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STABILITY OF PLANE COUETTE FLOW
FOR HIGH REYNOLDS NUMBER
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Abstract

Experimental evidence shows that plane Couette flow becomes unstable when the
Reynolds number R reaches certain critical values. Linear stability theory does not predict
these observations and has been unable to locate these instabilities. A Chebyshev/QR
numerical technique is used to investigate much higher values of R than those previously
tested. In particular, values of R up to 108 are confidently tested, whereas previously
values of R up to only 2 X 104 have been considered.

1. Introduction

The stability of plane Couette flow has been a subject of intensive theoretical and
experimental research for over three quarters of a century. The question of
whether plane Couette flow is always stable to infinitesimal disturbances is still
unresolved.

Plane Couette flow occurs when the flow velocity depends linearly on the
transverse coordinate and is the simplest flow compatible with the Navier Stokes
equations. We consider a viscous, incompressible, isotropic fluid between two
infinitely long parallel planes at a constant distance apart and such that both
planes move tangentially in opposite directions at a constant speed. In dimension-
less variables, let the planes be positioned at y = ±1 and the Couette flow have a
velocity profile given by U(y) = y.

Squire [ 17] considered theoretically the three dimensional case and showed, for
disturbances periodic in the z direction, that a two dimensional disturbance gives
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a smaller critical Reynolds number .Rc than a three dimensional disturbance.
Therefore Squire's Theorem allows us to consider the simpler two dimensional
case.

Upon integration of the two dimensional continuity equation we obtain solu-
tions in terms of the stream function \p(x, y, t). The perturbed form of the
vorticity equation (as derived from the Navier Stokes equations) is linear in \p
with coefficients independent of x and t. We take the two dimensional dis-
turbance to be of the form

«*-^ (1)

where <f> = <]>(y) is the amplitude factor of the disturbance and is also the
eigenfunction of the problem which is complex valued and depends only on y, a is
the streamwise wavenumber, considered real and positive (complex values for a
are to be considered at a later date), and c = cr + ic, is the complex speed of
propagation of the disturbance and is the eigenvalue of the problem.

When we superimpose an infinitesimal two dimensional disturbance of the
form given in equation (1) upon the flow and by neglecting quadratic terms, we
obtain the fourth order dimensionless Orr-Sommerfeld differential equation,

</>"" - 2 o V ' + a4<t> - iaR(y - c)(^>" - a2<j>) = 0 (2)

with boundary conditions

* = 4 7 = 0 at y = ± i >

where R is the Reynolds number which depends on Uo, the velocity of the planes,
d, a representative linear dimension of the system, p, the viscosity and p, the
density and is given by R = puod/n which is constant

It can be seen from the form of our disturbance (1), that if c, = Im(c) < 0 then
the disturbance will decay away with time and allow the main flow to remain
stable. However if c, > 0 then the disturbances will increase and cause the onset
of a growing instability. For increasing values of aR the initial shear flow is
expected to become turbulent and therefore we would anticipate that c, should
become positive. Turbulence in parallel shear flows has been observed experimen-
tally by Robertson [16] and Reichardt [15] for moderate values of aR in the range
from 600 to 1450. Theoretically however, Couette flow has always been found to
be stable, that is c, < 0, for all aR so far considered. In Table 1 we give a
summary of the values of a and aR investigated to date by various authors.

Several numerical techniques have been employed to solve particular cases of
the general Orr-Sommerfeld equation. For plane Poiseuille flow Thomas [20]
applied a finite difference scheme, while Orszag [13] coupled a Chebyshev
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TABLE 1. Values of a, aR and maximum values of R considered by various authors

[3]

Author

Hopf(1914)
Gallagher and Mercer (1962)

Deardorff(1963)
Lee and Reynolds (1967)
Ellingsenera/.(1970)
•Davey(1973)
Present Work

a

0 - 4.64
0 - 8

2
0-24
0.5. 2.0
0.5, 1.0
0 - 100
0 - 4.64

2
10~" - 103

aR

0.125 - 12.5
1 - 300
1 - 103

1 - 3 . 1 X 10"
10 - 200
103 - 10"
0 - 105

0.125 - 104

1 - 2 X 105

10"

Maximum R

- 5 . 4
300
500
1430
200

2 X 10"

10"
105

108

* Although not given explicitly in his paper Davey (1973) states that these values were considered by
him.

polynomial approximation with the QR algorithm of Wilkinson [23]. For the
particular case of a Blasius boundary layer velocity profile, Jordinson [9] and
Osborne [14] programmed an iterative scheme based on the finite difference
approximations associated with the Orr-Sommerfeld equation. To calculate the
neutral curve for the Blasius profile, van Stijn and van de Vooren [21] applied a
shooting procedure together with a method of order reduction. For plane Couette
flow, as given in equation (2), Grohne [7], Hopf [8] and Ellingsen, Gjevik and
Palm [3] employed asymptotic expansions, [3] and [8] considering expansions in
terms of Bessel and Hankel functions. Gallagher and Mercer [5] and Lee and
Reynolds [10] applied variational techniques with differing approximating func-
tions. Deardorff [2] coupled a finite difference scheme with a trial and error
numerical method, and Davey [1] applied a parallel shooting procedure with
'complete' orthonormalization.

