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1. Introduction. A semigroup S with O and 1 is termed completely right injective provided
every right unitary S-system is injective. A necessary condition for a semigroup to be com-'
pletely right injective is given in [2]; namely, every right ideal is generated by an idempotent.
An example in section 3 of this paper shows the existence of semigroups with 0 and 1 satisfying
this condition which are not completely right injective. In [3], it is shown that the condition
that every right and left ideal is generated by an idempotent is necessary and sufficient in the
case that S is both completely right and left injective (called completely injective). Such a
semigroup is an inverse semigroup with 0 whose idempotents are dually well-ordered.

The purpose of this paper is to give a characterization for semigroups which are completely
right injective and a union of groups and to determine a decomposition for such semigroups.
We first develop several properties concerning the two-sided ideals of a semigroup which
satisfies the condition that every right ideal is generated by an idempotent. We give equivalent
conditions for semigroups of this type to be a union of groups. Using these properties, we
are able to prove the characterization. The main theorem states that a semigroup S is com-
pletely right injective and is a union of groups if and only if every right ideal I of S is generated
by an idempotent which commutes with all the elements of S not in I. It is shown that a semi-
group of this type is a chain of right groups. In addition, all completely right injective
semigroups which have a finite number of right ideals are unions of groups.

We follow the definitions and notations introduced in [2] and [3] and use freely the results
proved there; otherwise the notation and terminology is that of Clifford and Preston [1].

Throughout this paper all semigroups will have 0 and 1 and all S-systems will be right unitary
S-systems.

2. Completely right injective semigroups. In this section, with the exceptions of Theorems
2.10, 2.11, and 2.12, S will always denote a semigroup with O and 1 such that every right ideal is

generated by an idempotent. In the aforementioned theorems, S will denote a completely right
injective semigroup. As in (3], the lattice of right ideals of S under set inclusion is dually well-
ordered. In addition, S is a regular semigroup [1, p. 27]. An inverse of an element s in S will
usually be denoted by s’, i.e., s = ss’s and s’ = s'ss’, although s’ need not be unique. Con-
sequently, if se S and sS = eS for some ee E(S), where E(S) denotes the subsemigroup of all
idempotents in S, there exists an inverse s' of s such that ss’ = e. Moreover, sS = ss'S and
Ss = Ss's.
Since the right ideals of S are linearly ordered we have

2.1. PrOPOSITION. If Se = Sf, for e, fe E(S), then e = f.
2.2. PROPOSITION. If e€ E(S), s€ S, then Ses = Ss'es.
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Proof. We need only show that Ss’es contains es. If 5§ 2 eS, then s(s’es) = (s5")es = es.
If 58 < eS, then es = s and es(s'es) = es.
For each ee E(S), we have s’ese E(S). Consequently, 2.1 and 2.2 imply

2.3. ProposiTION. If's’ and s” are inverses of an element s in S, then s'es = s''es.
As defined in [1, pp. 47-48], %, # and &%, # will denote Green’s equivalence relations
on the semigroup S. L [R,, H ] denotes the Z-[#-, 5#-] class of S containing the element a.

2.4. PROPOSITION. Each ¥-class of S contains exactly one idempotent.

Proof. Since S is regular, every #-class contains an idempotent. By 2.1, it is unique.
The following proposition is true for any regular semigroup.

2.5. PROPOSITION. If x5S = sxS, where x is an inverse of s, then there exists an inverse s’
of s such that s's = ss’.

Proof. Now xsS = sxS implies that (sx)(xs) = xs and xss = 5. Sets’ = x?s. Then

85's = (sx)(xs5) = sxX5 = 5,
s'ss" = x(xss)(x2s) = (xsx)(xs) = x5 = 5,
ss' = (sx)(xs) = x5 = x(x55) = (x*s)s = §'s.

2.6. PROPOSITION. a2b implies a' &b’ for all a, be S.

Proof. Now a¥%bimplies Sa’'a = Sb'b. By 2.1 we have a’'a = b'b. Thus a’ = @'aa’ =b'ba
and a'S < b'S. Similarly, 'S < a'S.
The following results give some special properties concerning (two-sided) ideals of S.

