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ON SPANNING SURFACES OF LINKS

J.F.P. HUDSON

In his paper on knot cobordism groups in codimension 2, Levine develops conditions
for a knotted 5™ in Sn+i to bound a disc in Bn+3. In this paper some of his
methods are extended to introduce a necessary condition for a classical link in S3

to bound a surface of specified genus in B*. In particular, this answers a question
of Zeemann's about some links related to the 'Mazur link'.

The Theorem 1 is a version of a theorem of Tristram ([2]) that is itself a generali-
sation of the theorem of Murasugi [3]. Tristram's proof is quite different, replacing the
spanning surface by a series of spherical modifications and using the concept of ribbon
equivalence of links. Theorem 2 is an application of the theorem to the repeated Mazur
link shown in Figure 1.

THEOREM 1. (Tristram). Let L be an oriented link in S3, V a connected Seifert
surface for L and M the Seifert linking matrix of V. Let a be any complex number
and let H = <xM + aMT. If L bounds a connected oriented compact surface U in B*
then

where

Pi = tie 1-dknensional Betti number,

<r = the signature of H,

v = the nullity of H.

THEOREM 2 . Let L be formed by linking S1 in a Mazur link round a stack of
k circles (Figure 1). Then L does not bound a surface of genus 0 (a puctured disc) in
B* . [It does bound a surface of genus one in B* .]
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338 J.F.P. Hudson [2]

Figure 1

All homology and cohomology groups are to be taken with rational coefficients. /3j
will denote the i-dimensional Betti number (that is, the dimension of the i-dimensional
homology group). All manifolds will be smooth, possibly with boundary and possibly
with corners.

A new proof of Theorem 1 is given, and Theorem 2 will be derived. For the proof
of Theorem 1 we need some lemmas. The proofs of the lemmas closely follow Levine's
proof [1, Lemma 2], but require a more careful look at the obstructions since the relevant
cohomology groups need not vanish.

LEMMA 1. Let L be an oriented link in S3 bounding a compact connected ori-
ented surface U in B*, and let V be a compact oriented surface spanning L in Ss

(a Seifert surface of L). Then there is a compact oriented 3-manifold W in B* with
dW = UUV. (Note: W has a corner along L).

PROOF OF LEMMA 1: Let N be a tubular neighbourhood of U in B*, chosen such
that N fl S3 and N D V are tubular neighbourhoods of L in 5 s and V respectively.
Let M = closure (B* - N) and N = N D M in dM. Now N is an S1 bundle over
U and H2(U) = 0. So the homotopy classes of sections of N correspond bijectively
with H*{U). Each homotopy class of sections corresponds to a homotopy class of fibre
maps N —» 5 1 . The only obstructions to extending the map N —* S1 over M lies in
H2(M, Z). Now the coboundary and excision homomorphisms:

H^U) -U H2(B\ U) A H2(M, N)

are isomorphisms, and so we can choose the fibre mapping N —» S1 so that it extends
over M. If the mapping is chosen to be smooth then the inverse image of a regular
value gives us a 3-manifold, Wi say, in M with W\ D N being the image of a section
of N. We can extend W\ to a 3-manifold W2 with boundary U U V2, where V2 is a
Seifert surface for L.
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[3] Spanning surfaces of links 339

Of course V2 need not be identical with the original Seifert surface V, but any
two Seifert surfaces for an oriented link are cobordant, in the sense that there is a 3-
manifold Wt say, in Ss x I with dWt = V2 x {0} U V x {1} U L x / . By attaching
such a cobordism as a boundary collar of B* we can complete the construction of the
manifold W required by the lemma. u

LEMMA 2 . Let W be a compact connected oriented 3-manifold with boundary

dW = U\JV, where U and V are compact connected surfaces with dU = dV — UC\V =
L. If 0i(U) < 0i(V) then the kernel of the homomorphism Hi(V, Q) -> H^W, Q)

induced by inclusion, has dimension ^ (0i(V) — /3i(!7))/2.

