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Abstract

Results on asymptotic normality for the maximum likelihood estimate in hidden Markov
models are extended in two directions. The stationarity assumption is relaxed, which
allows for a covariate process influencing the hidden Markov process. Furthermore, a
class of estimating equations is considered instead of the maximum likelihood estimate.
The basic ingredients are mixing properties of the process and a general central limit
theorem for weakly dependent variables.
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1. Introduction

In a hidden Markov model the observed variables y1, . . . , yn are conditionally independent
given the values of the hidden variables x1, . . . , xn, the latter constituting a Markov chain. In
this paper we consider the asymptotic normality of a parameter estimate. Contrary to previous
research, the Markov chain need not be homogeneous and we consider a class of M-estimators
instead of the maximum likelihood estimator.

The class of estimators can be described as follows. Let θ ∈ R
p be the parameter of

the model. We start from an estimating function Tn(θ) ∈ R
p based on complete observa-

tion, and calculate the conditional mean given the observed variables y1, . . . , yn, Sn(θ) =
E(Tn(θ) | y1, . . . , yn), to obtain the estimating function of interest. The original function
Tn(θ) is of the form Tn(θ) = ∑n

i=1 ψi(θ), where ψi(θ) = ψi(θ; x̄i , yi) depends on the local
data (x̄i , yi), with x̄i = (xi−1, xi, xi+1). Thus, the estimating function based on the observables
(y1, . . . , yn) becomes

Sn(θ) =
n∑
i=1

Eθ (ψi(θ; x̄i , yi) | y1, . . . , yn). (1)

The index i onψi(θ) allows for the modelling of an inhomogeneous process. For the maximum
likelihood estimator, the estimating function becomes the score function and is obtained on
taking ψi equal to the derivative of the logarithm of the product of the transition density times
the emission density of yi given xi . The dependency in ψi on both xi−1 and xi+1 allows us
to consider estimating equations based on pseudo-likelihood ideas, where we condition on the
neighbouring values.

In [12] a situation is considered where the nonhomogeneity of the Markov chain is a natural
part of the model. In that paper the evolution of a DNA string is considered. The data consist
of two strings where the second has evolved from the first. It is natural to consider the process
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conditioned on the first string. The hidden variable is the complete evolutionary history for
one site along the string, and, because of the conditioning on the initial string, the transition
probabilities of the hidden variable are nonhomogeneous. Asymptotic results for the case of a
discrete space for both the hidden and the observed variables are given in [12]. In this paper
we derive asymptotic normality for more general state spaces.

To prove asymptotic normality of an estimator, we need a central limit theorem for the
estimating function and a result on uniform convergence of the derivative of the estimating
function. For the maximum likelihood estimator, Baum and Petrie [2] considered the case of
discrete state spaces for both the observed and hidden variables, Bickel et al. [3] considered a
general state space for the observed variable, and Jensen and Petersen [13] allowed for a more
general state space for the hidden variable (corresponding roughly to a compact state space).
Douc et al. [5] extended this to a framework where the observed process conditioned on the
hidden variables is autoregressive. In all of these papers the central limit theorem for the score
function is obtained by approximating the score function by a stationary martingale increment
sequence. Also, the uniform convergence of the observed information is obtained by approx-
imating the information by the average of an ergodic stationary process. The homogeneity of
the process, and to some degree also the use of the score function for estimation, are essential
to the approach of the abovementioned papers.

In this paper the central limit theorem for the estimating function is based on a general
theorem of Götze and Hipp [6] for weakly dependent variables, where homogeneity is not
an issue. The uniform convergence of the derivative of the estimating function is obtained
in a more direct way, utilizing the mixing properties of the process. In Section 2 we state
three assumptions and the main result together with an example illustrating the models under
consideration. The first assumption is used in Section 3 for a study of the mixing properties. We
use an idea of Douc et al. [5] and extend this into a ‘two-sided’version, which is of relevance for
establishing the central limit theorem for the estimating function. The central limit theorem is
derived in Section 4, where we first write down a slight generalization of the result from Götze
and Hipp [6]. The second assumption from Section 2 is needed for the central limit theorem
and the third assumption comes into play when considering the convergence properties of the
derivative of the estimating function in Sections 5 and 6. In the final section we state a general
result that explains how the results of Sections 4–6 lead to the main result in Section 2.