2.7. PROPOSITION. Let I be an ideal of S and a, b, ceS.

(i) If ael, then every inverse a' of a is in I.
(ii) If a¢ I and cel, then Sac = Sc.
(iii) I is a prime ideal of S. [2, p. 40).
(iv) The relation p, defined by apb if and only if either a, be I and a b or a, b¢ 1, isaright
congruence on S.

Proof. The first part follows from the fact that @’ = a’aa’ and I is an ideal of S. Now
a¢limplies d'a¢l If cel, then we have ¢S < d'aS so that d'ac = ¢. This proves (ii). More-
over, either a’aS < cc'S or ¢c'S < a'aS. The former implies a = a(cc’)(a’a) and the latter
¢ = (a'a)(cc’)c. Consequently, acel implies either ael or cel. This completes the proof of
(iii).

The relation p defined in (iv) is clearly an equivalence relation on S. Suppose apb and
ceS. Since % is a right congruence on S we may assume a, b¢ I. If cel, then, by (ii), Sac =
Sc = Sbe. If c¢ 1, then (iii) implies that ac and bc are not elements of I. In either case we
have acpbc.
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Let D(S) denote the subset of E(S) consisting of all elements which generate the (two-
sided) ideals of S. Since the collection J(S) of all ideals of S is a dually well-ordered set with
respect to set inclusion, then we can write the chain of all ideals in the following manner.

2.8) S=dyS>d, §S>d,S>...0d,S>...,

where the subscripts belong to the set M, of all ordinals less than the ordinal y of the dual of
3(S), and d, e D(S). )

2.9. PROPOSITION. For each ordinal o in M, let us define T, = d,S\d,,S. ThenT,is a
subsemigroup of S for which ae T, implies that a’ € T,, where a’' is any inverse of a. Moreover
{T,|oe M,} is the set of all #-classes of S.

Proof. Applying 2.7 (iii), one can easily show that T, is a subsemigroup of S. Let
aeT, Sincea =d'ad’,aed,S, and d,S is an ideal of S, it follows that a’€d,S. On the other
hand, since a = ad’a, a¢d,, S and d,, S is an ideal of S, we must have that @' ¢d,, (S.
Hence ae T, implies that a’e T,.

Let ae M,. We show that T, is precisely the #-class of S containing the idempotent d,.
Let aeT,. Then SaS < Sd,S =4d,S. Since the ideals of S are linearly ordered and a¢d,, S,
it follows that d,, S = Sd,, S = SaS. Therefore d,. S < SaS < d,S, and because d,,,S
is the maximal ideal of S contained in d,S, this implies that SaS = d,S. Thus a#d,. On the
other hand, if b is an element of S for which b#d,, then SbS = d,S which, in turn, implies
that beT,.

Since each element of S belongs to some T, then the above implies that each #-class of
S coincides with some T,. Thus the set, {T,|axe M,}, is the set of all #-classes of S.

2.10. THEOREM. Let S be a completely right injective semigroup and let I be an ideal of S
There exists an idempotent de S such that I = dS, and ds = sd for all s¢ 1.

Proof. If I =S, the statement is trivially true. Thus we assume that 7 is a proper ideal
of §. Let p be the right congruence on S defined in 2.7 (iv). We consider the right S-system
S/p consisting of all the p-classes of S, where the system product is given by (xp)s = (xs)p,
xpeS/pand seS. Let N= {xp|xel}. Sincelisanideal, Nisan S-subsystem of S/p. Also
we note that xp = I if xel.

Since S is completely right injective, the identity mapping 1,: N — N can be extended to
an S-homomorphism n: S/p = N. By 2.4, if an equivalence class xp isin N, then it contains
one and only one idempotent; namely, the idempotent x'x. Consequently, we can write
n(1p) = dp, where d is an idempotent in 1. If I = &S, where e€ E(S), then dS < eS. However,

ep = ly(ep) = n(ep) = n(1p)e = (dp)e = (de)p.

