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A CHARACTERIZATION OF SHARPLY TRANSFERABLE
LATTICES

G. GRATZER AND C. R. PLATT

1. Introduction. A lattice L is called transferable if and only if, whenever
L can be embedded in the ideal lattice I (K) of a lattice K, L can be embedded
in K. L is called sharply transferable if and only if, for every lattice embedding
¢:L — I(K), there exists an embedding ¢:L — K such that for x, y € L,
Y(x) € ¢(y) if and only if x < y. Finite sharply transferable lattices were
characterized in [3]. In this paper we extend the characterization to the
infinite case. We begin by revising some of the terminology of [3].

1.1. Definition. (a) Let (P; < )beaposet and X, ¥ C P. Then X dominates
Y (written X Dom Y) if and only if, for every y € Y, there exists ¥ ¢ X such
that y = x. Dually, X supports V (written X Spp V) if and only if, for every
y € ¥, there exists x € X such thatx =< y.

(b) Let L be a lattice, p € L, U C L. Then (p, U) is a join-minimal pair
(JMP) if and only if

Hp=VU,

(i) p ¢ U,

(1) if U' € L, p £ \/U’" and U dominates U’, then U C U".

The definition of a meet-minimal pair (MMP) is dual.

In [1], X Dom YV was written ¥ < X, and in [6] it was denoted by ¥V < X.
It is felt that the present terminology is more descriptive, especially with
respect to the dual notion. Observe that, if (p, U) is a JMP then U is an
antichain, every element of U is non-zero and join-irreducible, and p € u for
all u € U. Similar remarks hold for MMP’s.

Now consider the following conditions on a lattice L.

(R,) There exists a mapping p:L. — o such that, if (p, U) is a JMP, then
o(p) < p(u) for each u € U.

(R,) There exists a mapping ¢:L — w such that, if (p, U)isan MMP, then
a(p) > o(u) for each u € U.

(W) For all x, y, u, v € L, x Ay = uV v implies that [x Ay, u V 2]MN
{, v, u, v} # 0.

(F) Foreachx € L, the set L. — [x) is finite.

(Here w is the set of natural numbers; [x) is the principal dual ideal generated

by x and, more generally, if X C L, then [X) is the dual ideal generated by
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X; (x] and (X] are the corresponding ideals; if « < b then [a, b] is [a). M (b].
These and other undefined notations are from [4].)
Our principal result is the following:

THEOREM. A4 lattice L is sharply transferable if and only if L satisfies (R,,),
(Rp), (W), and (F).

A few remarks are in order on comparison with the finite case. The condi-
tions (R,,) and (R,) reduce to conditions (7',) and (7 '»), respectively, in the
finite case. However, even though (7'4) is the dual of (7)), the condition
(R ) is not the dual of (R,). In fact, in the presence of (F), (R,) is equivalent
to the condition D’ (L) = L of [6]. The proof of our main result closely parallels
the proof in the finite case, the principal difference being the use of the finite-
ness condition (F) to ensure that certain joins and meets are finite.

Finally, we mention the recent work of R. Freese and J. B. Nation charac-
terizing projective lattices [2]. H. Lakser [7] has shown that a finite projective
lattice is sharply transferable. Using the Freese-Nation characterization and
the present characterization of sharp transferability, J. B. Nation has com-
municated to us a proof that every sharply transferable lattice is projective.

2. Proof of sufficiency. We begin with some preliminary observations,
mostly without proof. If x € L, let % (x) denote the set of all antichains
U C Lsuch thatx £ VUbutx £ uforeachu € U. €’ (x) is defined dually.

2.1. LemMA. If L satisfies (F), then € (x) is finite for each x € L. Conse-
quently, if U € € (x), then there exists a JMP {(x, U") such that U dominates U’ .

2.2, LemMa. If L satisfies (F), then €’ (x) is finite for each x € L. Conse-
quently, if U € €' (x), then there exists an MMP (x, U’ ) such that U supports
U'.

Proof. Choose an element ¢ > x and let
z2=qV V(L ~19).

Let U be an antichain. If u ¢ U — |[¢) and v € UN |[z), thenv = 3 = u, so
u =v 2z 2 q, contrary to hypothesis. Thus, if UM [z) % 0, then U C [g),
hence AU = ¢ > x. This shows that if U € %’ (x) then U € L — |z) which
is finite.

2.3. COROLLARY. If K s a lattice, L satisfies (F), and ¢:L — K 1s isotone,
then ¢ is meet-preserving if and only if o(x) = /Ne(U) for every MMP (x, U).

