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CAUCHY’S PROBLEM FOR HARMONIC FUNCTIONS
WITH ENTIRE DATA ON A SPHERE

DMITRY KHAVINSON

ABSTRACT. We give an elementary potential-theoretic proof of a theorem of
G. Johnsson: all solutions of Cauchy’s problems for the Laplace equations with an en-
tire data on a sphere extend harmonically to the whole space RN except, perhaps, for
the center of the sphere.

1. Introduction. G. Johnsson has given in his thesis [J] a complete solution of the
following problem.

Let Γ be a quadratic surface in RN, and consider the following Cauchy problem:

(1. 1)

8><
>:

∆u :≥ PN
1

∂2u
∂x2

j
≥ 0 near Γ;

( ∂
∂xj

)k(u� f ) ≥ 0 on Γ; j ≥ 1, . . . , N; k ≥ 0, 1;

where the “data” function f is an entire function of N variables. Find the maximal domain
Ω in RN (or, CN) to which all solutions of (1.1) extend as real-analytic (or, holomorphic)
functions.

In fact, Johnsson has even solved the problem for all second-order operators that have
the Laplacian as their principal part. Johnsson’s work is rather deep, and based on so-
called “globalizing family” arguments stemming out from the work of Bony and Schapira
[BS] and Zerner [Z], blended with local uniformization of solutions of Cauchy’s problems
pioneered by Leray [L].

Similar and even somewhat more general results based on a set of interesting topo-
logical ideas—R. Thom’s theorem—have been independently obtained by B. Sternin and
V. Shatalov and their school (cf. [SS] and references therein). One of the remarkable corol-
laries of those investigations is the following

THEOREM 1. Let Γ ≥ fx 2 RN : jxj ≥ 1g be the unit sphere. The solution u of the
Cauchy problem (1.1) with an entire data f on Γ extends harmonically to the whole space
RN n f0g.

Note that a (simple) partial case of this theorem when f is a polynomial has been es-
tablished earlier by the author and H. S. Shapiro in [KS1]. On the other hand, in [KS2] we
have proven the following
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THEOREM 2. Let Γ be an ellipsoidal surface in RN and Ω denote its interior. The
solution of the Dirichlet problem

(1. 2)
(

∆u ≥ 0 in Ω
u ≥ f on Γ

extends as an entire harmonic function to RN.

The purpose of this note is twofold. First, it is to give a simple proof of Johnsson’s
Theorem 1 (but not his other results!) based on elementary potential theory. Second, and
this is to some extent surprising, we show that the estimates needed to establish Theorem 1
are essentially those used in the proof of Theorem 2 in case of the sphere, perhaps with
slight modifications (Lemmas 5, 6).

Throughout the paper we use standard multivariate notations. Pm ≥ Pm,N denotes the
space of polynomials in N variables of degree at most m, and Hk ≥ Hk,N is the subspace
of homogeneous polynomials of degree k in Pm. If the functions f , g coincide up to their
first derivatives on a surface Γ (i.e., ( ∂

∂xi
)k(f � g)jΓ ≥ 0, j ≥ 1, . . . , N; k ≥ 0, 1), we write

f jΓ � gjΓ. rf denotes the gradient of a function f . AN, BN , CN, etc., denote constants that
only depend on the dimension of the space.

ACKNOWLEDGEMENT. I am indebted to Prof. Harold S. Shapiro for the stimulating
discussions we have had in connection with Lemma 6.

2. Auxiliary lemmas. Let Γ ≥ fx 2 RN : jxj ≥ 1g be the unit sphere and f is an
entire function. As in [KS2], write the Taylor expansion of f as f ≥ P1

0 fm, where fm 2 Hm.
The following lemma is well-known (cf. [KS1] and references therein).

LEMMA 1. fm � um + (jxj2 � 1)vm on Γ where um 2 Pm, vm 2 Pm�2 are harmonic
polynomials.