In this paper the calculation of the eigenvalues is performed using a method of
Chebyshev polynomial approximation developed by Morris [11] and Morris and
Horner [12] coupled with the QR algorithm of Francis [4]. Morris and Homer [12]
comment on the accuracy of this method by comparing Chebyshev series solu-
tions with known results. In [11], various forms of the Orr-Sommerfeld equation
are treated and results compared with those of previous authors; and in particular
for Couette flow a comparison is made of standard differential equation solutions
with finite difference method results obtained in [14]. Orszag [13] shows that
solving the Orr-Sommerfeld equation numerically using expansions in Chebyshev
polynomials coupled with the QR algorithm gives results of "great accuracy... very
economically".
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2. Chebyshev/QR technique

The method of Chebyshev polynomial approximations employed in this work is

taken from the paper by Morris and H o m e r [12]. Following the notation of

Morris and H o m e r a brief summary of the Chebyshev series method is given.

They considered general problems of the form

2 ^ . { ) 7 T = 0, <K±l) = 4>(1>(±l) = 0, (3)
,=o dy

where pt(y, I) are polynomials at most quadratic iny and linear in an eigenvalue
£. It is assumed that the solution <j>(y) can be written as an infinite series of
Chebyshev polynomials in the form

00

* ( y ) = 2 ' a k T k ( y ) = { a 0 + a j x { y ) + a 2 T 2 ( y ) + •••
k = 0

where Tk{ y) is the Chebyshev polynomial of the first kind of degree k, given by
Tk(y) = cos(kcos~ly), ak is independent of y but dependent on the eigenvalue £,
and 2' denotes a summation involving {a0 rather than a0. The derivatives,

), (' = 0.1,2,3,4) can be written

(4)
k = 0

with a f = ak and <f*Xy) = ${y\
On the substitution of (4) into (3) a set of results can be obtained in the general

form

r,s

The relevant coefficients wtj for the differential equation governing Couette flow
can be found in Table 1 of [12]. Since the coefficients c, are linear functions of the
eigenvalue £, the eigenvalue problem then reduces to solving

[A -£fl]a = 0.

This resulting matrix equation is then solved using the QR algorithm of [4].
All calculations carried out were performed to double precision accuracy using

complex valued variables and functions on the UNIVAC 1106 computer at the
University of Wollongong. Eigenvalue results are stated to six significant figure
accuracy throughout. The order iV of the matrix necessary for convergence varied
from 15 to 100 depending on the values of a and aR.
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3. Results

[s]

The eigenvalue X\ tabulated in Tables 2, 3, 5 and 6 is defined as in Gallagher
and Mercer [5] as X', = (4a/ir2){iRc - a). In Tables 2, 3 and 4 we compare the
results obtained using the Chebyshev/QR technique with those of Hopf [8],
Gallagher and Mercer [5], Lee and Reynolds [10] and Ellingsen, Gjevik and Palm
[3]. These are tabulated firstly to substantiate previous efforts to obtain the
eigenvalues of the Orr-Sommerfeld equation, and secondly to compare results
obtained by such widely varying techniques as used by these other authors. The
largest discrepancy in results observed, occurs in the third significant figure
(excluding [8]), and so we consider, with confidence, higher values of a and R
using the Chebyshev series/QR algorithm method (also bearing in mind the
comments of [ 11 ], [ 12] and [ 13]).

In Table 5 we show results for aR in excess of not only any previous authors'
attempts, but also values of a and R in excess of the experimental values of the

TABLE 2. Hopf (1914). Gallagher and Mercer (1962) and Chebyshev results for Re(V,)

aR

0.125

1.25

12.5

a

1.
2.5

1.075
3.225

2.32
4.64

Re(V,)

Hopf(1914)

3.28
2.22

3.06
1.88

2.66
2.07

Gallagher and Mercer
(1962)

3.37
2.19

3.30
1.90

2.59
2.11

Chebyshev

3.36944
2.19484

3.29666
1.90015

2.59078
2.11293

TABLE 3. Gallagher and Mercer (1962). Lee and Reynolds (1967) and present Chebyshev results for \\

a = 0.5

a = 2.0

aR
(1962)