PROOF OF LEMMA 2: Consider the diagram:

0 > H2(W) > H2(W,dW)

Inw Trw Inaw

0 > H2{W,dW) > H^iW)

TnW Tnw

> H2(W,dW) > H2(W) > 0

The horizontal sequences are the exact homology and cohomology sequences, the vertical
arrows are the Poincare duality isomorphisms, and the diagram commutes up to sign.

It follows from the diagram that 0i(dW) = 2(01(W) - 02{W)) and that the kernel
of t»: H^dW) -> fli(W) has dimension (/3i(dW))/2.

Now consider the inclusions V —% dW —^-» W and the induced homomorphisms:

The Mayer-Vietoris for U and V gives the exact sequence:

Q kQ

H0(L)
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340 J.F.P. Hudson [4]

where k is the number of components of L. It follows that Pi(dW) = ^(U) + /?i(V).
Prom the exact sequence of the pair (dW, V)

0 > H2(dW) . H2(dW, V)

we see that «»: fTi(V) -> H^dW) is injective.

Now i» : i?i(SW) -> J?i(W) has kernel of dimension

It follows from elementary linear algebra that (*w)»: JTi(V) —> 27i(W) has a kernel of

dimension ^ (0i(V) - Pi{U))/2. D

LEMMA 3 . Let L be an oriented lini bounding compact connected oriented sur-
faces U in B4 and V in S3. Let M be the Seifert linking matrix associated with the
Seifert surface V. If 0u < 0v then M is congruent (over Q) to a matrix of the form:

Ok A
B C

where Ok is a k x k matrix of zeros and k ^ (j3v — /?i/)/2.

PROOF OF LEMMA 3: A tubular neighbourhood of V in S3 is a product V x

[ -1 , +1]. This enables us to define the 'push' mapping p: V -> V x {1} in S3 -V.

The Seifert linking matrix represents the Unking form: 0: H\(V) x -ffi(V) —» Q

defined by 8(a, /?) = the linking number of a with p»(/3) in S3.

Now the push mapping p can be extended over W —» B* — W. If a, /9 G kernel

[(*w)»: H\{V) —> H\{W)} then a, /? bound chains ct\, /?i say in W and p»(/?) bounds

p*(/?i). So a and p*(/?) bound disjoint chains in B*. Hence 0(a, /?) = 0.

If k is the dimension of the kernel of (tw)# , then we can choose a basis ei, e2, . . . , en

of Hi(V) such that ci, e2, . . . , e* span the kernel of the homomorphism (*'")»: J?i(V) —»

Hi(dW). Then 0(e;, e^) = 0 for all i, j ^ k. So M is congruent to a matrix with a

k x k matrix of zeros in the top left corner. D

LEMMA 4 . Let M be an n x n matrix congruent over the rationals to a matrix
of the form:

Ok

B C
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[5] Spanning surfaces of links 341

Let H = aM + aMT tor some complex number a. If H has signature <x and rank
r then k ^ n - (r + \<r\)/2.

PROOF OF LEMMA 4: If H is a Hermitian form on an n-dimensional space V, then
we can write V — P(& M ®Z where H is positive definite on P, negative definite on M
and zero on Z. If H(x, x) = 0 write x = p + m + z where p £ P, m 6 M and z € Z.
Now H(x, x) = H{p, p) + H(m, m). If p ^ 0 then m ^ 0 and conversely. If U is a
subspaceon which H vanishes, then the projections U —> P®Z and U —> M®Z must
both be injective. So dim U ^ n + min (p, m). But p = (r + <r)/2 and m = (r — <r)/2,
with r = rank(.ff). So dimU ^ v + (r - \<r\)/2 = n - (r + \<r\)/2. D

PROOF OF THEOREM 1: By Lemmas 1, 2, 3 and 4, M is congruent (over Q) to
an n x n matrix of the form

\0k A'
[B C

with (
\a\ +r -n — \<r\ - v.

PROOF OF THEOREM 2:

k s$ n - (r+|<7|)/2. Now /3j(V) = n and so
D

Figure 2. The Seifert surface and its homology generators.
Each generator is a cycle in the surface going anti-clockwise
around the corresponding letter.