Thus e = de, and it follows that dS =eS = I.

Let s¢ I. Then n(1p) = n(sp) = n(1p)s = (ds)p. By 2.2, we have (ds)p = (s'ds)p. There-
fore dp = (s'ds)p which, in turn, implies d = s'ds. Since s¢, then ss'¢ 1, and we have sd =
s(s'ds) = ds.
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2.11. PROPOSITION. Let S be a completely right injective semigroup and let I be an ideal
of S. Then K is a left [right, two-sided) ideal of 1 if and only if K is a left [right, two-sided] ideal
of S contained in 1.

Proof. Assume Kis aleftideal of I. LetseS,s¢ Kand keK. If sel, then ske K, for K
is a left ideal of I. If s¢I, then sk = s(dk) = (sd)k = (ds)k e K, where d is the idempotent,
defined in 2.10, which generates 1.

Suppose K is a right ideal of I. Let seS, s¢ K and ke K. Now keK implies k’kel
which, in turn, gives dk’k = k'k. Hence ks = k(dk'ks)e KI. Since KI < K, we have kse K.

2.12. ProprosITION. If S is completely right injective, then the semigroups T,(x <7y) of
2.9 are simple.

Proof. Let K # @ be a (two-sided) ideal of T,. Then Kud,, S is an ideal of 4,S. By
2.11, Kud, S is an ideal of S and d,, ,S < Kud, .S = d,S. It follows that Kud,,,S =4d,S
which, in turn, implies K = T,,.

3. Completely right injective semigroups that are unions of groups. We begin with a
theorem which does not require the injective property.

3.1. THEOREM. Let S be a semigroup with O and | such that every right ideal is generated
by an idempotent. Then the following are equivalent.

(i) S is the union of groups.
(i) Every P-class of S is a group.
(iii) Every right ideal of S is two-sided.

Proof. (i) implies (ii). Since S is a union of groups, each #-class of S is a group (1,
Theorem 4.3]. We will have (ii) provided we show that ¥ = %. Suppose a¥b. Then
a, be L,, where, according to 2.4, e is the unique idempotent belonging to L,. Since H, = L,,
H, c L, and since both H, and H, contain idempotents, we have ee H,nH,. Hence H, = H,
so that as¥’b. This proves (ii). Since S is a union of its #-classes, (ii) implies (i).

(ii) implies (iii). Let eS, where ee E(S), be aright ideal of S. Let a€eS and seS. We
want to show saeeS. Since eS is a subsemigroup, we may assume that s¢eS. This implies
that aS c eS — sS. Since S is a union of its Z-classes, s€ L, for some fe E(S). Because L,
is a group with identity f, there exists e L, such that ts = . From aS§ < sS = fS we conclude
that @ = fa. Therefore a = fa = (ts)a = t(sa)e Ssa. This implies that Sa = Ssa and hence
saeL, Since L,is a group, there exists we L, such that sa = au. Thus saeeS.

(i1i) implies (ii). Let L, be an &-class of S, where e is the unique idempotent of S contained
in L,. Weshow L, = H, which, together with Theorem 2.16 of [1], implies that L, is a group.
By 2.6, a¥e implies that a’Ze, where @’ is any inverse of a. However, a@'S'is a two-sided ideal
of S, so that a = aa’aca’S = eS. HenceaS < eS. On the other hand, from a'aeL, and 2.4
we can conclude that a’a = e. Since aS is a two-sided ideal of S, e = @’aeasS so that eS < aS.
Therefore aS = eS and ae R,. Hence L, = R, from which we conclude that L, = H,.
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3.2. MAIN THEOREM. Let S be a semigroup with O and 1. Then S is completely right
injective and a union of groups if and only if every right ideal I is generated by an idempotent d
such that ds = sd for all s¢ 1.

Proof. The necessity follows from 3.1 and 2.10.

