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Algebraicity of some Weil Hodge Classes

Kenji Koike

Abstract. We show that the Prym map for 4-th cyclic étale covers of curves of genus 4 is a dominant

morphism to a Shimura variety for a family of Abelian 6-folds of Weil type. According to the result of

Schoen, this implies algebraicity of Weil classes for this family.

1 Introduction

The Hodge conjecture is still open even for Abelian varieties. Because the conjecture

is true for all projective 3-folds, the first targets are 4-folds. In this dimension, we have

non-trivial examples of Hodge classes for special Abelian varieties that are called of

Weil type.

In [7] and [8], Schoen constructed algebraic cycles on generalized Prym varieties

for cyclic covers that give Weil classes, and he proved algebraicity of Weil classes for a

family of Abelian 6-folds of Weil type for k = Q(
√
−3) with some δ by showing the

denseness of Prym varieties in the family.

This method works also for Weil 4-folds and 6-folds for Q(
√
−1) with δ = 1. For

the 4-dimensional case, van Geemen gave another proof in [4].

In this note, we consider the 6-dimensional case. The problem is to show the

dominantness of the associated Prym map. We construct genus 13 curves C13 in

(P1)4 that are invariant under a cyclic permutation σ of factors of (P1)4. So σ acts on

C13, and we show that this action is fixed point free. For the covering C13 → C13/〈σ〉,
we compute the codifferential map of the Prym map explicitly.

2 The Prym Construction of Abelian Varieties of Weil Type

In this section, we explain our problem and state the main theorem.

Let us recall the definition of Abelian varieties of Weil type (see [3, 9]). Let A be

an Abelian 2n-fold (n ≥ 2) with a polarization E and let φ : k → End0(A) be an

inclusion of an imaginary quadratic field k = Q(
√
−d). We assume that

E
(

φ(
√
−d)∗x, φ(

√
−d)∗y

)

= dE(x, y).

Then we say that A is of Weil type if the multiplicities of eigenvalues
√
−d and −

√
−d

of the action of φ(
√
−d)∗ on the tangent space T0A are equal to n. Then H1(A, Q)

has a structure of k-module and

H(x, y) = E
(

x, φ(
√
−d )∗y

)

+
√
−dE(x, y)
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gives a Hermitian form on H1(A, Q) of the signature (n, n). The class δ = det H mod

(k∗)2 gives an isogenus invariant, and we call this the discriminant of (A, E, φ). For

these Abelian 2n-folds, Weil constructed a subspace

W (A) =

n
∧

k

H1(A, Q) ⊂ Hn,n(A) ∩ H2n(A, Q)

of the Hodge classes (dimQ W (A) = 2), and elements in W (A) are called Weil classes.

The special Munford-Tate group for a general A is a special unitary group of the

signature (n, n), and in this case we have

Hn,n(A) ∩ H2n(A, Q) = Dn(A) ⊕W (A),

where D•(A) is the subspace of classes generated by divisors. To prove the Hodge

conjecture, therefore, we need algebraic cycles that never come from divisors.

In special cases, the setting up of the problem is established in [7] (see also [4]).

We consider a curve C13 of genus 13 which is a 4-th cyclic étale cover of a curve C4

of genus 4. Then we have étale double cover C13 → C7 of a curve C7 of genus 7 as

the intermediate cover. Let us consider the Prym variety P = Prym(C13/C7) that

is the connected component of the kernel of the norm map Nm : J(C13) → J(C7)

including 0 ∈ J(C13). This is a principally polarized 6-dimensional Abelian variety.

The Galois group Gal(C13/C4) ∼= Z/4Z acts on P, and P becomes Abelian variety of

Weil type for Q(
√
−1) by this action. It is known that the discriminant δ of P is 1

(see [4]), and the Weil classes W (P) are generated by algebraic cycles (see [7]).

Let M13/4 be the moduli space of 4-th cyclic covers C13 → C4 and A6 be the

moduli space of principally polarized Abelian varieties of dimension 6. Then we

have the Prym map

Pr : M13/4 → H6 ⊂ A6, {C13 → C7 → C4} 7→ Prym(C13/C7),

where H6 is the Shimura variety of dimension 9 given in [4]. Therefore the Weil

classes W (A) are generated by algebraic cycles for a general A ∈ H6 if the image of

Pr is Zariski dense in H6. Because the moduli space M13/4 is finite over the moduli

space M4 of genus 4 curves and dimM4 = 9, it is enough to prove the dominantness

of Pr if we show that the differential (equivalently, the codifferential) of Pr at some

point of M13/4 is an isomorphism.