Figure 2 shows a Seifert surface for the repeated Mazur link (with Jfc = 3). It shows
how we can select a set of homology generators: {a<, 6,-, c,-: t = 1, 2, . . . , k} U {d, e}.
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342 J.F.P. Hudson [6]

Figure 3 - a detail from Figure 2 showing the homology gener-
ators, with some of them pushed off the surface.

From the diagram we can read off the Seifert linking numbers. Figure 3 shows
a detail. We may assume that the areas shaded with hnes bottom left to top right
represent the 'front' of the Seifert surface, and that the push p is towards us in these
regions and away from us in the other regions. Examining the cross-overs carefully
we see that for instance, ax and pbi do not link, whereas a\ and pb2 link once in a
negative (left-handed) sense.
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[7] Spanning surfaces of links 343

All the non-zero linking numbers are given in the following table:

lk(m, bi+i) = - 1 for 1 < t < fc,

lk(ak, d) = - 1

for 1 < i < Jb,

for 1 < i < Jfc,
lk(ti, Oi) = - 1

lk(bit a) = +1

lk(c{, 6;+i) — +1 for 1 :

lk(cu Ci) = - 1 for 1

lk(ck, d) = - 1

lk(d,h) = +l

lk(d, d) = - 1

lk(e, d) = +1

lk(e, e) = - 1 .

We can write this in the block matrix form:
{a} {b} {c} d

{a}

{b} ~

k,

0

_ J

0

0

0

-E

0

E

C

0

0

/

_ /

0

0

-B

0

B

- 1

1

0

0

0

0

- 1

where E has l's immediately above the diagonal and O's elsewhere, B = (0, 0, . . . , 0, 1)
and C = ( l ,0 ,0 , . . . , 0 ) .

Now choose a complex number a with \a\ — 1, and let H = aM + aMT. Then
H is:

{a} W

{b}

{c}

0

-K

0

-&'

0

-K*

0

K*

7

0

0

K

-xl

P

0

-13

7*

p

—X

a

0

0

0

a

— X
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344 J.F.P. Hudson [8]

where K = al + aET, 0 = aB, 7 — aC and x = a + a.

We shall now reduce H to standard form by a series of matching row and column
operations.

STEP 1. Add rows in block 1 to the corresponding rows in block 3, and similarly for
columns.

STEP 2. Pre-multiply the rows in block 1 by -(A"*)"1 and post-multiply the corre-
sponding columns by — K~x.

These steps yield the matrix:
{a} {b} {c} d e

{a}

{c}

d

STEP 4. Use the second block of rows to eliminate 0*K~1 and the second block of
columns to eliminate (K*)~10.

STEP 5. Use the bottom right-hand element to eliminate a and a.
These steps yield the matrix:

{a} {&} {c} d e

{a}

0

/

0

p'K~x

0

I

0

0

7

0

0

0

-xl

0

0

K'-l0

7*

0

—x

a

0

0

0

d

— X

0

I

0

0

0

/

0

0

7

0

0

0

-xl

0

0

0

7*

0

8

0

0

0

0

0

—x

where 6 = -x + (1/x) - / ? * # - V -

Now K = al + aET, \a\ = 1 and Ek = 0. So K~l = al - c?F +
a*F2 - ( - l ) * - 1 ^ 2 * " 1 ) ^ - 1 where F = ET. But 0 = (0, 0, . . . , 0, af and
7 = («, 0, 0, . . . . 0). So /3*ijf-V = ( - l ) * " 1 ^ ^ 1 ) .

The complex conjugate of the transpose gives: -fK*~x0 = ( - l )*~1a("+ 1) . So
6 = -x + (1/z) + (-!)*(«("+!) + 5<2*+1>).
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C A S E 1. Jb odd. Put o = 1. Then 6 = - 2 + 1/2 - 2 < 0.

CASE 2. Jb even. Choose 6 = 7r/(2fc + 1) and a = eie. Then 6 = - 2 cos 0+1/(2 cos 0 ) -
2. Now 0 < 7r/5, SO COS0 > 1/2 and thus 6 < 0.

In both cases IT is non-singular with signature —(fc + 2) and nullity 2k.

Now the link L has (fc + 1) components, and so a punctured disk spanning L must

have /?i = k. This would contradict the Theorem 1. U
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