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ON THE APPROXIMATION OF CERTAIN FUNCTIONS
BY INTERPOLATING POLYNOMIALS

MICHAEL REVERS

In the present paper we consider the approximation of \x\a on [—1,1] by interpolating
polynomials and we establish upper bounds for the approximation error. It turns
out that these bounds, apart from the constants, are of the best possible order.
We compare our results with estimates for the best approximation, established by
Bernstein.

1. INTRODUCTION

Much attention has been devoted to the approximation of \x\a by polynomials (Bell

and Shah [1], Bernstein [2, 3], Byrne, Mills and Smith [6], Elosser [7, 8], Varga and

Carpenter [11]) and by rational functions (Brutman and Passow [5], Newman [9], Stahl

[10]). This work was motivated by Bernstein's result on the best approximation of |x|Q

on [-1,1]. In 1938 Bernstein [3, p.186] established the following result: let Cj be real for

all j , n £ N and denote En (a) = min max \\x\a — (co + c^x + • • • + CnXn)\. Then we

have the following

THEOREM 1 . Va > 0, Vn € N, n even, n ^ no (a) we have

C f 7T \ ° 1

nQ
 VTT + 4 / 2V

sin7r— / du.

2 ^ " '
4

with Ca = -

Unfortunately, looking at Bernsteins proof, it seems to be difficult to find information
concerning the size of no (a) (the case of an even integer a is an exceptional one, since
in this case one can take n ^ no (a) = a) and moreover, the proof does not suggest how
to give a simple construction of those approximating polynomials which will achieve the
two-sided inequality. Let us bring to the reader's attention that, in the french translation
of Bernsteins paper [3], and also in the russian original [4], the statement in Theorem 1
is not correctly presented. In these papers the condition n ^ no (a) is suppressed. In this
paper we consider the explicit construction of certain interpolating polynomials on |x|Q,
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whose upper error bound for the approximation error does not exceed twice the value of
the upper estimate in Theorem 1. Furthermore, the interpolating procedure works for all
even n & N.

2. RESULTS

Consider F2m (a) = max \\x\a - R2m {x)\, where R2m (x) is the unique even inter-

polating polynomial of degree at most 2m to \x\a on [-1,1] at the (Chebyshev) nodes

x0 = 0, Xj = cos (j — 1/2) 7r/2m, j — 1,2,..., 2m. We shall prove the following:

THEOREM 2 . Letn = 2m, m£ N, a e (0,2/3] U {1}. Then we have

Fn (a) <
2 -

\-a

REMARK 3. (a) The proof of Theorem 2 is based on the convex behaviour of a certain
function which is studied in the Appendix. For the possible extension of Theorem 2 to
all a e (0,1] the reader is referred to Remark 5 at the end of the paper.

(b) Before going into details of the proof, we present some numerical computations
of the Ca's from Theorem 1. (The numbers are rounded off to 2 digits.)

2 (2/3)

a

ca
l - Q

0.1
1.02
1.39

1
1

0.2
.04
.45

0.3

1.05
1.51

0.4

1.06
1.57

0.5
1.07
1.63

0.6
1.07
1.70

0.7

1.06
1.77

0.8
1.05
1.84

0.9

1.03
1.92

1
1
2

P R O O F : By the well known Lagrange interpolating formula one has

2m 2m

^ J (Xj) Li (X) , Lj (X) = [[ ^
Xj

X - Xi W (X)

(X — Xj) W1 (Xj)

with w (x) = f ] (x ~ xj) = xT2m (x), where Tm (x) = cos (marccosz) is the Chebyshev
3=0

polynomial of first kind of degree m. For the indices j — 1,2,..., 2m we have

. ,i+i 2m

\J 2) 2msin
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So we get

(x) =
4 7T

—

xaT2m (x)

2m E a; — x,-

2m I —i

-Xj 'X'

(1)

Now we look at

(2)

- E
j=m+l

7T

2) 2m

2m X — X,-

where the constant function 1 is exactly interpolated at the nodes xx, x2,..., x2m- Com-
bining formulas (1) and (2) we get for 0 ̂  x ̂  1:

X°-i?2m(x) = Xa-
2m E 2 2m

X — X,'

(3)

2m (-1) sin [ j -

+ E —
j=m+l

- x,-

For the second sum in (3) we get

2m (-1)(-1)3™

E
sin (3m 4 - / ) ^

i=m+l x ~ COS

l + x 1 - Q I-cos

(4)
j=l f _i_ cc\^ I T

x + cosu 2 m
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Let tj = (j - (l/2))7r/2m for j = 1,2,.. . ,m. Combining (3) and (4) we obtain the
approximation error for x ^ 0:

costj x - costj

For 0 < a ^ 1, 0 ^ x ^ 1, 0 ^ t < n/2 we define

() ^w ^ f
w I W cos1-0* V x + cosi x -

From the definition of F2m (a) we summarise

(6) F2m (a) = max ||x|Q - i?2m (a:)| = m a x ^ ^ % ^ \Hm (x)\,

with Hm (x) = > ( — I)3 Kt (tj), t-j = I 7 I and j = 1.2,.. . , m.

The essential analysis now depends on the estimate of Hm(x). We consider the case
m = 2k, k 6 W and we write

Hm (x)= r h? (t) dt+ r ti?(t)dt+-- + fm ti? (*) dt.