Let us take Π = {X → Y → Z} ∈ M13/4 and the line bundle L on Z which gives

π : X → Z. Then we have the decomposition

π∗ωX = ωZ ⊕ (ωZ ⊗ L) ⊕ (ωZ ⊗ L2) ⊕ (ωZ ⊗ L3).

Replacing moduli spaces by them with a level structure if necessary, cotangent spaces

at Π and at the intermediate Prym variety P of Π are represented by

T∗
P H6 = (T∗

P A6)Gal(X/Z)
= H0(Z, ωZ ⊗ L) ⊗ H0(Z, ωZ ⊗ L3),

T∗
ΠM13/4 = T∗

ZM4 = H0(Z, ωZ ⊗ ωZ),
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and the codifferential map of Pr at Π is given the multiplication map

(1) µ : H0(Z, ωZ ⊗ L) ⊗ H0(Z, ωZ ⊗ L3) → H0(Z, ωZ ⊗ ωZ).

Now we state our result:

Theorem 2.1 There exists a 4-th cyclic étale cover π : X → Z of genus 4 curve Z such

that the multiplication map µ in (1) is an isomorphism, and therefore the Prym map

Pr is dominant.

By the specialization argument in [7], we know that

Corollary 2.1 The Weil classes are generated by algebraic cycles for Abelian 6-folds of

Weil type for Q(
√
−1) with δ = 1.

Remark 2.1 By the Proposition 10 in [8], we see that the Weil classes are generated

by algebraic cycles for all Abelian 4-folds of Weil type for Q(
√
−1).

3 Complete Intersections in (P
1)4 and a Cyclic Permutation

In this section we construct a genus 13 curve C13 in (P1)4 with a fixed point free

automorphism σ of order 4, and we show that the natural projection C13 → C13/〈σ〉
satisfies the required condition.

Let [s0 : s1]× [t0 : t1]× [x0 :x1]× [y0 : y1] be the coordinate of (P1)4. For simplicity,

we denote this by (s, t, x, y) with s = s1/s0 and so on. Let σ be a cyclic permutation

(s, t, x, y) 7→ (y, s, t, x) on (P1)4. Then σ acts on the vector space

V = H0((P
1)4,⊗4

i=1 p∗
i OP1 (1)) = ⊕Csit jxk yl, i, j, k, l ∈ {0, 1},

where pi : (P1)4 → P1 is the i-th projection. Let V (α) be the eigenspace for the

eigenvalue α. We have the following basis of V (α):

(2)

V (1) : a1 = s + t + x + y, a2 = st + tx + xy + ys,

a3 = txy + sxy + st y + stx, a4 = sx + t y,

a5 = stxy, a6 = 1,

V (−1) : b1 = s − t + x − y, b2 = st − tx + xy − ys,

b3 = txy − sxy + st y − stx, b4 = sx − t y,

V (i) : c1 = s − it − x + i y, c2 = st − itx − xy + i ys,

c3 = txy − isxy − st y + istx,

V (−i) : d1 = s + it − x − i y, d2 = st + itx − xy − i ys,

d3 = txy + isxy − st y − istx,
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where we identified a multi-homogeneous polynomial f ∈ V with the polynomial

f /(s0t0x0 y0) in affine coordinates. Note that every element in V (1) is invariant also

for the involution

τ : (P
1)4 → (P

1)4, (s, t, x, y) 7→ (x, t, s, y),

namely, they are invariant under the dihedral group G = 〈σ, τ 〉.

Lemma 3.1 The linear system V (1) gives a morphism ϕ : (P1)4 → F ⊂ P5 of generic

degree 8, where F is the cubic hypersurface

(3) a2
1a4 − a1a3a4 + a2a2

4 − 4a2a5a6 + a2
3a6 = 0.

So the fiber ϕ−1(P) of a generic point P ∈ F is a G-orbit.