10
50

100

20
50

200

Gallagher and Mercer
(1967)

3.79 + 0/
4.82 + 0;

10.9 + 7.45/

3.16 + 0/
7.82 + 2.41;
18.9 + 32.4;

Lee and Reynolds

3.7921 + 0 /
4.8232 + 0;

10.967 + 7.379/

3.1644 + 0/
7.829 + 2.395;
18.44 + 32.14/

Chebyshev

3.79209 + 0;
4.82313 + 0;

10.9732 + 7.40239/

3.16446 + 0;
7.82578 + 2.39551/
18.8721 + 32.3482/
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TABLE 4. Ellingsen, Gjevik and Palm (1970) and Chebyshev results for Im(c)

355

a = 0.5

a = 1.0

aR

103

2 X 10'

3 X 10'

5 X 10'

10"

10'
2 X 10'

3X 10'

5 X 10'
104

— ct

Ellingsen et al. (1970)

0.1149
0.0899
0.0779

0.0652
0.0513

0.1196
0.0928
0.0802

0.0668
0.0523

Chebyshev

0.114515
0.0895268
0.0776284

0.0649455
0.0510825

0.119230
0.0924906
0.0798877

0.0665507
0.0520923

aR

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
20000
30000
40000
50000
60000

T A B L E 5. Results for Re(A',) with a -

Re(A',)

51.6515
79.5845
102.634
123.026
141.657
159.001
175 348
190.888
205.758
220.057
343.049
445.441
536.445
619.873
697.710

aR

70000
80000
90000
100000
110000
120000
130000
140000
150000
160000
170000
180000
190000
200000

= 2

Re(A',)

771.199
841.167
908.196
972.723
1035.08
1095.53
1154.29
1211.52
1267.36
1321.95
1375.39
1427.79
1479.23
1529.75

TABLE 6. Values of Re( A;) for aR = 10000

a

to-"
10"'
1
5
10
20
40

Re(A',)

205.368
205.434
210.717
244.635
258.896
242.831
227.547

a

60
80
100
150
200
500
1000

Re(A',)

223.154
221.545
220.838
220.227
220.056
219.928
219.918
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critical Reynolds number, whereby instabilities first appear in the main flow. We
have found in theory that plane Couette flow remains stable (or laminar) to very
large values of aR; that is, the real part of the eigenvalue Re(\',) remained
positive even for values of aR up to 2 X 105. We note that the values in Table 5,
even though always increasing, do have a decreasing increment; that is, the
second difference is negative for all values of aR tabulated. However for
turbulence we would require Re(A'|) < — 4a2/ir2, for any particular a and aR.
Since this has not occurred we can say, therefore, that for aR < 2 X 105 with
a = 2, plane parallel Couette flow as governed by the Orr-Sommerfeld differen-
tial equation always remains stable. It is interesting to note also that using the
definition of \\, we find that the last point in Table 4 gives Re (A',) = 200
approximately which is the same order of magnitude as the result for aR = 10000
in Table 5. Various other cross correlations are also possible. Table 5 is also in
agreement with asymptotic results obtained by Grohne [7] where, despite his
erroneous modal crossings (see [6]), he shows that for fixed a, — c, decreases
asymptotically towards zero for increasing R. The asymptotic results of Davey [1]
also confirm this trend.

The effect of maintaining a large fixed aR whilst increasing a is shown in Table
6. We can note that, for increasing a, we have a decreasing trend in Re(X',) (after
a = 10). Eventually, however, Re(X,) exhibits asymptotic tendencies to a limit-
ing value. For aR = 10000 the limiting value is given by Re(X',) = 219 ap-
proximately.

4. Conclusions

The present numerical approach as performed on the Orr-Sommerfeld equation
for plane Couette flow has been unable to find a critical Reynolds number
beyond which instability in the flow is obtained. This is in conflict with experi-
mental evidence as collected by Reichardt [15] and Robertson [16] who found that
turbulence occurred in plane Couette flow for only moderate values of the
Reynolds number (600 to 1450). The comment of Deardorff [2] may be valuable
in that he points out that in their experiment the critical Reynolds number would
depend strongly on the channel entrance conditions which were not adequately
taken into account. The inability to find a critical Reynolds number past which
turbulence would occur, may also be due in part to the assumption of infinitesi-
mal disturbances which leads to the neglect of all nonlinear (quadratic) terms.
Stuart [18, 19], Watson [22] and Ellingsen et al. [3] have examined the effect of
these extra nonlinear terms and commented on their destabilizing affects but no
definite answer has yet been arrived at. It may well be that plane Couette flow is
unstable for finite disturbances, even though it is stable for infinitesimal ones.
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