2.4. LEmMA. If L satisfies (F), then no element of L can be a member of
mfinitely many antichains.

Proof. If U is an antichain with x € U, then U — {x} € L — [x).

2.5. Definition. Let ¢: L — I(K) be an embedding. A mapping y:L — K is
called ¢-normal if and only if, for x, vy € L, ¢(x) € ¢(y) if and only if x =< y.
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2.6. LEMMA. Let ¢: L — I(K) be an embedding. If L satisfies (R,) and (F),
then there exists a o-normal join-preserving mapping Y.L — K.

Proof. In view of (F), we can define a ¢-normal mapping ¢, as follows:
givenx € L, foreachy € L withy < x, we can choose an a(y) € ¢(x) — o(¥).
Then define Yo(x) = \/(a(y)|y < «x). This is a finite join in view of (F), and
Yo is obviously ¢-normal. Given the ¢-normal mapping y,, we proceed to define
Yni1. For each JMP (p, U), since

Wa(P) € o(p) S Ve(U),
we can choose for each # € U an element ¢, («, p, U) € ¢(u) such that
V(p) = VG, p, U)|u € U).

If ¢.(p) = V¢ (U), then we restrict the choice to ¢,(u, p, U) = ¢, (u).
Finally, for x € L define

¢n+l(x) = ‘pn(x) \% v(§71<xy b, l/)!<p’ U> is aJA\[P and x € U)

By Lemma 2.4 this is a finite join, and ¢, is clearly ¢-normal.
Furthermore, if (p, U) is any JMP, then clearly ¥,,(p) =< Vi1 (U).
Claim. For any x € L, the set {¢,(x)|n € w} is finite.

Let p: L — w be a rank function given by (R,,). We will prove the claim by
induction on p(x). If p(x) = 0, then there are no JMP’s (p, U) with x € U,
SO ¥, (%) = Ypy1(x) for all n. If p(x) > 0, let

P = {p € Llthere exists a JMP (p, U) with x € U}.

The set P is finite by Lemma 2.4, and p € P implies p(p) < p(x), so by
inductive hypothesis we can choose 7y € w such that for n = n, and p € P,
en(P) = Yo (p). Then, if n > ny, (p, U)isa JMP and x € U, we have

Thus, by our restriction on the choice of ¢,, ¢,(x, p, U) = ¢,(x) for each such
(p, U), 50 ¢ni1(x) = ¢, (x) for all n > n,, proving the claim.

Forx € L, let
yx) = VEOly £ x, 7€ o).

Then ¢ is clearly isotone and ¢-normal. To prove ¥ is join-preserving it suffices
to establish ¢ (\/ U) = \/¢(U) for every finite antichain U C L. Lety £ \/U
andn € w. If y = u € U, then

() = ¥(w) = V(D).

If y £ uforall u € U, then by Lemma 2.1 there exists a JMP (y, U’) such
that U dominates U’. Then

() = Vi (U) = VY(U') = V().
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In any case, therefore, we have ¢,(y) < \/¢(U) for all y £ \/U and n € o,
s0 ¥ (V) = V(D).

2.7. LEmMma. Let L satisfy (Rp) and (F), let ¢:L — I[(K) be an embedding,
and let Y:L — K be an isotone ¢-normal mapping. Define YN L — K by the
scheme

YA (x) = gx) vV V(AYA (D) (x, U) is an NINIP).

Then YN 1s « meet-preserving ¢-normal mapping. (Note that Y™ is defined by
mduction on o(x), where o1 L — w is « rank function establishing (R ). Further-
more, the join in YN 1s finite by Lemma 2.2.)

Proof. In view of Corollary 2.3, to prove y" is meet-preserving it sufhces to
prove ¢~ is isotone. We will prove the following statement by induction on
a(x):

(1) forally = x, ¢r (y) = YA (x).

If o(x) = 0, this is obvious. If ¢(x) > 0, let x <y and let (x, U) be an
AMDMP. We must show A (U) < YN (y). If there exists 1 € U with v = u,
then since o (1) < o(x), the inductive hypothesis yields

YA = YN () = AYA (D).

If v » uforall u € U, then by Lemma 2.2, there exists an MNP (y, U’ ) such
that U supports U’. For each u € U, choose v £ U such that v < u. Since
a(v) < a(x), the inductive hypothesis implies ¥ (v) = ¢A (1). Thus, the set
YA (U) supports yA (U7), so

NP (U) = NgA(U7) S YA ().