Let us assume h'° (t) to be non negative and increasing in t € [0,7r/2), a € (0, 2/3]U{1},
0 ^ x ^ 1 (the proof of this appears in the appendix). We have the following lower and
upper bounds for Hm (x):

fir/2—w/4m

2Hm(x) ^ / h'?(t)dt+ / h?(t)dt,
Jit/im Jir/2-3ir/4m

2Hm(X) > rmh'?(t)dt+ r ' mti?(t)dt.
Jir/Am J-n/AmTT/'Am JIT/Am

The case m = 2A; + 1, k G N is treated similarly, and we establish the following bounds:

C A S E : m = 2k.

C A S E : m = 2fc
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By the assumptions on h'£ (t) (note that h% (t) is increasing) and since h% (t) ^ 0 for all
t (to be seen from (5)), we get the somewhat weaker estimate

(7) \Hm(x)\t:h°(--—) VmeN, O ^ i ^ L o e 0, U { 1 ) .

Using (7) we are able to establish Theorem 2. Again we use (5) to show that

, „ , . , 2 sint F c o s 2 t x Q - c o s Q t l
cosQ t x2 - cos21J '

and we estimate

We have to evaluate h° (t) at tm = TT/2 — 7r/4m. So let pm = (TT/2) — tm and note that 0 <
pm < TT/2 < %/6 for all m ^ 1. Then cos*m = COS((TT/2) -pm) = sinpm > pm-p3

m/6 > 0.
Since pm - p3

m/& - (7r/4m)(l - (?r2/96m2)) > 3/4m for all m ^ 2, we estimate (8) to
0 ^ h% (tm) ^ (2/xa) (sin(tm))/(cos1-Q (tm)) < (2/xa) (4m/3)1-°. Inserting in (7) gives

(9)

Since \Tn (x)| ^ 1 for — 1 ^ x ^ 1, n 6 N, we combine (6) and (9) to prove Theorem 2
for all n = 2m, m ^ 2. For the remaining case n = 2 one simply shows that F2 (a) =
\\x\a — i?2 (^)| ^ y/2 . So our estimate holds for all n = 2m, m 6 N, and the proof is
finished. D

3. APPENDIX

Again let a € (0, 2/3] U{1} , 0 < z ^ l and ( ) : $ < < TT/2. We have to show that
h° {t) > 0, hf {t) > 0 and h'f (i) ^ 0. We write (5) in the form h% {t) := gx (t) + g2 (t)
(for convenience we omit the indices x and a):

sini f / x \ 1~a

sin t
92 (t) =

cos1""t x - cost
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We begin with g\. One simply shows that (i) gx is non negative, (ii) g[ is non negative
and (Hi) g[ is increasing. Note that the restriction of a € (0,2/3] U {1} can be extended
to a 6 (0,1] without loss of (i), (ii) and (Hi). The more problem arises with g2. For
a = 1 there is nothing to show. For the remaining case a 6 (0,2/3] we study

9 (y) •= ^ ^ , 0 < i / < l , ( U z ^ l .
y - x

We have the following

LEMMA 4 .

(i) g(y)>0, 0<y^l,0<a$ I,

(ii) g'(y)^0, 0 < y ^ 1, 0 < a < I,

(in) g"(y) > 0, 0<y^ 1, 0 < a ^ 1.

P R O O F :

(i) This is trivial,

(ii) By identifying g' (x) with lim g' (y) one can easily establish

(10) «'(») =

1 - a yl~a - xl-O _ ~1-Q

for yj=x,ya y - x
y-x

i- / / • ^ a ( 1 ~ a ) c

\img (y) = ^ - ^ - for y = x.

CASE A: y = x. Then g' (x) ^ 0.

CASE B: y > x. Then one has

- a

y - x

and inserting in (10), we get g' (y) < 0.

C A S E C: y < x. Analoguous to Case B one has

y - x ^ ya

and again, by inserting in (10), we get g' (y) ̂  0.

(iii) For convenience we again identify g" (x) with its limit limg" (y). Then one

simply gets

y-g_xi-a 2 (1 -q ) q ( l - q )

( ) 3 ° ( ) 2 ~ y ^ ( y x ) °Ty* '
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and a similar treatment to that in (ii) gives the required properties. The proof is fin-

ished. D

From Lemma 4 we deduce that the function

1 - cos 1 " 0 1
f2 (t):=g (cos (t)) =

x — cos t

is non negative, increasing and convex for 0 ̂  t < n/2, 0 < a ^ 1 and 0 ̂  x ^ 1. Now
we shall study the function g2. We write

n\ t t*\ t i*\ s i n i xl-a - cos1-" t92 (t) = h (t) • h (t) = cQsl_at x

Then g2 is non negative and

92 « = /{(*) h W + /i (*) /a (t) 2 0 if /{(t) > 0.

But this is the case for 0 ̂  t < TT/2, 0 < a < 1. Next we study #2' (t). One sees simply

An easy calculation shows that

f"{t) = £ [ ^ 4 ^0 for all 0 ̂  < | if and only if a < | .

Hence we conclude /iQ (t) is non negative, increasing and convex for all 0 SC t < TT/2, 0 ̂
i ^ 1 and a 6 (0,2/3]u{l}.

REMARK 5. There is a strong evidence that the function g2 is also convex for 2/3 <
a ^ 1 and thus Theorem 2 holds for all 0 < a ^ 1. I have not found a proof of this as
yet, and so we finish with the following:

CONJECTURE 6 . Let 0 ̂  x ̂  l, 0 < a ^ l. Then

fa (t) sin* s ' ^ - c o s 1 - 0 *
=

cos'-Qit x-cost
is convex on [0,TT/2).
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