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REAL INTERPOLATION OF SOBOLLV SPACES ON
SUBDOMAINS OF R”

R. A. ADAMS AND ]. J. F. FOURNIER

1. Introduction. The real interpolation method is a very convenient tool
in the study of imbedding relationships among Sobolev spaces and some of their
fractional order generalizations, (Besov spaces, Nikolskii spaces etc.) Central
to the application of these methods is the ¢ prior: determination that a given
Sobolev space W*?(Q) belongs to an appropriate class of spaces intermediate
between two other “extreme’” spaces. Of special interest are interpolations
involving only one of the parameters &k and p; for interpolation on order of
smoothness, k, we want to know that W*?(Q) is ‘‘suitably intermediate’ (see
Section 3 for precise definition) between, say, L?(Q) and W"?(Q) where 0 <
k < m, while for interpolation on order of summability, p, we want to know
that W*?(Q) is “suitably intermediate’’ between, say, W*?1(Q) and W*?2(Q)
where p; < p < po.

Let us denote by || - ||, = || - |[,,e the norm in L?(Q), and by || - ||zr =
[| - llx».0 the norm in W*?(Q):

il = {35 101}

alSk

(See Adams [1] for details.) Involved in the matter of interpolation on order
of smoothness is the following approximation question: does there exist a
constant C, and for every function « in W*?(Q) and every number ¢ > 0 a
function u, in W™?(Q), such that

o = udly = Celulliy and ludlny = C"lull,?

If @ = R” the answer is fairly evidently “‘yes”. In Section 2 below we provide
an afirmative answer for a class of domains satisfying a ‘“‘smooth cone property."

Involved in the matter of interpolation on order of summability is the
following “lifting"" question: given k does there exist a linear operator R defined
on Il 4 < Lise! (@) into Lo (2) such that R is bounded on 11,4 <, L?(Q) into
Wrr(Q) for 1 < p < o, and such that Rv = u if u belongs to W*?(Q) and
v = {D2u} 4 <:? Again it is not difficult to construct such a lifting R for @ =
R*, and in Section 6 we construct one for Q with the smooth cone property.
Unfortunately, this operator does not map I, <, L1(Q) into W*1(Q). How-
ever, if @ is a homogeneous space with respect to its intrinsic metric (see Section
2 for details) we can conclude that Rv belongs to W*1(Q) provided that v
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belongs to I1,,,<; L1(2), and, in addition, v, belongs to the Hardy space H'(Q)
whenever |a| = k.

Section 2 of this paper is devoted to a description of the smooth cone
property and related regularity conditions on domains @ C R”, and to precise
formulations of the approximation and lifting theorems. Section 3 presents
a brief discussion of the real interpolation method and proceeds to application
of the method in the theory of Sobolev, Besov, and Sobolev-Lorentz spaces
defined over domains with the smooth cone property. Section 4 is concerned
with applications of the interpolation theory yielding sharp imbeddings of
these spaces into spaces of continuous functions satisfying fractional Lipschitz
conditions (Hélder conditions) with respect to the intrinsic metric of the do-
main. The approximation and lifting theorems are proved in Sections 5 and 6
respectively. Some specific examples of domains with various properties are
discussed in Section 7.

The present paper should be compared with the paper [14] by Peetre, and
the series of papers [11; 12; 13] by Muramatu. We follow Peetre in using
interpolation to derive imbedding theorems for Sobolev spaces from imbedding
theorems for certain Besov spaces; in doing this we do not need the various
intrinsic characterizations of Besov spaces. Like Muramatu, we consider
Sobolev spaces on subdomains of R”; most of his work, however, is concerned
with properties of Besov spaces on such domains, whereas our main goal is
to obtain sharp imbedding theorems for Sobolev spaces. We feel that the
methods we use in this paper are natural and direct; moreover we are able to
deal with a wider class of domains than Muramatu or Peetre.

Note that throughout the paper C is used to denote various constants which
change from line to line.

2. The smooth cone property. Throughout this work @ shall denote a
domain, that is, an open, not necessarily connected set in real Euclidean
n-space, R*. We shall denote by Z®(Q) the class of all infinitely smooth vector
fields ® on @ with values in R* such that, for each multi-index a, sup,¢q | D*® (x)|
is finite. Given ¢ > 0 and x in @ we consider the finite ‘“‘cone”

Clw; @) = U By(x + n2(x)),
0<n<e
where B, (y) is the open ball of radius n centred at y. (If |®(x)| > 1 then
Ce(x; ®) is conical; if |®(x)| = 1itis just the ball B(x 4+ ¢®(x)).) Evidently
Ce(x; ®) C Beagyiaip(x), where ||®]] = supzee| ®(x)].

We shall say that Q has the smooth cone property if there exists ® in £~ (Q)
and ¢ > Osuch that C.(x; ®) C Qforevery x in Q. We shall always assume that
e = 1 since we can arrange this by dilating Q.

It is useful to compare the smooth cone property with certain other cone
properties to be found in the literature on Sobolev spaces. It is evidently
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stronger than the ordinary cone property which asserts that each x in Q should
be the vertex of a finite cone C, of fixed dimensions contained in Q. For the
smooth cone property the cones C, must vary smoothly from point to point.
Muramatu [13, p. 328] uses a smooth cone condition in his approach to Sobolev
and Besov spaces over domains Q, but his version requires that the generating
field ® belong to Z*(R") rather than just Z“(Q). This condition forces £ to
lie on only one side of its boundary. In contrast, a domain with the smooth
cone property can lie on both sides of its boundary. We shall give an example
of such a domain in Section 7. For all of our results below we could weaken the
assumption on ® so as to require the continuity and boundedness of derivatives
Dad (x) for la| < m (i.e. ® € #™(Q)) for suitably chosen .

We remark here that there is a measure theoretic (nongeometric) version of
the cone property which is slightly weaker than the ordinary cone property
but is still sufficient to establish certain imbedding and interpolation results
for Sobolev spaces. (See [2].) This weak cone property requires the existence of
a positive number § such that for every x in @ the “cone” T'(x) = {y € Bi(x):
segment [x, ¥] C 2} has measure not less than 4.

Because a domain with the smooth cone property may lie on both sides of
an (n — 1)-dimensional part of its boundary, the Euclidean metric in R" is not
appropriate for determining the closeness of points in Q. We use the ntrinsic
metric p: if x and y are in © then p(x, y) is the infimum of the lengths of piece-
wise smooth arcs in @ joining x to y. (Of course p(x, ¥) = +o0 if x and y do not
lie in the same connected component of Q.) An essential part of our proof of
the lifting theorem is based on certain properties of the Hardy space H(Q).
(See Coifman and Weiss [7].) These properties are in turn obtained under the
assumption that © is a space of homogeneous type with respect to the intrinsic
metric. This homogeneity condition asserts that for every positive real number
r and every point x in Q,

(2.1)  u(Ss,(x)) £ Cu(S,(x))

where p is Lebesgue measure, S,(x) is the intrinsic ball {y € Q: p(x, y) < r},
and Cis a constant independent of 7 and x. If @ has the ordinary cone property,
then (2.1) holds for small 7; so any such domain that is bounded relative to its
intrinsic metric is of homogeneous type. A domain that is bounded relative to
the Euclidean metric need not be bounded relative to its intrinsic metric, be-
cause it need not be connected, but any such domain with the cone property is
of homogeneous type, because it is a union of finitely many intrinsically
bounded components. Exterior domains (i.e., those with bounded complements)
having the cone property are also of homogeneous type. Finally, if Q is any
domain with the cone property and Q is a bounded subset of Q then there is
a bounded domain @, with the cone property (and hence of homogeneous type)
such that Q C Q; C Q. (Specifically, @1 = U,cq C.); this observation will play
an important role in the proof of the lifting theorem.