The present paper is a rewriting of the report by Hansen and Jensen [7].

2. Notation and main results

The transition densities for the hidden process and the emission densities for the observed
process given the hidden process depend on a parameter θ ∈ R

p. We do not show this
dependency unless needed. The transition density for the Markov chain with respect to a
probability measure µ is pj (xj | xj−1; θ), and the emission density with respect to a measure
ν is gj (yj | xj ; θ). The dependency on j of these densities allows for the modelling of an
inhomogeneous process. We do not make any assumptions on the state spaces for the hidden
and the observed variables. The true parameter value is θ0. We use the following notation for
likelihood quantities:

ωi(θ) = log{pi(xi | xi−1; θ)gi(yi | xi; θ)}, ωri (θ) = ∂

∂θr
ωi(θ). (2)

When conditioning on xr = u, we simply write ur . When conditioning on (yr , . . . , ys), we
write (r, s), and when conditioning on both (yr , . . . , ys) and (xr , xs),we write [r, s]. The triple
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(xi−1, xi, xi+1) is denoted by x̄i . More generally, we denote a consecutive set of variables
(xr , . . . , xs) by xsr .

Finally, we define the function classes Ck and Ck,m. Let B(δ) be a closed ball centred at
θ0 with radius δ. Consider a set of functions ai = ai(x̄i , yi; θ), i = 1, . . . , n. We say that {ai}
belongs to the class Ck if there exist functions a0

i (yi), a constant δ0 > 0, and a constantK such
that, for all i,

sup
x̄i ,θ∈B(δ0)

|ai(x̄i , yi; θ)| ≤ a0
i (yi) and Eθ0(a

0
i (yi)

k) ≤ K.

Note that, for the case where ai depends on yi only, belonging to the class Ck simply means a
bound on the kth moment. Furthermore, {ai} belongs to the class Ck,m if the set belongs to Ck
and there exist functions āi (yi) and δ0 > 0 such that, for θ ∈ B(δ0),

|ai(x̄i , yi; θ)− ai(x̄i , yi; θ0)| ≤ |θ − θ0|āi (yi) for all x̄i , and Eθ0(ā
0
i (yi)

m) ≤ K.

We next state the three sets of conditions we need. The first set allows us to study the mixing
properties, the second set is used to establish a central limit theorem for the estimating function,
and the third set is used to show uniform convergence of the derivative of the estimating function.

Assumption 1. (Mixing.) There exist δ0 > 0 and 0 < σ−, σ+ < ∞ such that, for θ ∈ B(δ0),

σ− ≤ pj (xj | xj−1; θ) ≤ σ+ for all j, xj , xj−1.

Furthermore, for all j, yj and all θ ∈ B(δ0), we have 0 <
∫
gj (yj | xj ; θ)µ(dxj ) < ∞.

Assumption 2. (Central limit theorem.) Assume that the terms of the estimating function are
unbiased, Eθ0(ψi(θ0)) = 0 for all i, and that {ψi} is of class C3. Furthermore, there exist
constants K0 > 0 and n0 such that, for n > n0,

a� varθ0(Sn)a ≥ nK0|a|2 for all a ∈ R
p, (3)

where Sn = Sn(θ0) is the estimating function from (1).

Assumption 3. (Uniform convergence.) Let Fn = Eθ0(−∂Sn(θ0)/∂θ
�). Assume that there

exist c0 > 0 and n0 such that, for n > n0, the eigenvalues of F�
n Fn are bounded below

by c0. Furthermore, assume that {ψi} and {ωri }, r = 1, . . . , d, are of class C4, and the
{∂ψi/∂θr}, r = 1, . . . , d, are of class C3,1.

With the assumptions defined we are in a position to state the main theorem. The proof of the
theorem is based on the general result in Section 7 that ties together the results of Sections 4–6.

Theorem 1. Assume that Assumption 1, Assumption 2, and Assumption 3 hold. Let Gn =
varθ0(Sn(θ0)). Then there exists a consistent sequence θ̂n, solving the estimating equation
Sn(θ) = 0, such that

√
nG

−1/2
n Fn(θ̂n − θ0) has a limiting standard normal distribution

under Pθ0 .

Finally, we end this section with an example illustrating the setup.