This proves (1).

To prove that YA is ¢-normal it suffices to show that ¢» (x) € ¢(x) for all
x € L. Again this is obvious if ¢(x) = 0. If ¢(x) > 0and (x, U) is an MNIP,
then by inductive hypothesis ¢ (1) € ¢ () for all u € U, so

AYA(U) € Ne(U) S ¢(x).
Thus ¢* (x) € ¢(x), since it is a finite join of elements of ¢ (x).

2.8. THEOREM. [f L satisfies (R\), (Rp), (W), and (I'), then I is sharply
transferable.

Proof. Let ¢: L — I(K) be an embedding, and let ¢ be the join-preserving
mapping given by Lemma 2.6. It then sufhices to prove that the mapping y*
constructed from ¢ in Lemma 2.7 is join-preserving. Let U € Land p = \/L"
It remains to show that ¢A (p) < \/YA (U). Since ¢ is join-preserving,

v(p) = VY(U) = \VYr(U).
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If (p, Uy) is an MNP, then AU, £ p = \JU. Since U, € €' (p), (W)
implies that /A Uy £ u for some u ¢ U. Therefore

NYA (Uo) = YN (A Us) £ 9h (1) < A (D).
Thus, ¢ (p) £ VYA (U), completing the proof.

The reader familiar with B. Jénsson and J. B. Nation [6] should compare
the proofs of Lemma 2.7 and Theorem 2.8 with that of Lemma 3.3 of [6],
observing that their g_ is just the dual of our yA.

3. Necessity of (F). First we consider the following weaker condition.

3.1. Definition. A lattice L is sectionally finite if and only if for every x € L,
the principal ideal (x] is finite.

Let 4 be any set and define a finite partition of A to be a finite collection of
pairwise disjoint finite subsets of 4 each with more than one element. Let
Party, (4) denote the set of all finite partitions of 4. If 27, % ¢ Party,(4),
defineZ” < % to hold if and only if % dominates 2~ with respect to set in-
clusion. With this ordering, Party,(4) is obviously a sectionally finite lattice.
Using Whitman’s embedding theorem [8] it can be shown that every lattice
can be embedded in I(Party,(4)) for some A (for details, see (4], Theorem
IV.4.4 and Corollary I1V.4.5). Since sectional finiteness is preserved by sub-
lattices, we have the following.

3.2. Lemma. Every transferable lattice 1s sectionally finite.
3.3. THEOREM. If L s sharply transferable, then L satisfies (F).

Proof. Suppose L does not satisfy (/). By Lemma 3.2 we can choose
t, € L which is minimal such that L. — [«,) is infinite. Choose distinct elements
dg, A, 2, . .. In L — [a,) and define the set K C L X (w + 1):

K = Uazo (L = Uass<o lag)) X {a}) U [w) X {of.
That is, for {(x,a) € L X w, {x,a) € K if and only if ¢z < x implies 8 < a.

Since L is sectionally finite, for each x € L there exists « < w such that
(x,a) € K.
Thus, for each x ¢ L, define

ux) = Naf (x,a) € K).

Then the set K with the partial ordering inherited from L X (w 4+ 1) is a
lattice with join and meet given by

(x,a)V (3,8)= (& VyaVEVaukxVy))
<xva> A <yv6> = <x /\yva /\)8>

(This is obvious from the fact that for (x,a) € L X (0 + 1), (x, u(a)) is
the smallest element of K containing (x, a ).)
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For x € L, define

e(x) =1y, a)(y,a)c K,y = xl.

Projection onto the first factor of L X (w 4+ 1) gives a homomorphism of K
onto L (onto because L is sectionally finite), and ¢ (x) is the complete inverse
image of the ideal (x] of L, hence is an ideal of K. This also shows ¢:L — I(K)
is one-to-one and meet-preserving. To see that ¢ is join-preserving, let
(z,a) € ¢(x V¥). Thenz < x V y, so

(za) = (x,8)V (y,8), with g =a V ulx) V u(y).

Thus, (z,a) € ¢(x) V ¢(v), proving ¢(x V y) = ¢(x) V ¢(y), the other
inclusion being trivial.