We now give precise formulations of the approximation and Jifting theorems.
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TueoREM 1. (Approximation Theorem) Let Q be a domain tn R” having the
smooth cone properly. Let 1 < p < o0 and let k and m be integers with0 < k < m.
There exists a constant C depending on the numbers n, p, k, and m, and on the
vector field ® providing the smooth cone property, such that for each e with) < ¢ < 1
and each u 1n W*?(Q) there exists uoin W™?(Q) satisfying

Hu —udl, £ kaHqu.pv

and
H”eHmm =C ék_mH“I!k,v-

Remark. In our proof of the approximation theorem for domains with the
smooth cone property we will actually establish slightly stronger estimates
for u., namely

e — udl, £ C étuli,,

and
Cllullep, O£k —1
edso 5 {C11pe HOETSE
Ce ™ uly, itk=j=m,
where |u|;, = |u];, o denotes the seminorm {4 =,||D%u||,?}1”?. The weaker

inequalities, as stated in the theorem, are what we need for our applications,
and in Section 7 we shall see an example of a domain not having the smooth
cone property, but for which these inequalities still obtain.

TuroreM 2. (Lifting Theorem) Let Q be a domain in R™ having the smooth
cone property, and let k be a posilive integer. There exists a linear operator R from
110120 Lioet (Q) tnto Lot (Q) such that R({Du} jai<x) = u for every u in C*(Q),
and such that for each real p with 1 < p < 0, R is bounded from 11,2, L7 (Q)
into WP (Q). If, in addition, Q is of homogeneous type with respect to its intrinsic
metric, then R is also bounded from (114 < L1(Q)) X (Il ia=x HY(Q)) into
wWEH(Q).

Remark. 1f D is the map u — {D%u} 4 <, the lifting theorem implies that
RD is theidentity map on W*?(Q) for1l < p < o0,

3. Real interpolation of Sobolev spaces. We begin by recalling the ele-
ments of the real interpolation method of Lions and Peetre. (A good reference
for the fundamentals of this method is Butzer and Berens [4].)

Given a pair of Banach spaces By and B, with respective norms || - ||, and
[| - |1, each continuously imbedded in the same topological vector space, the
real interpolation methods associate with each pair of numbers  and ¢ satis-
fying 0 <8 <1 and 1 £ ¢ £ o0, a Banach space (By, Bi)s,, intermediate
between 5y and B, such that if Cy and C; form another such pair, and T is a
linear operator mapping B, boundedly into C; with norm A, (i = 0, 1), then
1" maps (By, Bi1)s,, boundedly into (Co, C1)., with norm at most A=},
There are several methods for defining (By, Bi1)s,, all leading to the same
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spaces with equivalent norms. Two of these (the K method and the J method)
involve the following function norms: for # € By + By and { € R*,

K(t,u) = inf {||uollo + #||uslls : # = wo + w1, e € Bo, uy € Bi};
and for u € By M\ Byand ¢t € R+,
J(t, ) = max (||u|lo, t]|ull1).

The intermediate space (By, B1)s,, consists of those u € By 4 By for which
the norm

>0

3.1)  ulle, = 1{ fm 'K, u))ﬂ%}w if g < oo

0

Ssup K@ u) ifg = o

is finite, or, equivalently, those u € By 4 Bj representable in the form (Banach
space valued integral)

(32) u= ﬁm u(t) %E

with u(t) € BoM By for all ¢ > 0, for which the norm

sup £0T(, u () ifqg =
>

3.3 | eq* = inf Ooo 1/q
3:3) lulle, " l{fo &I, u(t)))a%}/ if ¢ <

is finite, the infimum being taken over all representations of #« in the form (3.2).
Then (B, Bi1)s,, is a Banach space with respect to either of the equivalent
norms (3.1) and (3.3). Moreover, (B, B1)o,q0 C (Bo, B1)opif 1 £ g1 < g <
. (We consistently use the symbol C to denote continuous injection, that is,
imbedding.)

A Banach space B is said to belong to the clzlssf(e;ﬁ(,, By)if (Bg, B1)e1 C B;
that is, if

(34)  |ulls = Ct=°J(t, u) forall i in Rt and u in By M By

B belongs to the class £ (8; By, By) if B C (By, Bi)s.,; that is, if
(3.5) K(t,u) = Ci%u||p foralltin Rt and u in B.
Let 2£(9; Bo, Bi) = f(&; Bo, B1) NA(0; By, Bi). Thus B belongs to
S (0; By, By) if and only if both (3.4) and (3.5) are satisfied. 5 (0; By, B1) can
also be defined when 6 = 0 or 1 (see [4, p. 175]; all we need to know here is
that By € #°(0; By, B1) and By € 3 (1; By, By).

A key result in real interpolation theory is the reiteration theorem (Lions and
Peetre [9]): if 0 < 6, < 8, £ 1, and if C; € S (9,; By, By), (i = 0, 1), then

(Co, Ci)o,g = (B, B1)1—6)60+661 ¢

holds (with equivalence of norms) for0 < 6 < land1l £ ¢ £ w.
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We now consider the interpolation of Sobolev spaces with respect to order
of smoothness. Let @ be a domainin R*and let 1 £ p < w0, and 0 < k < m.
A variant of the Ehrling-Nirenberg-Gagliardo inequality asserts that there is
a constant C such that for all u in W"?(Q),

ol = Clluellp=E fat] ] 0"

provided @ has at least the weak cone property. (See [2, Theorem 2].) We
invite the reader to verify that the above inequality implies that W ?(Q) ¢
/(k/m; L?(Q), W7 (Q)). We now show that W*?(Q) belongs to2# (k/m; L?(Q),
Wm2(Q)) if and only if the conclusion of the approximation theorem holds.
If t 21 and u € W*?(Q) then K¢, u) < ||ull, + |0/|m, = |lu|l,. Hence
HmKE (t u) £ ||ullp, for such ¢ and . If %™K (¢, u) < Clully, forallt <1
as well, then we can choose uin L?(Q) and u; in W™?(Q) with 4 = uy + u; and
laollp + tlutllm, < 2K (4, u). Thus

[l — ”al = H”UHv =2C Lk/m”““hm ||“1Hmp = 2Ct(k/m)_l||””k,p-

With ¢t = € we see that u; = u. is a solution to the approximation problem.
Conversely, if the approximation problem can be solved when e = (1™ < 1,
by u. say, then

MK (tu) £ Fk/m(“” - uan + [Huéum,p) = CHu”k,p

for all # in W*?(Q). We have thus established the following corollary of the
approximation theorem.