Example 1. We consider a situation where the observed variables are counts. Thus, condi-
tionally on the hidden variables, we assume that yi | xi ∼ Poisson(eixi), where the eis are
known covariates. Typically, the eis reflect some sort of population size or size of sampling
window. As a concrete example, we use the counts of clover leaves in 200 windows of size
5 cm × 5 cm along a line transect from Augustin et al. [1]. For this particular example, we
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have ei ≡ 1. For the hidden variable, we choose the state space { 1
8 ,

1
4 ,

1
2 , 1, 2, 4, 8}, and the

possible transitions are one step down with probability ρ(1−β) and one step up with probability
(1−ρ)(1−β), except for the first state where this probability is 1−α. Thus, the model has the
three parameters (α, β, ρ), which can be translated into a mean, a variance, and a correlation
between two neighbouring observations. In Møller et al. [16] the same data are analyzed. In
that paper a hidden variable model is considered, but the hidden variables do not constitute a
Markov chain. They considered the use of a composite likelihood that in our setting would
correspond to the estimating function ψi = (∂/∂θ) logp(yi, yi−1; θ) (the dependency on both
yi and yi−1 as opposed to ψi in (1) has no importance). Since this function does not depend
on x̄i , we have E(ψi | (1, n)) = (∂/∂θ) logp(yi, yi−1; θ) and the asymptotic analysis is in
this specialized case much easier than the general treatment we give in this paper. For our
model described above, the maximum likelihood estimates are (0.045, 0.012, 0.552), whereas
the estimates using the abovementioned composite likelihood is (0.279, 0.000, 0.569). The
maximum aposteriori estimates of the hidden process are almost the same for the two sets of
parameter estimates, and resemble those given in [16].

3. Geometric decay of the mixing rate

In this section we use Assumption 1 to establish a bound on the transition density of the
conditional Markov chain given the observed process y. In [3] and [13] this bound depends on y
and is for the density with respect to µ. The dependency on y necessitates further assumptions
on the density gj (yj | xj ) for the main results of those two papers. Contrary to this, Douc et
al. [5] established a bound independent of y by considering the transition density with respect
to a measure dependent on y. The latter dependency, however, has no influence on the ensuing
mixing rates. We follow here the approach of Douc et al. [5], except that we also use a two-sided
version of the argument. To handle both the original Markov chain and the chain conditioned
on the observed process y, in the formulation below we let gj (xj ) be either identically 1 or the
function gj (yj | xj ).
Lemma 1. Consider an inhomogeneous Markov chain with joint density

c

n∏
k=1

pk(xk | xk−1)gk(xk)

with respect to µ⊗n, where c is a normalizing constant. There exist probability measures µk
such that the transition densities qk with respect to these satisfy

σ−
σ+

≤ qk(xk | xk−1) ≤ σ+
σ−
.

Also, there exists a probability measure µ̃k such that, when conditioning on both xk−1 and xk+1,
the conditional density satisfies(

σ−
σ+

)2

≤ qk(xk | xk−1, xk+1) ≤
(
σ+
σ−

)2

.

Proof. We formulate the proof through the standard filtering equations for hidden Markov
models. Define an(xn) = 1, and recursively define

ak−1(xk−1) =
∫
ak(xk)pk(xk | xk−1)gk(xk)µ(dxk)

for k = n − 1, . . . , 1. Note that these numbers are bounded from below and above
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according to Assumption 1. The transition density with respect to µ can then be written as
pk(xk | xk−1)gk(xk)ak(xk)/ak−1(xk−1). Next, let µk be the probability measure with density
gk(xk)ak(xk)/

∫
gk(z)ak(z)µ(dz) with respect to µ. The transition density with respect to µk

is qk(xk | xk−1) = pk(xk | xk−1)/
∫
pk(z | xk−1)µk(dz), which clearly satisfies the bounds

given in the lemma.
Conditioning on both xk−1 and xk+1, the density with respect to µ is ζk(xk)/

∫
ζk(z)µ(dz)

with ζk(xk) = pk(xk | xk−1)pk+1(xk+1 | xk)gk(xk). Now define the probability measure µ̃k
through the density gk(xk)/

∫
gk(z)µ(dz) with respect to µ. Then the conditional density with

respect to µ̃k is ζ̃k(xk)/
∫
ζ̃k(z)µ̃k(dz) with ζ̃k(xk) = pk(xk | xk−1)pk(xk+1|xk). Clearly, this

conditional density satisfies the bounds given in the lemma.