Proof The morphism

(P
1)4 → P

4, (s, t, x, y) 7→ [a1 :a2 + a4 :a3 : a5 :a6]

induces an isomorphism (P1)4/S4 → P4 because they are the fundamental symmet-

ric polynomials. Hence V (1) has no base points, and ϕ is a finite morphism onto

the image. We can check that the ai s satisfy the above cubic equation, and that the

morphism F → P4 is of generic degree 3. Now we see that ϕ is of degree 8 since

|S4| = 24.

Lemma 3.2 Let C be a hyperelliptic curve of genus 4, and L be a non-trivial line bundle

such that L2
= OC . Then the associated map ϕωC⊗L : C → P2 defined by H0(C, ωC⊗L)

satisfies one of the following conditions.

(1) ϕωC⊗L is a rational map to a conic in P2.

(2) ϕωC⊗L is a birational map.

Proof Because L is isomorphic to OC (P1 − P2) or to OC (P1 + P2 − P3 − P4) where

π(Pi)’s are distinct blanch points of the double cover π : C → P1, it is enough if we

consider these two cases.

Let y2
= f (x) be the equation of C and π(Pi) = λi . Then a basis of H0(C, ωC ⊗L)

is given by

(x − λ2)
dx

y
, (x − λ2)2 dx

y
, (x − λ2)3 dx

y
,

for L = OC (P1 − P2), and this is the case (1) in the assertion. In the case of L =

OC (P1 + P2 − P3 − P4), we can take the following basis of H0(C, ωC ⊗ L)

η1 = (x − λ3)(x − λ4)
dx

y
, η2 = (x − λ3)(x − λ4)2 dx

y
, η3 =

dx

(x − λ1)(x − λ2)
.

Because η2/η1 = x−λ4 and η3/η1 = g(x)y with a rational function g(x), we see that

ϕωC⊗L is birational in this case.
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Proposition 3.1 For general elements f1, f2, f3 ∈ V (1), the complete intersection f1 =

f2 = f3 = 0 defines a smooth curve X of genus 13, and we have an isomorphism of vector

spaces

H0(X, ωX) ∼= V (1)
/

(C f1 ⊕ C f2 ⊕ C f3) ⊕V (−1) ⊕V (i) ⊕V (−i).

The cyclic permutation σ acts on X without fixed point. Hence we have an étale cyclic

cover X → Y = X/〈σ2〉 → Z = X/〈σ〉, and an isomorphism H0(Z, ωZ) ∼= V (−1).

The genus 4 curve Z is not hyperelliptic.

Proof Because V (1) is base point free and the divisor given by a general f ∈ V (1) is

reduced, the curve X = { f1 = f2 = f3 = 0} is smooth for general f1, f2, f3 ∈ V (1).

By the Adjunction formula, we know that the restriction of V on X gives the canonical

class and the genus of X is 13.

Obviously σ acts on X, and the fixed points of σ2 on (P1)4 is

∆ = {(s, t, s, t) ∈ (P
1)4} ∼= P

1 × P
1.

The restriction of the basis of V (1) in (2) to ∆ is given by

a1 = s0t0(s1t0 + s0t1), a2 = s0t0s1t1, a3 = s1t1(s1t0 + s0t1),(4)

a4 = s2
1t2

0 + s2
0t2

1 , a5 = s2
1t2

1 , a6 = s2
0t2

0 ,

up to constant, with coordinates [s0 : s1] × [t0 : t1]. They have no base point and we

see that C ∩ ∆ = φ for general fi ’s.

Because V (−1) is the unique 4-dimensional eigenspace for the action of σ, we

may identify V (−1) with H0(Z, ωZ).

Now let L be the line bundle corresponding to π : Y → Z. We see that

H0(Z, ωZ ⊗ L) ∼= V (1)/(C f1 ⊕ C f2 ⊕ C f3).

By Lemma (3.1), the image of ϕωZ⊗L is a cubic curve E which is a section of F by

P3 ⊂ P5, and this is not any case in Lemma (3.2). Therefore Z is not hyperelliptic.

Remark 3.1 We can check that the singular locus of F is 1-dimensional, and that

the section of F by a generic P3 in P5 is a smooth cubic curve E. The Prym canonical

map ϕωZ⊗L is just the natural map Z → E = Z/〈τ 〉, so our curve Z is bi-elliptic.