THEOREM 3. If Q is @ domuin in R* with the smooth cone property, and if
1 S p<0and® < kb < m,then WEP(Q) € 0 (k/m: LP(Q), W"™?(Q)).

Now we wish to consider briefly the family of Besov spaces, B574(2). These
spaces are usually defined intrinsically (see [16, p. 150] or [11, p. 516]), and it
is then shown that, for reasonable domains ,

(36) Bs,p,q(ﬂ) = (LZ’(Q), Wm'p(9>>s/m,qv

where m is the smallest integer exceeding s. Since we do not need the intrinsic
characterizations of these spaces, we define them by formula (3.6). If @ has
the smooth cone property, then Theorem 3 and the reiteration theorem show
that (3.6) holds (up to equivalence of norms) for any integer m > s, and if
s1 > s, then

Bs,p.q(g) = (LP(Q)yle'p'q(ﬂ))s/sl,w

More generally, in this case we have for any integers k and m with 0 £ &k <
s < m,

B2 y(Q) = (WE2(Q), W™?(Q))x.q

wheres = (1 — Nk + Mn,andinfactif 0 < s; < s < s then for any numbers
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q, ¢ and ¢, in the interval [1, 0],
Bsre(Q) = (B*1701(Q), B*242(Q))y 4

where s = (1 — \)s; + \so. We shall denote by || ||p;, the norm in
Bs?4(Q). We remark that Theorem 3 implies, for integer m, that B"?*(Q) C
wme(Q) C B™?*(Q). In fact, it is known that if Q is sufficiently regular, then

Brrr(Q)y C Wrr(Q) C B?2(Q) forl < p = 2, and
Brw2(Q) C Wmr(Q) C B*?7(Q) for2 £ p < 0.

(See [16, p. 155]. It is also asserted in [3, p. 301] that the first pair of inclusions
also holds for p = 1.) The indices in these inclusions are best possible, even
when @ = R"”. We do not need these inclusions in the sequel.

The following standard imbedding theorem obtains for the Besov spaces,
and requires only the weak cone property. Here CB(Q) denotes the space
L=(Q) M C(Q) with the norm || - ||,,, and L™4(Q) is, for 1 < r < oo the Lorentz
space consisting of those measurable functions » on @ for which the equi-
measurable decreasing rearrangement «* of |u| satisfies (see [17, Section 5.3]);

f (tl/”u*(t))a%é <o fl=2g<w
0
ess sup 7u*(t) < o0 ifqg = 0.
>0
Note that L?7(Q) = L?(Q).

THEOREM 4. Let Q be a domain in R* having the weak cone property.

(@) If sp < n then B*?1(Q) C L"9(Q) forr = np(n — sp)~1,1 £ ¢ < .
(b) If sp = n then B5?1(Q) C CB(Q).

(c) If sp > n then BS?1(Q) C CB(Q) for 1 £ g < 0.

Proof. We require, and so prove, only (b). Under the smooth cone condition,
(a) follows from (b) and the fact that L™9(Q) = (L*1(Q), LP*(Q)),, whenever
L=sp<r<py=20andl/r = (1 = N)/p1+ Npa

Let m be the smallest integer exceeding n/p. Let u belong to B"?7:1(Q) =
(LP(Q), W™?(Q)),/mp.1- For each t in Rt there exists u(¢) in W"?(Q) such that
u = f‘(’f u(t) dt/t and

. di
j; £t () n =< Cllullsmimp.n,

where J(¢, u(t)) = max {|[u ()|l t||e(®)||n}. Since mp > n and @ has the
weak cone property there exists (see [2, Theorem 3]) a constant C independent
of v in W™?(Q) such that

lloll., = Cllell = )lo]l,, .
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7w

o T s

Thus

lIA

]|

lIA

lIA

C f I u(t)) %
0

2C H”l IB(n/zz.p,l)'

Hence B*77:1(Q) C L*(Q). Now C(Q) M B"?7:1(Q) is readily seen to be dense
in B*?7.1(Q) and a uniform convergence argument implies this latter space
must imbed into CB(Q).

Remark. It will be apparent from Theorem 7 below that if kp < n and
p > 1 then WE?(Q) C L™7(Q) forr = np(n — kp)~1, provided Q has the weak
cone property. This slightly improves the result W*?(Q) C L7(Q2) (which,
however, also holds for p = 1) given in [2] for such domains. It is a weakness
of the technique of interpolation on order of smoothness alone, that neither
of these imbeddings can be obtained directly from Theorems 3 and 4 by inter-
polation, even for domains with the smooth cone property. The best we can
do a priori is W ?(Q) C L™= (Q). The best Lorentz target space for imbeddings
of W*1(Q) is still in question. We postpone to the next section the problem of
refining conclusion (c) of Theorem 4 to yield fractional order Lipschitz im-
beddings.

We now turn our attention to the interpolation of Sobolev spaces with respect
to order of summability. We require the following lemma.

IIA

LemMma 1. Let Q be a space of homogeneous type. Let 1 < p < r = 0 and
1 =¢g=c0. Then (H'(Q), L™(Q))s,, = LPUQ) where 1/p =1 — 6 + 6/r. In
particular, (H'(Q), L7 (Q))1—am.. = LP9(Q).

Proof. We prove the case where » = 90 ; the general case follows by reitera-
tion. Let§ = 1 — (1/p). Since H(Q) C L*(Q) we have that (H'(Q), L=(Q))s,,
C LP2(Q). In particular (H*(Q), L¥(Q2))s C L7(Q), and we will be able to
conclude that L?(Q) € S (6; H'(Q), L=(Q)) if we can show that L?(Q) C
(HY(Q), L*(2)) 6,

Arguments in the proof of Theorem D of [7] yield a constant C such that for
any r > 0, any # in L?(Q) can be expressed as a sum # = v, + w, where
v, € H'(Q) and w, € L*(Q) satisty

forllm@ = Cr=?llull,, and  lwll, = Crllull,.
For ¢t > 0letr = 17 = (=1, Then
Kt u) < [|odluie + twlle £ 2C #|ulf,.

Thus L7(Q) C (H'(Q), L=(2))6 -
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Now pick s such that 1 < s < p and let X = 1 — (s/p). Since L*(Q) €
H (1 — (1/s); H(Q), L”(Q)) we have by reiteration that L7%(Q) = (L°(Q),
L2 (@), = (H'(Q), L7(2))s,

Remark. Using the duality between H'(Q) and the space BMO(Q) of func-
tions of bounded mean oscillation on @, we could obtain, under the same
hypotheses, that

LP(Q) = (LY(Q), BMO(Q))s,, = (H'(Q), BMO(Q))s,,
(See Riviere and Sagher [15] for the case where & = R".)