Corollary 1. Consider the same inhomogeneous Markov chain as in Lemma 1. Let r < s, and
let ρ = 1 − σ−/σ+. Then, for any subset A,

sup
u

P(xs ∈ A | xr = u)− inf
v

P(xs ∈ A | xr = v) ≤ ρs−r .

Let r < s1 ≤ s2 < t, and let ρ̃ = 1 − (σ−/σ+)2. Then, for any subset B,

sup
a,b

P(xs2s1 ∈ B | xr = a, xt = b)− inf
u,v

P(xs2s1 ∈ B | xr = u, xt = v) ≤ ρ̃s1−r + ρ̃t−s2 .

Proof. The method of proof basically goes back to [4, p. 198] for the one-sided case. Details
for the one-sided case are given in [13], and details for the case of a finite state space are given
in [2]. Douc et al. [5] refered to [14] for the one-sided case. Here we give a proof for the
two-sided case using similar ideas.

Let k < s1. Define, for a fixed set B and a fixed state w, D(k) = supu P(xs2s1 ∈ B | uk,wt )
and d(k) = infu P(xs2s1 ∈ B | uk,wt ), and, for fixed u and v, define

Sk = {xk : qk(xk | uk−1, wt ) > qk(xk | vk−1, wt )},
where qk is the density with respect to µ̃k from Lemma 1 (remember that the notation ur means
conditioning on xr = u). From Lemma 1 we have

qk(xk | uk−1, wt ) =
∫
qk(xk | uk−1, vk+1)qk+1(vk+1 | uk−1, wt )µ̃k+1(dv) ≥

(
σ−
σ+

)2

.

We then find that

D(k − 1)− d(k − 1)

= sup
u,v

[P(xs2s1 ∈ B | uk−1, wt )− P(xs2s1 ∈ B | vk−1, wt )]

= sup
u,v

∫
P(xs2s1 ∈ B | αk,wt )[qk(αk | uk−1, wt )− qk(αk | vk−1, wt )]µ̃k(dα)

≤ (D(k)− d(k)) sup
u,v

[P(Sk | uk−1, wt )− P(Sk | vk−1, wt )]
≤ (D(k)− d(k)) sup

u,v
[1 − P(Sc

k | uk−1, wt )− P(Sk | vk−1, wt )]

≤ (D(k)− d(k))

(
1 −

(
σ−
σ+

)2)

= (D(k)− d(k))ρ̃.
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Iterating, for k = s1, s1 − 1, . . . , r + 1, we obtain

sup
u,v

|P(xs2s1 ∈ B | ur,wt )− P(xs2s1 ∈ B | vr , wt )| ≤
s1∏

k=r+1

ρ̃ = ρ̃s1−r .

A similar argument shows that supu,v |P(xs2s1 ∈ B | wr, ut )− P(xs2s1 ∈ B | wr, vt )| is bounded
by ρ̃t−s2 . Combining the two latter bounds we obtain the result of the corollary.

The mixing statement of Corollary 1 immediately leads to a similar mixing statement for
the observed process y.

Corollary 2. Let r < s < t . For any values of y1, y2, ỹ1, and ỹ2, and any set B, we have

sup
y1,y2

P(ys ∈ B | yr = y1, yt = y2)− inf
ỹ1,ỹ2

P(ys ∈ B | yr = ỹ1, yt = ỹ2) ≤ ρ̃s−r + ρ̃t−s .

Proof. We use the results of Corollary 1 for the original Markov chain (where µ̃k = µ).
Using the structure of the process, we find that

P(ys ∈ B | yr = y1, yt = y2)− P(ys ∈ B | yr = ỹ1, yt = ỹ2)

=
∫ ∫

P(ys ∈ B | xs)p(xs | xr , xt )µ(dxs)
× [P(d(xr , xt ) | yr = y1, yt = y2)− P(d(xr , xt ) | yr = ỹ1, yt = ỹ2)]

≤ sup
a,b,u,v

[∫
P(ys ∈ B | xs)p(xs | ar , bt )µ(dxs)

−
∫

P(ys ∈ B | xs)p(xs | ur, vt )µ(dxs)
]

≤ sup
a,b,u,v,A

[P(xs ∈ A | ar , bt )− P(xs ∈ A | ur, vt )]

≤ ρ̃s−r + ρ̃t−s .