Suppose there were a ¢-normal embedding y: L — K. Choose an element b
which is covered by «,. Now, if x € Land ¢ (x) = (y,n) € ¢(x), theny = «x.
But also (y,n) € ¢(y), so ¥(x) € ¢(v), hence x <y by definition of ¢-
normality. Thus ¢ (x) = (x, n) for some n € w. In particular, ¢(b) = (b, n),
n = w(), and ¥(a,) = (¢, w). By the minimality of «,, L — [b) is finite,
hence b < «,, for some m = #n. Since «, covers b and «, ¢ [a¢,), we have
b = o N a,. Now ¢(a,) = {a,, k) for some k < w, but clearly, u(«,) > m,
so k> m = n. However

Y(w) A Y(ay) = (o w) A (ap, kY= (b, k), k>n
which contradicts the assertion that ¢ was meet-preserving. This contradiction
proves the theorem.
4. Necessity of (I7). In [3], Theorem 4.4, it was proved that every sharply
transferable lattice satisfies the following weakening of (W).

WY x,y,u,v€ Landu <x Ay < u V vimply
lx Ay, u VoM {x vy 0] #0.

The result of A. Antonius and I. Rival [1] implies that a lattice with no
infinite chains which satisfies (SD,) and (W) also satisfies (W). ((SD,) is
the condition that x A 2 =y A 2 implies x A z = (x V vy) A 2.) As was
stated in Remark 4.6 of [3], the assumption of no infinite chains can be
weakened and, in particular, can be replaced by sectional finiteness. In [5]
we show that every transferable lattice satisfies (SD ). Thus we have:

4.1. THEOREM, A sharply transferable lattice satisfies (W).
5. Necessity of (R,).
5.1. THEOREM. If L is sharply transferable, then L satisfies (R,,).
Proof. For X € L X w, and n € w define
X® = {x|{x,n) € X}.
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Define H C L X w to be closed if and only if (H®**tV] C H™ for all #n € w.
Let

Ky, = {H C L X w|H is closed}.

It is obvious that the intersection of any collection of closed sets is closed, so
K, is a lattice under set inclusion. If X € L X w, let [X] denote the smallest
element of K, containing X. Then the following are evident:
(1) [X](n) = X(n)u (Un<m X(M)]v
(ll) lf H], H2 € K(), thell H1 V HQ = [HIU HQ],
(111) lf H, HQ E Ko, thCIl H1 A\ H2 H1f\ HQ.

Il

For x € L, define
eo(x) = {H € Ko|H C (x] X w},

i.e., ¢o(x) is the principal ideal of K, generated by (x] X w. ¢o: L — I(K,) is
obviously an embedding.

Let K be the set of all H € K, which are bounded, i.e., such that H C L X
(n] for some n € w. Clearly K is an ideal of K,, hence for x € L, ¢(x) =
¢o(x) M K is an ideal of K.

Claim 1. ¢: L — I(K) is an embedding.

If x,y € Land x € v, then (x] X {0} € ¢(x) — ¢(y), proving ¢ is one-to-
one. Furthermore,

ex Ay) = KN eolx Ay) = KM @o(x) M @o(y) = e(x) M o(y),

so ¢ is meet-preserving. Thus, to show ¢ is join-preserving, it suffices to
establish o (x V 9) € o(x) V o). If HE o(x V y), let HC (x V y] X (n].
But clearly

(VY X @S & XE+1V OlX0+1]€ek) Ve®).
This proves Claim 1.

Now let y:L — K be a ¢-normal embedding. Let J,(L) denote the set of
all non-zero join-irreducible elements of L. By (F) Jo(L) = @ and every
element is a finite join of join irreducibles, hence every element x € J,(L) has
a unique lower cover X.

Claim 2. If x € Jo(L), then {(x,n) € ¢(x) for some n € w.

Let x4, be the unique lower cover of x. Since ¥ (x) € ¢(x), we have
Y(x) C (x] X w, so if (x,n) ¢ ¢(x) for all n € w, then Y(x) T (x4] X w.
Thus, ¢ (x) € ¢(x4) which, by ¢-normality, implies x < x4, a contradiction.
This proves Claim 2.
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Hence, given x € Jo(L) we can make the following definition, in view of the
boundedness of ¥ (x):

po(x) = V(n € ol (x,n) € $(x)).

Clatm 3. If p € Jo(L) and (p, U) is a JMP, then po(p) < po(2t) for each
u € U

Thus, let py(p) = n, so that (p,n) € ¢(p). Since ¢ is join-preserving, we
have

¥(p) © Ve (U) = [Ny (U)].

Let T"=\Uy(U), so p € [T]™. Now p ¢ T™ because, if u € U, then
(p,n) € y(u)and ¢ (1) € ¢(u) would imply p = u, contrary to the definition
of JMP.