THEOREM 5. Let Q be a domain in R™ having the smooth cone property. If 1 <
p1 < p < p2 < 0, then

@7 (WEPQ), WHP(Q))e, = WE(Q), 1/p = (1 —0)/p1+ 0/ps.
If, in addition, Q is a space of homogeneous type then also
(3.8)  (WHHQ), WEP2(Q), = WHP(Q), 1/p=1—10+0/p

Proof. The operator D : u — {D*u} 4 <, maps W¥?:(Q) boundedly into
Ila< L7(Q), (¢ = 1, 2), and therefore it maps (W*?1(Q), W5?2(Q))s,
bOUHdC‘dly into (II|Q|§;\- Lm(Q), I—I]U(|§,C LPQ<Q))0_I, = II;aigk LP(Q) for 1/1) =
(1 — 60)/p1 + 6/p2. Thus (W*?1(Q), Wr?2(Q))e, C W5?(Q). Conversely, the
lifting operator R, (see Theorem 2), maps IT,, <. L?(Q) boundedly into
Wk2:(Q), so

WEr(Q) = RD(W*(2)) = R(I1j4<: L7(2))

(3.9) C R(UTLa<e £71(Q), 0y L72(2))6.,)
C (Wr?i(Q), WFP2(Q))s,p-

This completes the proof of the first assertion, (3.7).
The proof of (3.8) is identical to that of (3.7), except that in (3.9) above
I, < LP2(Q) is replaced by (I1,4c, £1(Q)) X (Il,aj— H'(2)). The first
inclusion in (3.9) then requires Lemma 1 and the second requires the second

assertion of the lifting theorem. The homogeneity of Q is required for both of
these steps.

Remark. The analogue of Theorem 5 involving the complex interpolation
method (see Calderén [5]) also holds, with the same proof. We do not need
this fact in the sequel.

A useful generalization of Theorem 5 obtains for Sobolev spaces modelled
on Lorentz instead of Lebesgue spaces. We term these latter Sobolev-Lorentz
spaces and denote them by W#?:2(Q):

WE?a(Q) = {u € L?9(Q) : Dou € L79(Q) for |a| £ k).
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These are Banach spaces with respect to an appropriate norm, say

1/q
S{Z( |]D“1[![%p,q(9)} flg<w
HuHW(k.,ﬂ.q) = s /
lﬂlax HDaMHLp,eo(m 1fg = o0,

lal=k
Evidently Wk??(Q) = W*?(Q).

THEOREM 6. Let Q be a domain in R™ having the smooth cone property. If
1< pi<p<pp<0, 1 =g =0, 1=¢g 0,1 g0 andl/p=
(1 —6)/p1 + 0/ps then

(Wrrra(Q), WEP2:92(Q))g ,
In particular

(Whor(@), Whees(@)o, = W2 (@),

Wroa(Q).

and
(Wrr1(Q), WEP2(Q))g,, = WP 1(Q).

Proof. The operator D maps W#7i-%(Q) boundedly into Il, < LP9:(Q),
(i = 1, 2), and by interpolation (W*#1e1(Q), W*?222(Q)), , into 114 <
L79(Q). Thus (Wk»ra1(Q), Whr212(Q)), , C W*?2(Q). Now DR is bounded
from I1 <, L7¢(Q) to 11 4 <, L7¢(Q), (i = 1, 2), and hence from 11, <, L?¢(Q)
to 11,4 <x L74(Q). Therefore R is bounded from Il < L79(Q) to WE?e(Q)
and RD is the identity map on W*?:¢(Q). Thus W*7:¢(Q) C R, <, L74(Q)).
Since R maps Il <. L7%(Q) boundedly into W #:4:(Q), (i = 1, 2), it is also
bounded from I, <, L79(Q) into (Wr»ra1(Q), WEP202(Q)), .. Thus W?2(Q)
C (WkrLa1(Q), WEP242(Q))g , as required.

Analagous to the results obtained for Besov spaces in Theorem 4 above,
we have the following imbedding theorem for Sobolev-Lorentz spaces. Observe
that, in this theorem also, we assume only that Q has the weak cone property.

THEOREM 7. Lei Q be a domain in R" having the weak cone property.

@) If p > 1 and kp < n then WEP2(Q) C L™4(Q) for r = np(n — mp)~?
and 1 < ¢ < .

(b) If kp = nthen WF?2(Q) C CB(Q).

(c) If kp > nthen WE?2(Q) C CB(Q) for1l < g < 0.

Proof. We prove only (b); the other parts can be established by suitably
generalizing arguments given in [2]. (In any event, they follow directly from
(b) by interpolation if Q has the smooth cone property.)

The result (b) is known for p = 1. (See [2, Theorem 1].) For p > 1 we have,
(by [2, Lemma 2]), that for all # in C*(Q) and x in €,

(3.10) |u(x)| < C(fa.‘;“_l 15%|D%| (x) + w2=k wk*lpaul(x))
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where 15 is the characteristic function of the unit ball in R*, and w, (x) is the
Riesz potential |x/*". In (3.10) all Deu are considered to be extended to R,
vanishing identically outside Q. It suffices, therefore, to show that for any »
in L71(R*) and x in R",

a1y [ ol -siwsc [Treol,
R~

where v* is the (scalar) equimeasurable decreasing rearrangement of |o|. In
turn, it is sufficient to verify (3.11) for x = 0 and » radially symmetric and
decreasing. In this case, the radius 7 of the ball on which v exceeds X and the
Jlength ¢ of the interval on which v* exceeds \ are related by Cr* = ¢. Thus

[ wlray = ¢ [Totyrta = ¢ [Temmn &
R 0 0 13
and (3.11) follows.

4, Intrinsic Lipschitz spaces. Let 0 < N\ = 1. Denote by Lipx(Q) the
space of all functions # in CB(Q) with finite norm

(.1) et oy = |l + sup lﬂ(x—)i(y_)i

z,y€Q lx — | ’

T#Y
Lipx(©) is a Banach space under the norm (4.1). It is well known (see, for
example, [1, p. 98]) that if @ is sufficiently regular, and if 2p > #, then W*?(Q)
imbeds into Lipx(Q) for certain values of N\. If Q lies on both sides of some
(n — 1)-dimensional part of its boundary, however, then no such imbedding
can occur, because there will exist elements of W*?(Q) that are not essentially
uniformly continuous, while every element of Lipa(Q) must be uniformly
continuous. To avoid this problem we replace the Euclidean distance |x — y|
by the intrinsic distance p(x, v).

Let w (¢, 1) be the modulus of continuity of # € C(Q), taken with respect to

the intrinsic metric on Q:

w(t,u) = sup |u(x) — u(y)|.
X, Y€ Q
p(z )=t

For0 < N =1and 1 £ ¢ £ o the intrinsic Lipschitz space ILipy ,(Q) con-
sists of those functions u in CB(Q) for which tw (s, u) belongs to L(0, o)
with respect to the measure dt/t. The norm in ILipy (@) for 1 £ ¢ < o0 is

qil_tl 1/q
; .

lelloo = el + 4 f 7 @t )
We also denote by ILipx(Q) the space ILipy ., (2) with norm

et loo = [[u]|w =+ sup 7w (2, u).
>0
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In order to identify ILipy ,(2) as an interpolation space, we require the
following approximation result analagous to Theorem 1. Let CB*(Q) denote
the space W5 (Q) M C*(Q) with norm || « ||5 -

LemMA 2. Let Q be a domain in R™ having the smooth cone property. There
exist constants C and C’ such that for each u in CB(Q) and each ¢ > 0 there exists
uein CBY(Q) satisfying

[t — tte|lw = @(Ce u)
il = €[22 4 ).
Proof. Let Q € Cy”(B1(0)) be such that Q(y) = 0 and [, Q(y) dy = 1.