4. Central limit theorem

In [6] an Edgeworth expansion for a sum of weakly dependent random variables is derived.
From this result we can extract a central limit theorem that suits our needs well. We state here
a slightly generalized version of the result. This generalization is indicated in [11] and the
proof is obtained by following the detailed proofs in [9] and [10]. The direct result from [6]
corresponds to having γ1 = γ2 = 0 in (5) below and replacing dist(I1, I2)

−λ by ρdist(I1,I2) in
that same formula. We first introduce some notation.

The central limit theorem is for the sum of random variables Zi ∈ R
p, i ∈ Z. We make the

assumption that there exist ε > 0 and K0 < ∞ such that, for all i,

E(Zi) = 0 and E |Zi |2+ε ≤ K0. (4)

We consider a set of σ -algebras Dj indexed by j ∈ Z and satisfying the following strong
mixing property. There exist constants γ0, γ1, γ2, and λ such that, for any index sets I1 and I2,

and any sets Ai ∈ σ(Dj : j ∈ Ii), we have

|P(A1 ∩ A2)− P(A1)P(A2)| ≤ γ0|I1|γ1 |I2|γ2 dist(I1, I2)
−λ

with λ > γ1 + γ2 + max

{
2 + ε

ε
, 1 + γ2, 2

}
.

(5)
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Here |Ii | is the number of elements in Ii and dist(I1, I2) is the Euclidean distance between the
two sets, dist(I1, I2) = min{|j1 − j2|, j1 ∈ I1, j2 ∈ I2}. For the case where dist(I1, I2)

−λ
is replaced by ρdist(I1,I2) for some ρ < 1, the second part of condition (5) is not relevant. (In
the case of a random field, that is, the index of Zi is i ∈ Z

d , the lower bound on λ must be
multiplied by d .) We do not assume that the random variable Zj is Dj -measurable. Instead,
we assume that, for any j and any m ∈ N, there exists a random variable Zj (m) which is
σ(Dk : dist(k, j) ≤ m)-measurable, and such that

E |Zj − Zj (m)| ≤ K1m
−λ (6)

for some constant K1.
Finally, as in [6], we need to assume that the variance of the sum scales with the number of

terms. (In [5] and [13] the corresponding condition appears for the main result on asymptotic
normality of the maximum likelihood estimate.) Thus, with Sn = ∑n

i=1 Zi we assume that the
variance scales as in (3).

Theorem 2. Under assumptions (3), (4), (5), and (6), we find, as n → ∞, that the eigenvalues
of (1/n) var(Sn) are bounded and var(Sn)−1/2Sn

D−→ Np(0, I ).

We now use this theorem for the estimating function (1). For this, we need Assumption 2,
which parallels Assumption (A7) of [5] and Assumption (A4) of [13].

Theorem 3. Let Sn = Sn(θ0). Under Assumption 1 and Assumption 2, we have the conclusions
of Theorem 2.

Proof. To use Theorem 2, we let the σ -algebra Dj be the one generated by yj . From
Corollary 2, it then follows that the mixing assumption (5) is fulfilled with γ1 = γ2 = 0 and
with dist(I1, I2)

−λ replaced by ρ̃dist(I1,I2).
Letting Zi = Eθ0(ψi(θ0) | (1, n)) we have E |Zi |3 ≤ E((ψ0

i )
3), which, by Assumption 2,

is bounded. The only thing left to check is (6). In the formula below we suppress θ0. For the
cases i − l ≥ 1 and i + l ≤ n, we obtain, from Corollary 1,

|E(ψi | (1, n))− E(ψi | (i − l, i + l))|
=

∣∣∣∣
∫

E(ψi | [i − l, i + l]){P(d(xi−l , xi+l ) | (1, n))− P(d(xi−l , xi+l ) | (i − l, i + l))}
∣∣∣∣

≤ 2ψ0
i sup
A,a,b,u,v

|P(x̄i ∈ A | ai−l , bi+l , (1, n))− P(x̄i ∈ A | ui−l , vi+l , (1, n))|

≤ 2ψ0
i {2ρ̃l−1}. (7)

Taking the mean value we see from Assumption 2 that this is bounded by 4q1/3
3 ρ̃l−1, where q3

is an upper bound on the third moment of ψ0
i . Thus, (6) is proved. The two cases i − l < 1

and i + l > n are treated similarly using one-sided mixing.