PROOF. It is well-known (cf., e.g., [ABR, p. 76]) that fm 2 Hm can be written as a
finite sum fm ≥ hm + jxj2hm�2 + jxj4hm�4 + Ð Ð Ð , where hj 2 Hj and hj are harmonic. Hence,
on Γ we have: fm ≥ um :≥ hm + hm�2 + hm�4 + Ð Ð Ð , grad fm ≥ grad um + const(fm � hm)x ≥
gradfum + const(hm�2 + hm�4 + Ð Ð Ð)(jxj2 � 1)g and the lemma follows.

Let

(2. 1) um ≥ um,0 + Ð Ð Ð + um,m, vm ≥ vm,0 + Ð Ð Ð + vm,m�2

denote the decomposition of um and vm into homogeneous polynomials; thus um,j , vm,j are
in Hj and harmonic.

LEMMA 2. The solution Um of the Cauchy Problem(
∆Um ≥ 0 near Γ;
Um � fm on Γ

is given by

(2. 2) Um ≥
mX

k≥0
um,k +

m�2X
k≥0

2
2� N � 2k

0
@ vm,k

jxjN�2+2k
� vm,k

1
A,
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where um,k and vm,k are the same as in (2.1) (and Lemma 1). (In trivial cases, m ≥ 0, 1,
vm,k ≥ 0.

PROOF (cf. [KS1]). First, note (cf., e.g., [ABR, p. 184]) that if h 2 Hk and is harmonic,
then h

jxjN�2+2k is a homogeneous harmonic function of degree 2� N � k in RN n f0g. Thus,
the function in the right-hand side of (2.2) is indeed harmonic. Also,

∂
∂xj

0
@ vm,k

jxjN�2+2k

1
AjΓ ≥ ∂vm,k

∂xj
+ (2� N � 2k)xjvm,kjΓ

and hence,

(2. 3)
m�2X
k≥0

2
2� N � 2k

0
@ vm,k

jxjN�2+2k
� vm,k

1
AjΓ � (jxj2 � 1)vmjΓ.

(2.3) and Lemma 1 complete the proof of Lemma 2.
Now the strategy to prove Theorem 1 is rather straightforward: we shall show that the

series
P1

m≥0 jUm(x)j converges for all x 2 RNnf0g. The following series of lemmas provide
the needed estimates.

LEMMA 3 (cf. [KS2]). Let Fm :≥ maxfjfm(x)j : x 2 Γg, Gm :≥ maxfkrfm(x)k :
x 2 Γg. Then (Fm)

1
m ! 0 and (Gm)

1
m ! 0.

PROOF. Since the proofs of both statements are essentially the same, let us show that
(Gm)

1
m ! 0. (The other statement is also proved in [KS2].) Fix 1 � j � N. For t 2 C,

x 2 Γ we have

f (tx) ≥
1X
0

tmfm(x),

so,
∂f
∂xj

(tx) ≥
1X
0

tm ∂fm
∂xj

(x),

i.e., ∂fm(x)
∂xj

are the Taylor coefficients of the entire function t 7! ∂f
∂xj

(tx) on C. The Cauchy-
Hadamard estimate then implies

þþþþ∂fm
∂xj

(x)
þþþþ � maxfj ∂f

∂xj
(tx)j : jtj � Tg

Tm

for all T Ù 0. Hence,

max
x2Γ

þþþþ∂fm
∂xj

(x)
þþþþ � maxfj ∂f

∂xj
(z)j : jzj � Tg
Tm

and

max
x2Γ

krfm(x)k �

�PN
j≥1

�
maxfj ∂f

∂xj
(z)j : jzj � Tg

�2
� 1

2

Tm
.

Taking the m-th root and letting m !1 gives

lim
m!1

(Gm)
1
m � 1

T
for arbitrary T, implying the assertion.
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LEMMA 4. Let h 2 Pm be any harmonic polynomial, and h ≥ h0 + h1 + Ð Ð Ð + hm its
decomposition into homogeneous polynomials. Then,

max
x2Γ

jhk(x)j � CNk
N
2 max

x2Γ
jh(x)j, 1 � k � m.