Let ® be the vector field determining the smooth cone property for Q. For u
in CB(Q) let

ue(x) = j;l(o) Q) ulx + e(2(x) +y)) dy

- fﬂ u(z) Q(Z;;:—oﬁ - qa(x)) " da.

Clearly [lud]., = |#||, and

=l S s | QW) — ute + 36 + )l

= w((@ + []2]]e, u).
Finally,

= UV el [fulle

j 5% u(x)

g —

1w - w0078 - aw) e

€

which completes the proof.

THEOREM 8. Let Q be a domain in R having the smooth cone property. If 0 <
0§ <landl £ q < o then

4.2)  (CB(Q),CB*(Q))s,, = ILipo,(Q).

Proof. Let u belong to CB(Q), and let t > 0. We may choose u, € CB(Q)
and u; € CBY(Q) such that # = uy 4+ u; and ||uol|,, + {]u1]]1.0 = 2K (¢, u).

Let x and v belong to @ and satisfy p(x, ¥) =< t. Let ¢ be a piecewise smooth arc
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in @ with ¢(0) = x, ¢(1) = y, and [o![¢(r)|dr < 2{. Then

'l d |
|

l1(y) — ur(w)| = f 7 1(8(7) [dr

0

< [ 1Vutemlg it 5 Gl

Hence
lu(y) — u@)| < lue@)] + luo(x)| + Jurly) — ui(x)]
< 2fjuolle, + Clllin]lhe = C K, u),

that is,
4.3) ow(,u) £ CK({t u).

On the other hand, K (¢, u) < ||u|l, + t[0l1., = ||u||.. Suppose now that
0<i< 1l andlete = t/C. Writeu = (v — 1) + u., where u. is the function
given by Lemma 2. Then

K, u) <l — udlo + o1 = C(w(t, u) + tlull.).
Thus, for all £ > 0 we have that
(4.4) K, u) = C (o, w) + min {1, ¢}]|]|o)-

It follows immediately from inequalities (4.3) and (4.4) that t=*K (¢, u) belongs
to the space L?(0, 0 ) with respect to the measure dt/t if and only if (~%w(t, 1)
belongs to the same space. Hence (4.2) holds.

We now come to our main theorem concerning imbeddings of Sobolev spaces
into intrinsic Lipschitz spaces. In the case where & = R” this result is due to
Morrey [10].

THEOREM 9. Let Q be a domain in R" having the smooth cone property. Let
1<p<owo,let(b—1)p<n<kp andlet\ =k — (n/p). Then

(4.5)  We?(Q) C ILipy,(Q).

Proof. We first show that, under these hypotheses, W*?(Q) C ILipx(Q).
To do this we interpolate with respect to smoothness. Let s = n/p; then
Bs?1(Q) C CB(Q) by Theorem 4. Now every element of BSt1?:1(Q) has the
property that its first-order partial derivatives belong to B*?'1(Q); therefore
Bs+121(Q) C CBY(Q). Next observe that k = (1 — N)s + XN(s + 1). Therefore

WE2(Q) C B¥=(Q) C (B*71(Q), B*171(Q))y.,
C (CB(Q), CBY(2))r... = ILips,,(2) = ILipx(Q).

To prove (4.5) we now interpolate with respect to summability. Choose
indices p; and p, with p; < p < p, such that the hypotheses of the theorem
still hold if p is replaced by p; or ps. Let \; = k& — (n/p;) for ¢ =1 or 2.
Choose 6 so that 1/p = (1 — 6)/p1 + 6/p2. Then, by Theorem 5, W*?(Q) C
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(ILipy, (?), ILipy,(2))e,. By Theorem 8 and the reiteration theorem, this
latter space is just ILipy ,(Q).

We remark that, under the hypotheses of the theorem, the inclusion W*?(Q)
C ILip,.,(2) holds if and only if w < A\, or w = XA and 7 = p. It is clear that
such inclusions hold for these values of u and 7, because ILipy , () C ILip, ,(2).
To see that the imbeddings fail if w > N, or if u = N and » < p, consider func-
tions of the form x — |x — x|*(log |x — x4|) for fixed x¢ in Q. It is also easy
to see that the hypotheses of Theorem 9 imply that W ™?(Q) imbeds into the
space of all functions in CB™(Q) all of whose derivatives of order m belong to
ILipy , ().

Now suppose that @ has the smooth cone property, that 1 < p < o0, and
that (k — 1)p = #n. Then W*?(Q) C ILip, ,(Q) for all » and all x4 < 1; indeed
B*?:=(Q) C ILip,,,(Q) for such p and 7. To get a sharp imbedding in this case,
we have to consider second differences. Call a pair of points x and z in R*
admaissible if the segment joining x to x + 2z lies entirely in Q. Given a function
1 on Q, and a number ¢ > 0, let w*(¢, u) be the supremum, over all admissible
pairs x and z, with |z| < {, of |u(x) — 2u(x + 2) + u(x + 22)|. Then for 0 <
N< 2, and 1 £ ¢ £ o, let [Lipy ,*(Q) be the space of functions # on Q for
which =w* (¢, u) belongs to L?7(0, oo ) with respect to the measure di/t. Then,
under the above hypotheses, W*?(Q) C ILip; ,*(Q); we omit the proof of
this fact.

The situation is much simpler when p = 1. If Q merely has the weak cone
property, then W"1(Q) C CB™(Q), for all nonnegative integers m. (See [2,
Theorem 1].)

The hypotheses of Theorem 9 also imply that for all ¢

WEra(Q) C ILipy .(Q).

Finally, if @ has the smooth cone property,if 1 < p < o0,if (s — 1)p < n <
sp,and if N = s — (n/p), then

B#?71(Q) C ILipy ,(Q).

We omit the proofs of these imbeddings.

The weakest geometric property of a domain @ that is known to imply that
WEr(Q) C Lipx(Q), for suitable indices &, p, and A, is the strong local Lipschitz
property (1, p. 66]. The significance of this property will be discussed in Section
7. We mention here, however, that if Q has this property, then the various
intrinsic Lipschitz spaces ILip, ,(2) coincide (up to equivalence of norms)
with their counterparts Lipy ,(2) that arise when the Euclidean distance is
used instead of the intrinsic distance.

5. Proof of the approximation theorem (Theorem 1). Let ® be a smooth

vector field determining the smooth cone property for Q. Let Q be a nonnega-
tive, infinitely differentiable function on R" having support in the unit ball
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B1(0) and satisfying [ 5, Q(v) dy = 1. Given u in C*(Q) and e satisfying
0 < e £ 1, we may, noting that for x in Q the segment from x to x + e(®(x) +
v) belongs to @ for any v in B,(0), write Taylor's formula for #(x) in the form

e
— (_1)_ ||
" (x) B la|sk—1 —C.YT ¢

% fs,m QU)D%u (e + e(3(x) + ) (®(x) + »)dy

+ (—1)% Z L QO)(@E) +y)dy

la|=k

X fo Du(x + te(®(x) + )t
We let u#.(x) be the first sum above and so obtain
w(x) — ue(x)
— Yk ’“‘ldt

laj=k &
x fm(o) Q) (2(x) + ¥)Du(x + te((x) + ¥))dy
4 oz o)
(=" l;-k o t fQQ

X (2 — x)*Du(z) (te) "dz

= f f K, (t; x, 2)Du(z)dz
la =k 0
where

(5.1) Kot x,2) = %ft—" Q(z—_t—x - cp(x)) G —x)% || = k.