Let f1, f2, f3 and X be as in Proposition (3.1), π : X → Z = X/〈σ〉 be the quotient

map and L be the line bundle on Z corresponding to π. Because Z is not hyperelliptic,

the multiplication map

Sym2 H0(Z, ωZ) → H0(Z, ωZ ⊗ ωZ)

is a surjection by Max Noether’s Theorem (see [1]). By Riemann-Roch Theorem, we

see that this map has the 1-dimensional kernel. We denote a generator of this kernel
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by Q, and we use the same symbol for the corresponding element in Sym2 V (−1).

Namely, we have isomorphisms

Sym2 V (−1)/CQ ∼= H0(Z, ωZ ⊗ ωZ),

V (i) ⊗V (−i) ∼= H0(Z, ωZ ⊗ L) ⊗ H0(Z, ωZ ⊗ L3).

Therefore the map µ in (1) defines the induced multiplication map

(5) m : V (i) ⊗V (−i) → Sym2 V (−1)/CQ, c ⊗ d 7→ cd mod ( f1, f2, f3)

by the above identification. (The map m is well-defined only modulo f1 = f2 =

f3 = 0.) Now the bijectivity of µ is equivalent to the linear independence of

{cid j}1≤i, j≤3 modulo f1 = f2 = f3 = 0.

Let us show the linear independence. First of all, we have the following quadric

equations (these are a part of the Segre relations, and we can check them with a

computer)

(6)

b2
1 = a2

1 − 4a2a6, b2
2 = a2

2 − 4(a1a3 − a2a4) + 16a5a6,

b2
3 = a2

3 − 4a2a5, b1b3 = a1a3 − 2a2a4, b1b4 = a1a4 − 2a3a6,

b3b4 = −a3a4 + 2a1a5, b2
4 = a2

4 − 4a5a6,

and

(7)

c1d1 = a2
1 − 2a2a6 − 4a4a6, c3d3 = a2

3 − 2a2a5 − 4a4a5,

c2d2 = a2
2 − 2a1a3 + 2a2a4,

1

2
(c1d3 + c3d1) = −a1a3 + a2a4 + 8a5a6,

i

2
(c1d3 − c3d1) = b2b4,

1

1 − i
(c1d2 − ic2d1) = a1a2 − 4a3a6,

1

1 + i
(c1d2 + ic2d1) = b1b2,

1

1 + i
(c2d3 + ic3d2) = −a2a3 + 4a1a5,

−i

1 + i
(c2d3 − ic3d2) = b2b3.

Without a loss of generality, we may assume that our equations f1 = 0, f2 = 0 and

f3 = 0 are given by

(8)
a4 = A1a1 + A2a2 + A3a3, a5 = B1a1 + B2a2 + B3a3,

a6 = C1a1 + C2a2 + C3a3,

with coefficients Ai, Bi ,Ci ∈ C. Substituting them, we can eliminate a4, a5, a6 in

equations in 6). Then each product bib j in (6) is a linear combination of six elements

(9) a2
1, a2

2, a2
3, a1a2, a1a3, a2a3.
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Since there are seven elements in (6), we have a non-trivial linear relation of bib j ’s

in (6) which gives the unique vanishing quadric Q. Therefore aia j ’s in (9) and

b1b2, b2b3, b2b4 give a base of the vector space Sym2 V (−1)/CQ (modulo equations

in (8)).

Now let us consider a base of the vector space V (i) ⊗ V (−i) given in (7). Elimi-

nating a4, a5, a6, we obtain a vector equation γ = Mα, where

γ =
t
(

c1d1, c2d2, c3d3,
1

1 − i
(c1d2 − ic2d1),

1

2
(c1d3 + c3d1),

1

1 + i
(c2d3 + ic3d2)

)

,

α =
t (a2

1, a2
2, a2

3, a1a2, a1a3, a2a3),

and M is a matrix of polynomials in Ai, Bi,Ci . If we have det M 6= 0, we can conclude

that cid j ’s form a base of Sym2 V (−1)/CQ, and we finish the proof of theorem.

Let us consider the case that all Ai , Bi,Ci are 0. Then a4 = a5 = a6 = 0, and

obviously we have det M = 1. Therefore det M is not identically zero as a polynomial

of Ai, Bi ,Ci .
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