5. Uniform convergence of the ‘observed information’

Throughout this section, we work under Assumption 1.
By the observed information Jn(θ) we refer in our setting to minus the derivative of the

estimating function Sn(θ) from (1). We can write the observed information as

Jn(θ) = − Eθ

( n∑
i=1

∂

∂θ
ψi(θ)

∣∣∣∣ (1, n)
)

− covθ

( n∑
i=1

ψi(θ),

n∑
i=1

∂

∂θ
ωi(θ)

∣∣∣∣ (1, n)
)
. (8)
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This formula corresponds to the formula in [15] for the maximum likelihood equation. A deriva-
tion can be found in [12].

To show uniform convergence of (1/n)Jn(θ), we need to bound the difference between
conditional mean values evaluated under θ and under θ0. For the next lemma, we define

lts(θ) =
t∑

i=s+1

ωi(θ) and hi(yi) = sup
xi−1,xi ,θ∈B(δ0),r

|ωri (θ)|,

where ωi and ωri are defined in (2).

Lemma 2. Let bsr be a function of xsr with |bsr | ≤ 1. For θ ∈ B(δ0) and any integer l ≥ 0, we
have

|Eθ (bsr | (1, n))− Eθ0(b
s
r | (1, n))| ≤ 2p|θ − θ0|

s+l∑
i=r−l+1

hi(yi)+ 8ρ̃l .

Proof. We can replace Eθ (bsr | (1, n)) by Eθ (bsr | [r − l, s + l]) with an error of less than

sup
xr−l ,xs+l

Eθ (b
s
r | (r − l, s + l), xr−l , xs+l )− inf

xr−l ,xs+l
Eθ (b

s
r | (r − l, s + l), xr−l , xs+l ).

Since sup bsr − inf bsr ≤ 2, this expression is, from Corollary 1, bounded by 2 ·2ρ̃l . We use this
for both Eθ and Eθ0 .

We thus need to bound Eθ (bsr | [r − l, s + l])− Eθ0(b
s
r | [r − l, s + l]). For this, we show

the more general statement that

|Eθ (b | [s, t])− Eθ0(b | [s, t])| ≤ 2p|θ − θ0|
t∑

i=s+1

hi(yi), (9)

where t > s + 1 and b is a function of xts with |b| ≤ 1. When the bound on the right-hand
side is finite, the interchange of integration and differentiation below is valid. We write the
conditional mean as

Eθ (b | [s, t]) =
∫
b exp{lts(θ)}µ(dxt−1

s+1)∫
exp{lts(θ)}µ(dxt−1

s+1)
.

The derivative of the numerator with respect to θr is bounded by

∣∣∣∣
∫
b

t∑
i=s+1

ωri (θ) exp{lts(θ)}µ(dxt−1
s+1)

∣∣∣∣ ≤
( t∑
i=s+1

hi(yi)

)∫
exp{lts(θ)}µ(dxt−1

s+1),

and this bound can also be used for the derivative of the denominator. Using this, the derivative
of the conditional mean with respect to θr is bounded by 2

∑t
i=s+1 hi(yi). Finally, we write the

difference of the conditional means at θ and θ0 as the integral
∫ 1

0 (d/dt)Eθ0+t (θ−θ0)(b | [s, t])dt .
This then gives (9).

Proposition 1. Let the functions {ai} belong to the classC2,1, and let the functions {hi} belong
to the class C2. For any sequence δn tending to 0 as n → ∞, we have

lim
n→∞ Eθ0

(
sup

θ∈B(δn)

∣∣∣∣1

n

n∑
i=1

{Eθ (ai(θ) | (1, n))− Eθ0(ai(θ0) | (1, n))}
∣∣∣∣
)

= 0.
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Proof. We can replace Eθ (ai(θ) | (1, n)) by Eθ (ai(θ0) | (1, n)) with an error bounded
by δnāi(yi). Next, Lemma 2 gives an upper bound when replacing Eθ (ai(θ0) | (1, n)) by
Eθ0(ai(θ0) | (1, n)). Adding together the error terms we need to consider

Eθ0

(
1

n

n∑
u=1

[
δnāu(yu)+ a0

u(yu)

(
2pδn

u+1+l∑
i=u−l

hi(yi)+ 8ρ̃l
)])

.