Since Q((z — x)/t — ®(x)) vanishes for |z — x| = #|®(x)| we have

gsupfd—tf |Ko(t; x, 2)|dz < C*
T 0 t Q

“dt i

lsupf Tf |Ka(t; x, 2)|de < Ce
2z 0 Q

It follows from these two estimates that

Il

lIA

(5.2)

lu — udl, £ Ceulp,, 1 =p =00,

In order to estimate its derivatives, it is useful to write u. in the form

u(x) =€ fﬂ Q(z__:_x — <I>(x)) Py 1(u;x,2)dz
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where P;(u; x, z) is the Taylor polynomial of degree j of u(x) in powers of
X — 3
i

Py(u;x,2) = Y Tylu;x,3)

Ti(u;x,2) = IZ_ D “u(z) (x — 2)%

Straightforward calculation shows that

9 ] )T, (D x,2) ifj>0
axi Tj(u,x, Z) - {0 lf] =0

i . _ Pj_]_(Diu;x, Z) ifj > 0
o, L%, 2) = {0 ifj=0

%Pj(u;x, 2) = T;(Du;x,2) forj=0.
1

Since

e R S C)

('“)xi €

g paer Lol - )

we may readily compute

Date(x) = ¢" fﬂ Q(Z - X fb(x)) P o(Dat: x, 2)dz

+ " fﬂ Q(Z _e *_ <I>(x)) T 1(Du; x, 2)dz

+ 2:‘1 D&, (x) fﬂ Q(Z

More generally, it can be verified by induction that D*u(x) can be written as
a sum of finitely many terms of one or both of the following types:

) T 1(Dat; x, 3)dz.

(G.3) €" fsz Q(Z)—_ﬁ — 4)(40)) Pi_1_1a)(Du; x, 2)dz

€

= Uas (€; x, 2) DV (2)dz

|6|<k 1—|al Q

_n—lalH’Yl a'-}y<€ ®; x) f (DBQ)( _ (I)(qc)) Tk_‘7|(1)7zl;x, z)dz
(5.4)
= f Vegys (€; x, 2) D" (2)dz

léi~k—l1|
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where |8] £ |y| £ min {k, |a|}, mus (e; ®; x) is a polynomial of degree at most
la| in the variables e D ®(x) for [N < |af, and

Ui (6; %, 2) = = Q(——— — @[)(x)) (x — z)°,
—n—lal+lv] g — x s
Vagys (€5, 2) = =7 magy (&5 5 2) (D°Q) (*—e— - ‘I’(x>) (x —2)"

If la| = k no terms of type (5.3) are present in the expression for Do (x).
Since Q((z — x)/e — ®(x)) = 0if |z — x| = ¢ ®(x)| we have the bounds

sup f | Uns (€5 %, 2)|dz < C €
z Q

sup f [Uas (e %, 2) |dx < C €,
z Q

and, since [8] = & — |y| in (5.4),

IIA

sup f Vapps(e: %, 2)|dz = C &7 | mags (65 @5.) ||
x Q

sup f [Vagys (€5 %, 2) [dx £ C & || Tragy (65 @5 )| |o-
z Q

Hence, for 1 £ p < o0, all terms of type (5.3) in D*u.(x) are bounded in
L7(Q) by Cllu)|i—1,, and all terms of type (5.4) are bounded in L?(Q) by
Cé=lel |ul, , (where this latter constant C involves a sum of constants
l|7agy (e; @ - )], for |8] = [v] = min {k, |a[}), that is

Cllull, f0<j<k—1
< |
'lle[mz = {C 6k—J |U|k.p ik §]

This conclusion follows for j < m and any « in W”?(Q), (1 £ p < w0), since
C”(Q) is dense in W™?(Q).

6. Proof of the lifting theorem (Theorem 2). We make use of the
mollifier Q and the rotations introduced at the beginning of Section 5. Given
v = {Ua} jar=i in I ja1<, Llocl(ﬂ) let Rv be defined by

lel
Ro(r) = 3 EH f QU)en (s + B(x) + ) (B(x) + y)'dy

Ja|<k—1

(- Yk , QO (@) +y)dy

la|=k &

X j; P, (x (P (x) + y))dL.

It can be verified that Ry € L,.'(2), but we do not need this fact. By Taylor’s
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theorem, Rv = u if v = {D*u} 4 <, and v € C(Q). We rewrite Rv(x) in the

form
1
R = T [ Keonee+ D [ ke
lalSk-1 v @ lai=k + 0 )
where
(_ 1)Ial .
Kute2) = S 06— — 0 — )", ] <k
and K,(f; x, z) is given by (5.1) above if |a|] = k. In view of the estimates

sup fﬂ |K,(x, 2)]|dz < o

sup f |K. (%, 2)|dx < o0
2 Q

and the corresponding estimates (5.2) for K,(¢; x, 2), we have that

IRoll, = € 2, leallyy 1= p <0
We require similar estimates for ||DfRv||, for |8| £ kand 1 < p < 0.

Suppose, for the moment, that each v, belongs to C*(Q). Computation of

DBRy(x) yields a shower of terms, the ‘“‘worst’” of which are of the following
type (for |B] = k):

k « ! -
6y A [ om@w w06+ e e

N 1

- _k_ »f() %_t j;?m)) Q(y)(tl‘)(x) + y)aDyBUa(x + (@ (x) + y))dy

al

. Lt

6.2) = = | Kas(t; %, 2)0a(2)dz
o ¢ Q

where, for |a| = |8] = &,

CUE DS @) + 30, 2 = x4+ H@E) + ).

Since F(y,x) = D(Q(y)(®(x) + v)*) and V,F(y, x) are uniformly bounded,
the kernels K,z have the following properties:

Kas(t;x,2) =

(6.3) Kaslt;x,2) =0 if |x —z| =2 ¢(1 4+ [|®]]),
(6.4) f K.s(t;x,2)dz = 0 forall x and ¢,
Q

(6.5) |Kas(t;x,2)] £ Ci™ forall x, 2, ¢,
(6.6) |V.Ku(t;x,2) = Ct™1 forallx,z, L.

Since v, is smooth the integral (6.1) is absolutely convergent; so the change
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of order of integration is justified. The integration by parts is also justified
for each nonzero ¢, so that (6.2) should be interpreted in the principal value
sense:

1
6.7) f (—i—t f Kos5(t; x, 2)v.(2)dz = lim Syva(x) = Sv.(x),
0 Q Now

where

Syo(x) = f2 1_‘% f Kuslt; %, 206

We shall show that S is a bounded operator on L?(2) for 1 < p < .
Forj=1,2,...let

. 2-j+1 dt
Tplk) = . 7 J, Kos(t; x, 2)v(2)dsz.

