a = e. Since aS is a two-sided ideal of 5, e = a'aeaS so that eS £ aS.
Therefore aS = eS and aeRe. Hence Le £ Re from which we conclude that Le = //e.
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3.2. MAIN THEOREM. Let S be a semigroup with 0 and 1. Then S is completely right
injective and a union of groups if and only if every right ideal I is generated by an idempotent d
such that ds = sdfor all s$I.

Proof. The necessity follows from 3.1 and 2.10.
Assume that the right ideals of S satisfy the condition in the statement of the theorem.

We first prove that every right ideal of S is two-sided. It then follows, by 3.1, that S is a union
of groups. Let / be a right ideal of S. It suffices to show that sael for all a e / and seS\I.
Since s$I, our assumption implies that sa = s(da) = (sd)a — (ds)ael.

To show that S is completely right injective we use the technique employed in the proof
of 2.6 of [2]. Let M, P, and R be S-systems, where P £ R, and let / : P -»M be an
S-homomorphism of P into M. As in [2, 2.6], we can use Zorn's Lemma to obtain a
maximal pair (Po, f0) consisting of a subsystem Po of R, where Po 2 P, and an S-homomorphism
/„: Po ->M, where f0 extends/. To show that M is injective it suffices to show Po = R.

Suppose that Po c R and let r e R be such that r$P0. Set A = {aeS\ raeP0}. In the
two cases, A non-empty or A empty, we will be able to define an S-homomorphism h of rS
into M which agrees with/0 on PQnrS.

If A is empty, define h: rS-> M by h(x) = mO for all xerS, where m is an arbitrary but
fixed element of M. Then PonrS is empty and h(x)s = (mO)s = mO — h(xs) for all xerS and
seS. Thus /i is an S-homomorphism of rS into M.

Suppose that A is non-empty. Then A is a right ideal of S and hence by hypothesis,
A = rfS, where d is an idempotent of S such that jrf = ds for all J $ A. Define h by h(rs) = fo(rds)
for all s e S. From the definition of the set A we conclude that h(rs) e M for all seS. First of
all, we have that rs{ = rs2, where $,, •S2

6'S'> implies that rdst = rds2. Indeed, the definition of
the set A yields that both sY and s2 either are or are not members of A. In either situation we
conclude that «fa, = rds2; the latter uses the fact that sx and s2 commute with d. This
together with the single-valued property of/0 implies that

/i(rs,) =/0(rds,) =fo(.rds2) = /i(rs2).

Hence h: rS -»M is a map of rS into M. Since / 0 is an S-homomorphism, then h is an
S'-homomorphism. Also if xePonrS, then x = raeP0, where as A. Since da = a, then

/,(*) = /I(ra) =fo(rda) =/o(ra) =/0(x).

Thus /J is an S-homomorphism of rS into M which agrees with/0 on PonrS.
Set P* = PourS and let /*:P* -> M be the map defined by/*(x) =fo(x), ifxeP0, and

f*(x) = h(x), if x 6 rS, where /I(JC) is the map defined above, according to the appropriate case
where A is empty or non-empty. It follows that/* is an S-homomorphism of P into M which
extends/0. Hence (P*,f*) > (Po,fo), which contradicts the maximality of the pair (Po,fo)-
Thus Po = R and M is injective.

Let S be a completely right injective semigroup which is a union of groups. By applying
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(2.8), the chain of all right (and hence two-sided) ideals of S can be exhibited in the following
manner.

(3.3) S = d0S=>d1S=>d2S=>...=>dllS=>...,

where a e My and, by 3.1 (iii), da is an idempotent of S which commutes with all elements of
S not in dxS.

3.4. THEOREM. Let S be a completely right injective semigroup which is a union of groups.
Then Ta = dxS\da+ jS(a < y), is a right group. In addition, S is a chain My of right groups

Proof. Let ae Tx. Since dx+ tS is the maximal right ideal of S contained in daS, we must
have dxS = aS. Hence there exists an inverse a' of a such that aa' = dx. Since dxS and da+lS
are two-sided ideals and since a = aa'a and a' = a'aa', it follows that a'eTa. If be Ta, then
b = djb = aa'b. By 2.9, Ta is a subsemigroup of S. Thus a'b e 7*a so that beaTa. This proves
that Ta = aJ a for all a e 71,. Therefore 7"a is right simple and contains an idempotent. Apply-
ing Theorem 1.27 (ii) of [1, p. 38], we have that Ta is a right group.