From the moment assumptions, Eθ0 āu(yu) ≤ K , Eθ0 a
0
i (yu) ≤ K, and Eθ0 a

0
u(yu)hi(yi) ≤√

KK = K for some constant K . The bound then becomes

δnK + 2pδn(2l + 2)K + 8ρ̃lK.

If we take l = δ
−1/2
n , this last expression tends to 0 for n → ∞.

Lemma 3. Let the functions {ai} and {bi} belong to the class C2,1, and let the functions {hi}
belong to the class C3. Then there exist constants q2 and q3 such that, for any integer l ≥ 0,

Eθ0

(
sup

|θ−θ0|≤δ
| covθ (au(θ), bv(θ) | (1, n))− covθ0(au(θ0), bv(θ0) | (1, n))|

)

≤ δ{2q2 + 2pq3[|v − u| + 3(2l + 2)]} + 24q2ρ̃
l .

Proof. The difference covθ (au(θ), bv(θ) | (1, n)) − covθ (au(θ0), bv(θ0) | (1, n)) is boun-
ded by δ[āub0

v + a0
ub̄v], and the mean of this is bounded by 2δq2, where q2 is an upper bound

on the second moments of the terms involved.
Next, let au and bv be the respective functions evaluated at θ0. The difference

Eθ (a
ubv | (1, n))− Eθ0(a

ubv | (1, n))
is, from Lemma 2, bounded by a0

ub
0
u[2pδ

∑v+1+l
i=u−l hi(yi)+ 8ρ̃l] for any l ≥ 0. Similarly, the

difference

Eθ (a
u | (1, n))Eθ (b

v | (1, n))− Eθ0(a
u | (1, n))Eθ0(b

v | (1, n))
is bounded by a0

ub
0
u[2pδ(

∑u+1+l
i=u−l hi(yi)+ ∑v+1+l

i=v−l hi(yi)+ 16ρ̃l] for any l ≥ 0. Combining
the latter two bounds and taking the mean value, we obtain the bound 2pδq3[|v − u| + 3(2l +
2)] + 24q2ρ̃

l for the difference of the covariance evaluated under θ and under θ0. Here qj is
an upper bound on the j th moments of the terms involved.

Combining all the bounds, completes the proof.

Proposition 2. Suppose that the assumptions in Lemma 3 hold. Let δn → 0 for n → ∞. Then

lim
n→∞ Eθ0

{
sup

|θ−θ0|≤δn

∣∣∣∣1

n

n∑
u,v=1

{covθ (au(θ), bv(θ) | (1, n))− covθ0(au(θ0), bv(θ0) | (1, n))}
∣∣∣∣
}

= 0.

Proof. The mixing result in Corollary 1 for the hidden process conditioned on the observed
process gives

| covθ (au(θ), bv(θ) | (1, n))| ≤ 4a0
ub

0
vρ

|v−u|−3; (10)

see Theorem 17.2.1 of [8]. Taking the mean of this gives the bound 4q2ρ
|v−u|−3.
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Now consider a fixed u and the sum over v of the difference between the two covariances.
We split this sum into terms with |u − v| > l and terms with |u − v| ≤ l. For the first set,
we use the bound above for each covariance, and, for the second set, we use the bound from
Lemma 3. This gives the final bound

8q2
ρl−2

1 − ρ
+ δn{2q2(2l + 1)+ 2pq3[l(l + 1)+ 3(2l + 2)(2l + 1)]} + 24q2(2l + 1)ρ̃l .

Taking l = δ
−1/4
n , this bound tends to 0 as δ1/2

n , completing the proof.

6. Nonrandom limit of the ‘observed information’

Throughout this section, we work under Assumption 1. We show that the derivative
(1/n)Jn(θ0) of the estimating equation has a nonrandom limit, that is, we show that the limiting
variance of the entries of this matrix is 0. We consider first the conditional mean value part of
Jn in (8).