Assume that the right ideals of § satisfy the condition in the statement of the theorem.
We first prove that every right ideal of Sis two-sided. It then follows, by 3.1, that Sis a union
of groups. Let I be a right ideal of S. It suffices to show that sae for all ae I and se S\I.
Since s¢ I, our assumption implies that sa = s(da) = (sd)a = (ds)ae I

To show that S is completely right injective we use the technique employed in the proof
of 2.6 of [2). Let M, P, and R be S-systems, where P<S R, and let f:P—> M be an
S-homomorphism of P into M. As in {2, 2.6], we can use Zorn’s Lemma to obtain a
maximal pair (P, f,) consisting of a subsystem P, of R, where P, 2 P,and an S-homomorphism
Jo: Py = M, where f, extends f. To show that M is injective it suffices to show P, = R.

Suppose that P, < R and let re R be such that r¢ P,. Set A = {aeS|raePy}. In the
two cases, A non-empty or A empty, we will be able to define an S-homomorphism 4 of rS
into M which agrees with f, on PynrS.

If A is empty, define h:rS — M by h(x) = m0 for all xerS, where m is an arbitrary but
fixed element of M. Then PynrS is empty and A(x)s = (m0)s = m0 = h(xs) for all xerS and
s€S. Thus A is an S-homomorphism of rS into M.

Suppose that 4 is non-empty. Then A is a right ideal of § and hence by hypothesis,
A = dS, where dis an idempotent of S such that sd = dsfor all s¢ A. Define 1 by h(rs) = f(rds)
for all se S. From the definition of the set 4 we conclude that h(rs)e M for all se S. First of
all, we have that rs, = rs,, where s,, 5, € S, implies that rds, = rds,. Indeed, the definition of
the set A yields that both s, and s, either are or are not members of A. In either situation we
conclude that rds, = rds,; the latter uses the fact that s; and s, commute with d. This
together with the single-valued property of f, implies that

h(rs,) = fo(rds,) = fo(rds;) = h(rsy).

Hence h:rS— M is a map of rS into M. Since f; is an S-homomorphism, then 4 is an
S-homomorphism. Also if xe PyrS, then x = rae P, where ae A. Since da = a, then

h(x) = h(ra) = fo(rda) = fo(ra) = folx).

Thus 4 is an S-homomorphism of rS into M which agrees with f, on PynrS.

Set P* = P,urS and let f*: P* » M be the map defined by f*(x) = f,(x), if xe Py, and
[*(x) = I(x), if xerS, where h(x) is the map defined above, according to the appropriate case
where A4 is empty or non-empty. It follows that £* is an S-homomorphism of P into M which
extends f,. Hence (P*, f*) > (P,, /), which contradicts the maximality of the pair (P, f5).
Thus P, = R and M is injective.

Let S be a completely right injective semigroup which is a union of groups. By applying
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(2.8), the chain of all right (and hence two-sided) ideals of S can be exhibited in the following
manner.

(3.3) S=d,S5d,S>5d,S>...5d,8>...,

where ae M, and, by 3.1 (iii), d, is an idempotent of § which commutes with all elements of
S not in d,S.

3.4. THEOREM. Let S be a completely right injective semigroup which is a union of groups.
Then T, = d,S\d,.,S(« <), is a right group. In addition, S is a chain M, of right groups
T (xeM).

Proof. LetaeT, Sinced,,,S isthe maximal right ideal of S contained in d,S, we must
have d,S = aS. Hence there exists an inverse a’ of a such that aa’ = d,. Sinced,Sand d,.,S
are two-sided ideals and since @ = aa’a and a' = d’ad’, it follows that a’e T,. If beT,, then
b=db=uaa'b. By229,T,isasubsemigroup of S. Thusa'beT,sothat beaT, This proves
that T, = aT, for all ae T,. Therefore T, is right simple and contains an idempotent. Apply-
ing Theorem 1.27 (ii) of [1, p. 38], we have that T, is a right group.