-7

By (6.3) and (6.5), 7'; is bounded on L?(2) for 1 < p < o, with bound in-
dependent of j. Now the adjoint of 7, is given by

2—f+1dt
TXv(x) = fz_j n fﬂ Kas(t; 2, x)v(2)dz.

Denote the norm of any operator 7" on L2(Q) by ||T||. We shall use a lemma of
Cotlar (see Fefferman (8, pp. 102-103]) to derive estimates for ||Sy|| from
estimates on ||7°, 7 *|| and [|T*T,||. Now 1,7 *v(x) = [o Hy(x, ¥) v(y) dy,

where
2—-1+1 2=Jj+1
dt ds
Hij(x,y) = f 7_[ Gy syx, ) —
2-1 27 S

G(ty S;xry) = j'&l Ka5<t;x» Z)Kaﬂ(s;y) Z)dz'

By (6.3) the line segment from x to z lies in Q provided K,s(¢; x, z) # 0. Hence
using (6.3) — (6.6) we obtain, for t < s,

G six, )] = 1£2Kaa(f;xy 2)[Kas(s; 9, 2) — Kap(s; y, x)1dz
< Ccsm? f |Kas(t; %, 2)||x — 2]dz = CsT7 M.
2
Moreover, by (6.3) again, G(¢, s;x,y) = O unless |[x — y| < 2s(1 + ||®||); so

sup fﬂ G (t, 53 %, 7)|dy

IIA

c,

N

ct.

N

IA

sup f IG(t, s;x,y)|dx
Y Q
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If s < ¢ we can obtain similar estimates with s/t in place of ¢/s. It follows that

IIA

sup fn \H (%, 9)|dy < 2717,

IIA

—li—j]
aup [ |Hyte i 5 cote
Yy
and ||T°,T*|| £ C 2717l We require a similar estimate for 7'*7'; but cannot
obtain it in the same way, since, in general, fg Kaus(t; x, 2) dx # 0. Recalling
that
2-x

Kos(t; %, 2) = (:j;ll)fk " Df(Q(—; <I>(x))(z - x)“) ,

la| =[] = &,

we let

Rupltiz,s) = =D, (Q(Z—‘;—x - «1><x>)<z - x)“) :
Let T, be the operator associated with the kernel K in the same way that 77,
was associated with Kas. Now |Kas(t; %, 2) — Kas(t; x, 2)] £ C +7+, so
|T; — Tyl £ C2, and ||[T*1"; — T *T,|| £ C 277. Suppose that ¢ < j; the
fact that

f Kas(t;x,2)dx = 0 foralltand z
Q

implies, as above, that ||7*T,|| £ C 277, whence ||1°*1,|| £ C2"7. 1fi > j,
then the estimates ||7°*7; — T*T,|| < 27, and ||T*7,|| < C2/~"imply that
T*T,|| = C 2% Thus ||I;7*] £ C 271" and ||T*T,|| = C 271*1 in
any case. By Cotlar’s lemma, there is a constant C so that ||Sy|| = C for all N.

Suppose, for the moment, that Q is a space of homogeneous type with respect
to its intrinsic metric. We show that

(6.8)  [ISwlli = C o]l o,

with constant independent of N, for all v in the Hardy space H!(§2). Now Sy is
an integral operator with kernel

! di
Ky(x,2) = 2_NKaB(t; x, 2) e

Since  is of homogeneous type it suffices (see Coifman and Weiss |7, formula
(2.14)]) to prove that

(6.9) f [Bn(x,y) — Ky(x,2)|de = C

p(z,2)>Cp(z,1)

for some constant C independent of N. (Recall that p is the intrinsic metric
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on Q). Let C > 4(1 4+ ||®]]). Fix y and z in Q and let € = p(y, 2). If p(x, 2) >
Ce then p(x, v) > (C — De. If Ku(l; %, y) # 0 then p(x, v) = |x — .
Similarly, if K.s(t;x,2) 5 0 then p(x, z) = |x — z|. Thus the left hand side of
(6.9) is less than the sum of the integrals

f IKy(x,y) — Ky(x, 2)|dx  and
la—zi>Ce

f |Ky(x,y) — Ky(x, 2)|dx.
lz—yi>(C—1)e

If suffices to estimate either of these integrals. The first is dominated by

1
(6.10) f dxf 4Ka5(t;x,y)—Kaa(t;x,2)|@£~
[z—z|>Ce 0 ¢

Both terms in the integrand of (6.10) vanish if |x — y| > ¢(1 + ||®||) and
|x — z| > £(1 + ||®]]), both of which conditions are satisfied if either [x — 2| >
14+ [|®]|+€ or ¢t <minflx —y[, |x—2z[}/Q+[|®]]). Note also that
v =yl z v =g =y =2 2 [x — 5[/2. By (6.6) [Kas(t; %, ) — Kas(t; x, 2)]
< Ct71p(y, z) = Ct="'e. Thus (6.10) is dominated by

Ce f dx f 7 < Ce f v — 2|7 e = C.
lz—zi>Ce Cla—z| lz—z|>Ce

Hence (6.9) holds and Sy is bounded on H'(Q) into L'(Q) independently of V.
The same is true of Sy*. By interpolation (see [7, Theorem D]) Sy and Sy* are
bounded (independently of N) on L?(Q2) for 1 < p =< 2, and then by duality
for 2 £ p < 0. We now show that these latter assertions hold even if the
homogeneity assumption on  is dropped. Thus we may assume that Q is
unbounded.

Let {¢, : v € Z"} be a C* partition of unity for R* subordinate to the cover
of R" by balls B, (v) of radius n with centres » in the integer lattice Z*. For each
vin Z"let @, = Usea A 8oy Cr where B(v) = B,y14118;1(v) and C, is the cone
Ci(x; @) = Ugay<t By(x + 9P (x)). Clearly @, C Q. The domain Q, is bounded
and has the ordinary cone property, and so is a space of homogeneous type
with homogeneity constant (C in (2.1)) that can be chosen independent of ».
Since Sy and Sy* are bounded on L%(Q), their restrictions to each Q, are simi-
larly bounded on L?(2,). In addition they are bounded from H'(Q,) to L'(%,),
independently on N and ». To prove this assertion for Sy, for instance, it
suffices (see |7, Section 2]) to show that |[Syu||; £ C for all (1, o0 )-atoms « on
the space Q,; and such estimates follow easily from inequality (6.9), the fact
that the operators Sy are uniformly bounded on L2*(Q,), and the boundedness
of the domains Q,. It then follows by interpolation and duality that the
operators Sy and Sy* are uniformly bounded on L?(Q,) for any fixed index p
in the interval (1, o). Applied to functions with support in B,(v) these
operators yield functions with support in Q,, which can then be extended to
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vanish identically on @ ~ Q,. If ¥ = {v,} ja=x belongs to II,qj<;x L7(Q) then
Yo = {0} belongs to Il 4« L7(B,(»)) and Sy (¥,v.) belongs to L?(Q) and
has support in Q,. There is an integer M such that any x in Q belongs to at
most M of the domains Q,. Hence

V4
|| Svallp.0 = “Z Sy (Yiva)
vezn Dy
S MY |ISv(Wa)llh e, £ Clloal 5. o
vezn
We return to formula (6.7). If o, belongs to C*(Q) M L?(Q) then by Fatou's

lemma

[|Sta]p = liri} inf [|Sytallp = C|lvall,-
It follows that if such holds for all « then Rv belongs to W*?(Q) and
©6.11) [IRvlles = C 2, loall

Since C”(Q) M L?(Q) is dense in L?(2), inequality (6.11) holds for all » in
Il .. < Z7(Q), and the first assertion of the theorem is proved.