Clearly S is the disjoint union of right groups Tx{a.eMy). Following the terminology of
[1, p. 25], we will have that S is a chain My of right groups Tx(<xeMy) if we can show that
TaTp £ T0 and T0Ta £ Tfi for all a, fieMy, where a < p. Let a, PeMy, where a < fl, ae Ta

and 6e Tp. We have that rfp+15 <= ^ 5 £ <4+ tS c ^,5". Since ^ S is two-sided and bedfiS,
it follows that ab and 6a are elements in dpS. By 2.9, we have that a, a', a'a and aa' all belong
to Ta. Consequently, aS = a'S = aa'S = a'aS = daS. Likewise, bS = b'S = bb'S = b'bS =
dpS. Because bS c a'aS, it follows that b = dab. In addition, since b'bS c aa'S, we have
that b'b = aa'b'b which, in turn, implies that b = baa'b'b. The expression b = a'oft = baa'b'b
together with the fact that dp+lS is two-sided implies that neither ab nor ba belongs to dp+lS;
for otherwise, in both cases, we will have that bedp+lS, which is not true. Thus ab and ba
belong to Te.

Using known properties of right groups, we can apply 3.4 to give additional properties
of a semigroup S which is completely right injective and a union of groups. Because of
Theorem 1.27 (iii) of [1, p. 38], each of the right groups Tja < y) is the direct product of a
group Ga and a right zero semigroup Ex. In addition, Problem 3 of [1, p. 39] implies that Ta

is the union of isomorphic disjoint groups; namely Tx = \}Lg, where the union ranges over all
idempotents g in Tx. This reminds one of the decomposition of semi-simple rings.

3.5. THEOREM. If S is completely right injective and has a finite number of right ideals,
then S is,a union of groups.

Proof. Let aeS and let a' be an inverse of a. The mapping h:a'aS-*aS( = aa'S)
defined by h(a'as) = as, for all seS, is an 5-isomorphism of the 5-subsystem a'aS onto the S-
subsystem aa'S. This S-isomorphism requires that the number of right ideals in the chain of
all right ideals of S contained in a'a5 equals the number in the chain of all right ideals of S
contained in aa'S. Hence we cannot have either aa'S <=. a'aS or aa'S o a'aS. That is,
aa'S = a'aS and from 2.5 we conclude that aa" = a"a for some inverse a" of a. Since aSlaa"
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and a"aSCa, this implies that atfaa". Hence Ha contains an idempotent and, by Theorem
2.16 of [1, p. 59], Ha is a group. Since S1 is the union of its .^-classes we have our result.

In view of 3.5 and the obvious fact that an idempotent semigroup is a union of groups we
can apply the main theorem to prove the following result.

3.6. THEOREM. A semigroup with 0 and 1 which is either idempotent or contains a finite
number of right ideals is completely right injective if and only if each right ideal I of S contains
an idempotent generator which commutes with all elements not in I.

An example of an idempotent semigroup which is completely right injective can be con-
structed as follows.

Let E and F be two disjoint right zero semigroups. Define ef=fe = e for all eeE and
feF. This product together with the product already defined in E and F make EuF into a
semigroup. If we adjoin 0 and 1 to EKJF, then the resultant semigroup is completely right
injective. Also T = ZTuFuOu 1 can be made into a completely right injective semigroup by
defining fe = e and ef= e* for all esE, feF, where e* is a fixed element of E. For both
semigroups we can show that every right ideal has the property stated in 3.6. All the right
ideals in the latter semigroup Tare listed according to the chain T^fT^e*T^0, where
feF,e*T = £uO and/T = £uFuO. The idempotent generator of e*T which commutes with
all elements not in this ideal is the idempotent e*.

We now give an example of an idempotent semigroup S in which every right ideal is
generated by an idempotent, but such that S is not completely right injective. Let
S = {0, 1, ex, e2,fi,f2} where 0 and 1 are the zero and identity elements of S, respectively.
Define

ei ej = ej - fifj= fj' ft eJ = eJ ('../ = 1 > 2),

<?i A = e , , «t f2 = e2, e2 / x = e t , e2 f2 = e2.

Every right ideal of S is generated by an idempotent; in fact, all the right ideals of S can be
exhibited in the chain S =>/fS => etS => 0. The right ideal etS contains no idempotent which
commutes with every fj. By 3.6, it follows that S is not completely right injective.
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