Clearly S is the disjoint union of right groups T(ae M,). Following the terminology of
[1, p. 25), we will have that S is a chain M, of right groups T,(xeM,) if we can show that
T,T, < Ty and T,T, < T, for all a, fe M, where « < B. Let «, fe M, where a < B, a€T,
and beT;. We have that dp,,ScdyScd,,S<dS. Since dyS is two-sided and bed,S,
it follows that ab and ba are elements in d;S. By 2.9, we have that g, @', a’a and aa’ all belong
to T,. Consequently, aS=a'S=aa'S =a'aS=d,S. Likewise, bS =b'S =bb'S = b'bS =
dgS. Because bS < @'aS, it follows that b = a’ab. In addition, since b'bS < aa'S, we have
that b’b = aa’b’b which, in turn, implies that b = baa'b'b. The expression b = a’ab = baa'b’'b
together with the fact that dy, | S is two-sided implies that neither ab nor ba belongs to d;..,S;
for otherwise, in both cases, we will have that bed;, S, which is not true. Thus ab and ba
belong to Tj.

Using known properties of right groups, we can apply 3.4 to give additional properties
of a semigroup S which is completely right injective and a union of groups. Because of
Theorem 1.27 (iii) of [1, p. 38}, each of the right groups T,(« < y) is the direct product of a
group G, and a right zero semigroup E,. In addition, Problem 3 of [1, p. 39] implies that T,
is the union of isomorphic disjoint groups; namely T, = ULg, where the union ranges over all
idempotents g in 7,. This reminds one of the decomposition of semi-simple rings.

3.5. THEOREM. If S is completely right injective and has a finite number of right ideals,
then S is.a union of groups.

Proof. Llet aeS and let @’ be an inverse of a. The mapping 4:a'aS — aS( = aa'S)
defined by h(a'as) = as, for all s€ S, is an S-isomorphism of the S-subsystem a'aS onto the S-
subsystem aa’'S. This S-isomorphism requires that the number of right ideals in the chain of
all right ideals of S contained in @’aS equals the number in the chain of all right ideals of S
contained in aa’S. Hence we cannot have either aa’'S = @'aS or aa’S > a'aS. That is,
aa'S = a'a$ and from 2.5 we conclude that aa’’ = a"’a for some inverse a”’ of a. Since a%aa’’
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and a''a%a, this implies that a’¥aa’”’. Hence H, contains an idempotent and, by Theorem
2.16 of [1, p. 59), H, is a group. Since S is the union of its s#-classes we have our result.

In view of 3.5 and the obvious fact that an idempotent semigroup is a union of groups we
can apply the main theorem to prove the following result.

3.6. THEOREM. A semigroup with O and 1 which is either idempotent or contains a finite
number of right ideals is completely right injective if and only if each right ideal I of S contains
an idempotent generator which commutes with all elements not in I.

An example of an idempotent semigroup which is completely right injective can be con-
structed as follows.

Let E and F be two disjoint right zero semigroups. Define ef = fe = e for all ee E and
feF. This product together with the product already defined in E and F make EUF into a
semigroup. If we adjoin 0 and 1 to EUF, then the resultant semigroup is completely right
injective. Also T= EUFU0uU1 can be made into a completely right injective semigroup by
defining fe = e and ef = e* for all ecE, fe F, where e* is a fixed element of E. For both
semigroups we can show that every right ideal has the property stated in 3.6. All the right
ideals in the latter semigroup T are listed according to the chain T > fT > ¢*T o 0, where
feF,e*T = EU0 and fT = EuFU0. The idempotent generator of e*T which commutes with
all elements not in this ideal is the idempotent e*.

We now give an example of an idempotent semigroup S in which every right ideal is
generated by an idempotent, but such that § is not completely right injective. Let
S=1{0,1,e,,e,,f,f2} where 0 and 1 are the zero and identity elements of S, respectively.
Define

ee;=e;, fifi=f; fiee=¢ (,j=12),

esfi=e, e fa=e;, e fi=e, e fi=e,.

Every right ideal of S is generated by an idempotent; in fact, all the right ideals of S can be
exhibited in the chain § o f;S > ¢,S = 0. The right ideal e,S contains no idempotent which
commutes with every f;. By 3.6, it follows that S is not completely right injective.
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