Lemma 4. Let the functions {ai} belong to the class C3. As n → ∞, the variance of
(1/n)

∑n
u=1 Eθ0(au | (1, n)) is of order O(1/n).

Proof. From the argument used in (7) we have |E(au | (1, n)) − E(au | (u − l, u + l))| ≤
4a0
uρ̃

l−1. This gives

cov(E(au | (1, n)),E(av | (1, n)))
= cov(E(au | (u− l, u+ l)),E(av | (u− l, u+ l)))+O(q2ρ̃

l),

where q2 is an upper bound for the second moment of a0
u. Using the mixing of the observed

process and Theorem 17.2.2 of [8], we find that the latter covariance in the above expression is of
orderO(q3[ρ̃1/3]max{0,|v−u|−2l}). Taking l= |v−u|/4,we find that

∑n
u,v=1 cov(E(au | (1, n)),

E(av | (1, n))) is of order n.

Lemma 5. Let the functions {ai} and {bi} belong to the class C4. As n → ∞, the variance of
(1/n)

∑n
u,v=1 covθ0(au, bu | (1, n)) tends to 0.

Proof. The proof parallels that of Lemma 4, although the details are more complicated.
Let ξu = ∑n

v=1 cov(au, bv | (1, n)), and let ξ lu be the same expression with the sum being
over v = u − l to v = u + l. Using (10), we find that the difference ξu − ξ lu is of order
a0
uρ

l
∑∞
k=0(b

0
u+l+k + b0

u−l−k). This in turn implies that the difference cov(ξu, ξz)− cov(ξ lu, ξ
l
z)

is of order q4lρ
l , where q4 is an upper bound on the fourth moments of a0

u and b0
v .

Using the argument behind (7), we can show that the difference cov(au, bv | (1, n)) −
cov(au, bv | (u − l, v + l)) is of order a0

ub
0
vρ̃
l . Let ξ̃ lu be ξ lu, where each covariance term is

replaced by cov(au, bv | (u − l, v + l)). Then the difference cov(ξ lu, ξ
l
z)− cov(ξ̃ lu, ξ̃

l
z) is of

order q4lρ̃
l .

Using (10), we see that ξ̃ lu is bounded by a0
u

∑u+l
v=u−l b0

vρ̃
|v−u|. Using Hölders inequality, the

third moment of ξ̃ lu can be bounded by a term of order q4l
3. Finally, we use [8, Theorem 17.2.2]

to bound cov(ξ̃ lu, ξ̃
l
z) by a term of order q4l

3[ρ̃1/3]max{0,|v−u|−4l}. Combining all the above
estimates, we find that

∑n
z=1 cov(ξu, ξv) = O(l4 + nlρ̃l). Taking l = n1/8, we obtain the

result of the lemma.
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7. Asymptotics for estimators from estimating equations

We state here a general theorem that directly gives the result of Theorem 1 on combining
the results of the previous sections. The proof is based on the method outlined in [17]. We
consider a general situation with an estimating function Sn(θ) with minus the derivative given
by Jn(θ). We define

γ (n, δ) = sup
θ∈B(δ)

∣∣∣1

n
(Jn(θ)− Jn(θ0))

∣∣∣.
Theorem 4. Below, probability statements are with respect to the true measure Pθ0 . Assume
that

(i) there exist a constant c0 > 0 and nonrandom matrices Fn, with eigenvalues of F�
n Fn

bounded below by c0, such that Jn(θ0)/n− Fn
P−→ 0;

(ii) there exist constants 0 < c1 < c2 < ∞ and nonrandom positive definite matrices Gn,
with eigenvalues between c1 and c2, such that (1/

√
n)G

−1/2
n Sn(θ0)

D−→ Np(0, I ).

Assume further that γ (n, c/
√
n)

P−→ 0 for any c > 0. Then

lim
c→∞ lim inf

n→∞ Pθ0

(
there exists θ̂n ∈ B

(
c√
n

))
= 1,

and, for such an estimate,
√
nG

−1/2
n Fn(θ̂n − θ0)

D−→ Np(0, I ). Under the stronger assumption
that γ (n, δn)

P−→ 0 for any sequence δn → 0, we have
√
nG

−1/2
n Fn(θ̂n − θ0)

D−→ Np(0, I ) for
any consistent solution θ̂n to the estimating equation.
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