In order to obtain the boundedness of R from (11,4« L1(©Q)) X (114 s
H'(Q)) into W*1(Q), where Q is a space of homogeneous type, we first note
from (6.1) and (6.7) that Sy converges to S strongly on L?(Q), and therefore the
expression for DRy is valid for v in Il,. /<, L2(Q). Since H'(Q) N L2(Q) is
dense in H'(Q), and since the operators Sy are uniformly bounded on H'(Q)
into L'(Q), so is S and the proof is complete.

Remark. We could avoid the use of the H! theory in the proof of the part of
the lifting theorem where 1 < p < o Dby replacing inequality (6.8) by weak-
type (1, 1) estimates for the operators Sy, uniform in N. It is shown in Coifman
and Weiss [6], that such estimates also follow from (6.9).

7. Geometric and analytic properties of domains. Given a map
¥ Q— Q between domains in R”, and a function # on @/, let ¥Y*i be the
function on @ defined by (¥*u) (x) = u (¥ (x)) for all x in Q. It can be verified
(see [1, p. 63]) that if ¥ belongs to £~ (Q), then, for all indices k& and p, the
map ¥* is a bounded linear operator from W*?(Q") to W*?(Q). We will call @
and Q' isomorphic if there is a bijection ¥ : @ — Q' such that ¥ ¢ #*(Q) and
-1 € Z=(Q'); in this case the map ¥*: W"?(Q') — W*?(Q) is an isomor-
phism between these Banach spaces.

We call a property of domains intrinsic if it is preserved by isomorphisms.
The cone property and the smooth cone property are examples of intrinsic
geometric properties. Let us say that @ has the approximation properiy if the
conclusion of Theorem 1 holds for all indices &, m, and p; it is easy to see that
the approximation property is also intrinsic. A domain @ is said to have the
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extension property if there is a linear operator E : L' (Q) — L' (R") such
that, for functions # € L,.}(Q), the restriction of Eu to Q coincides «.e. with u,
and such that, for all positive integers k, and all indices p, the restriction of £
to W¥?(Q) is a bounded operator from W ?(Q) to W*?(R”). The weakest
geometric property of a domain that is known (see Stein [16, p. 180]) to imply
the extension property is the strong local Lipschitz property [1, p. 66]).

Let Q; be the domain in R? obtained from R? by deleting the negative
xy1-axis and the closed ball of unit radius centred at the origin; let @, be the
intersection of Q; with the upper half-plane, x» > 0. [t is easy to see that Q; and
Q, are isomorphic, and that both of them have the smooth cone property, and
hence the approximation property. In addition, Q, has the strong local Lipschitz
property, and hence the extension property, and it satisfies Muramatu’s cone
condition. In contrast, €, has none of the latter three properties, so these
properties are not intrinsic, and the smooth cone property does not imply any
of them. Clearly Muramatu’s cone condition implies the smooth cone property;
it also implies the strong local Lipschitz property, and hence the extension
property. Conversely, if a domain has the smooth cone property and the exten-
sion property, then it satisfies Muramatu’s cone condition.

Next consider the domain € obtained from R? by deleting the non-positive
xy-axis. This domain has the cone property, but not the smooth cone property.
Nevertheless, it has the approximation property; we now outline a proof of this
fact. For each number 6§ in the interval (0, 1), let Q5 be the domain obtained
from Q by deleting the closed ball of radius 6 centred at the origin. The domains
Qs all have the smooth cone property; indeed we can specify a smooth vector
field ¢ on Q, depending only on the polar angle 6, such that, for each 4§, the
restriction of ® to 2 determines the smooth cone property for 25, and such that
for all integers j,

(7.1)  maxsup |[D*®(x)| £ C§7.
lal=j x€
Let K = 3 + ||®||. Fix integers k and m, with 0 < £ < m, and an index p.
Let # belong to W*?(Q), and let 0 < § < 1. The first step in the proof is to
obtain a function v; in W*?(Q) such that
(i) v coincides with a polynomial of degree £ — 1 in the ball B;(0),
(i) ool li.o = Clletf]x.5, and

(iii) [l — ull, = C & [ulls »-

To obtain the function v;, we first find a polynomial P of degree & — 1 such that

Pk . Bags = Cllulls,, and

|[F — “HP,BQK(;(O) = Co"lfullk s

then we let v; = g5 - (u — P) + P, where g; is an appropriate, smooth radial
function that vanishes on Bg;(0) and is equal to unity outside Bsg;(0). Next
we temporarily regard v; as a function on Qs, and consider the proof of the
approximation theorem, for this domain, with ¢ = §. The estimates (7.1) above
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imply that the polynomials g, (8; ®; x) appearing in formula (5.4) are
uniformly bounded on @5 by a constant independent of §. The approximation
procedure therefore yields a function u,; in W"?(Q;) such that

s = vallp05 = C6Mlullip,0, and

I|u15iim,p,95 = C Bk_mHZlHk'p,[].

Recall that v; coincides with a polynomial of degree & — 1 in the ball Bg;(0);
a glance at the proof of the approximation theorem shows that u; also coincides
with this polynomial in Q; M B25(0). We extend w5 so that it coincides with
this polynomial in @ M By;(0). Then

oo — wsll,0 < Co*||ullsp0, and

Hllai ‘m,]},il = C am—k! ilt} ‘/\',IJ,IZ-

Since the domain Q has the approximation property and the weak cone
property, we could use the first part of the proof of Theorem 9 to show that,
under the hypotheses on k& and p of that theorem, W*?(Q) C ILipy(Q). This
imbedding holds, however, for all domains @ with the (ordinary) cone property.
We omit the proof of this fact, except to mention that it depends on Gagliardo’s
observation (see [1, p. 68]) that a domain with the cone property can be
expressed as the union of a locally bounded collection of subdomains each with
the strong local Lipschitz property.

One strategy for proving theorems about Sobolev spaces is to first prove
these for R", and then to argue that they hold for all domains with the exten-
sion property. For instance, all domains with the extension property have the
approximation property, because R" has this property. Since the approximation
property is intrinsic, it is possessed by all domains that are merely isomorphic
to some domain with that property. This is an alternate proof that the domain
Q, considered above has the approximation property.

It is not clear whether the strategy described above can be used to prove
the lifting theorem for subdomains of R* because it is not clear whether the
extension property implies the conclusions of this theorem. (Also, we do not
know whether the extension property implies the smooth cone property.)
Furthermore, we do not know whether every domain with the smooth cone
property is isomorphic to some domain with the extension property, nor even
whether the conclusions of the lifting theorem are intrinsic. The first conclusion
of Theorem 5 does hold, however, for all domains with the extension property.
Finally, the conclusions of Theorem 9 hold, even with Lipy ,(?) in place of
ILipa ,(©), for all such domains.
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