Hence, by (i),

p € (U(T™n < m),
so there exists a finite set
U C\U (IT™n < m)

such that p < \/U’. For each u' € U’, there exists u € U and m € w such
that

W m) € ) € ou),

therefore ' = u. Thus, U dominates U’, so by definition of JMP, U C U’.
Letu € U. If u € T™, then we claim (u, m) € ¢ (). Indeed,

(u,m) € Y(uo) € ¢(uo)

for some u, € U, sou < u,. But U is an antichain, so u = u,.
Finally # € U implies u € 7" for some m > n, so ¢{u, m) € ¥ (1) by the
previous paragraph, proving po(#) = m > n. This proves Claim 3.

In view of the remarks following Definition 1.1, (R,) follows immediately
if we define p(x) = po(x) + 1forx € Jo(L) and p(x) = 0 forx ¢ Jo(L).

6. Necessity of (R,).
6.1. THEOREM. If L 1s sharply transferable, then L satisfies (R ).

Proof. f X € L X wand n € w, let X" be as in Section 5, but here define
H C L X w to be closed if and only if [H™) C H"*Y for all n ¢ w. Let K,
be the set of all closed sets H € L X w. Again it is obvious that the intersection
of any collection of closed sets is closed, so K, is a lattice under set inclusion.
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Let K be the dual lattice. If X C L X w, let [X] denote the smallest element of
K, containing X. Then the following are evident:

(1) [X]™ = XU [Upen X™).
(i) if Hy, H. € K, then H, V Hy = H, N\ H, in K.
(iii’) if Hy, H, € K, then H; A H, = [H,\U H,] in K.

Now, for x € L, define
e(x) = {H € K|{x,n) € H for some n € w}.
Claim 1. ¢ is an embedding of L into I (K).

For each n € wand x € L, let ¢,(x) = [x) X [n). Clearly ¢,(x) € K,, and
¢(x) is the union of the increasing chain of principal ideals of K generated by
en(x), m € w, hence ¢(x) is an ideal.

If x € v, then ¢o(x) € ¢(x) — ¢(v), so ¢ is one-to-one. Since ¢ is obviously
isotone, it suffices to verify that for all x, y € L,

(2) e(x Vy) Celx) Vel), and
(3) elx Ay)Delx)N e(y).
Suppose H € ¢(x V y),say {x V y,n) & H. Then in K,
H = ¢pi(x V1Y) = ¢p1(®) V ogpir(¥).

But ¢,41(x) € ¢(x) and ¢,41(y) € ¢(¥), 50 H € ¢(x) V ¢(y), proving (2).

Suppose H € ¢(x) M ¢(y). Then {(x,m), (y,n) € H for some m, n € w.
Then (x Ay, m+n+ 1) € H,so HE ¢(x A y). This establishes (3) and
completes the proof of Claim 1.

Now suppose ¢:L — K is a ¢-normal embedding.
Claim 2. Forx,y € Land n € w, (x,n) € y(y) implies x = y.

Indeed, ¢(y) € ¢(¥), so {y,m) € ¥(y) for some m < w. Then (x A 7y,
mA4+n—+1) € ¢@y), so ¢(¥) € ¢(x A y). By ¢-normality, y < x A y = x,
proving Claim 2.

For x € L, define
o) = N\ (n € of(x,n) € g(x)).
Claim 3. If (p, U)isan MMP and « € U, then a(p) > o(u).

Thus, let o(p) = n, so that (p, n) € ¢(p). Since ¢ is meet-preserving, we
have ¢ (p) = Ay(U), ie., ¥(p) S [UY(U)]. Let

I =\Uy(U),
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so p € [T]™. Now p ¢ T™ because, if u € U and (p,n) € ¢ (u), then p = u
by Claim 2, contrary to the definition of NN P. Hence, by (i'),

p U T™m < n)),
so there exists a finite set
U U ((T™m < n)

such that p = A U’. For each ' ¢ U’ there exists # ¢ U and m € « such
that (u',m) € ¢(u), whence «' = u by (4). Thus, U supports U’, so by
definition of MMP, U C U’.

Let u € U. If u € T™, then we claim (u,m) € ¢(u). Indeed, (u,m) €
¥ (uy) for some uy € U, sou = uy by Claim 2. But U is an antichain, so u = u,.

Finally, u € U implies « € T for some m < n, so {(u, m) € ¢ (1) by the
previous paragraph, proving o(#) < m < n. This proves Claim 3 and the
theorem.
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