Also,
jh0(x)j ≥ jh0(0)j � maxfjh(x)j : x 2 Γg.

This lemma is from [KS2]. For the reader’s convenience we include a proof.

PROOF. The statement concerning h0 is obvious, so suppose k ½ 1. Without loss of
generality, suppose maxfjh(x)j : x 2 Γg ≥ 1. If dõ denotes surface measure on Γ, we
have, since fhkg are orthogonal in L2(Γ, dõ),

Z
Γ
jhkj2 dõ �

Z
Γ
jhj2 dõ � jΓj,

where jΓj is the (N � 1)-dimensional measure of Γ. It follows easily that, if dx denotes
Lebesgue measure in Rn,

(2. 4)
Z

B
jhkj2 dx � AN ,

where AN is a constant depending only on N, B :≥ fx : jxj Ú 1g is the unit ball. Fix y 2 Γ.
Then, for 0 Ú r Ú 1, jhkj2(ry), does not exceed the mean value of jhkj2 over the ball B0

centered at ry, with radius 1 � r, giving the estimate

(2. 5) jhk(ry)j2 � 1
jB0j

Z
jB0j
jhkj2 dx.

Since the volume of jB0j ≥ A0N(1� r)N , we obtain from (2.4), (2.5) and homogeneity of hk:

jhk(y)j �
"

A00N
r2k(1� r)N

# 1
2

for all 0 Ú r Ú 1. The choice of r ≥ 1� (2k)�1 gives the desired estimate.

LEMMA 5. Let fm � um + (jxj2 � 1)vm on Γ be as in Lemma 1. Then,

Vm :≥ maxfjvm(x)j : x 2 Γg � CN(Gm + m2NFm),

where Fm :≥ maxfjfm(x)j : x 2 Γg, Gm :≥ maxfkrfm(x)k : x 2 Γg are the same as in
Lemma 2. Thus, in particular,

lim
m!1

(Vm)
1
m ≥ 0.

PROOF. By our hypothesis, for 1 � j � N, we have on Γ

∂fm
∂xj

≥ ∂um

∂xj
+ 2xjvm.
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So,

4
NX
1

x2
j jvmj2 ≥ 4jvmj2 � 2(krfmk2 + krumk2)

on Γ, i.e., for x 2 Γ

(2. 6) jvm(x)j � C
�
Gm + krum(x)k

�
.

To estimate krumk on Γ, recall that um ≥ Pm
k≥0 um,k , where um,k are homogeneous har-

monic polynomials of degree k.
The following assertion is perhaps of independent interest.

LEMMA 6. Let h 2 Hk be a homogeneous polynomial of degree k. Then

maxfkrh(x)k : x 2 Γg � k
p

2 maxfjh(x)j : x 2 Γg.

PROOF OF LEMMA 6. Fix x 2 Γ. First note that by Euler’s equation the normal deriva-
tive of h at x equals

∂h
∂n

(x) ≥
NX
1

xj
∂h
∂xj

(x) ≥ kh(x),

and hence,

(2. 7) max
²þþþþ∂h

∂n
(x)
þþþþ : x 2 Γ

¦
≥ k maxfjh(x)j : x 2 Γg.

Now, let y : kyk ≥ 1 be any vector orthogonal to x 2 Γ, i.e., tangent to Γ at x. The two-
dimensional plane hx, yi spanned by x, y “cuts” Γ along a unit circle T. If (ò, ë) stand for
coordinates on hx, yi, the restriction of hjhx,yi is a (homogeneous) polynomial of degree k
in two variables (ò, ë), and hence, according to Lemma 1 (for N ≥ 2), it coincides on T
with a harmonic polynomial H0(ò, ë), deg H0 � k. In particular, on T H0 :≥ Pk

0(aj cos jí+
bj sin jí) becomes a trigonometric polynomial of order � k, where í is the polar angle in
the plane hx, yi. Then, invoking classical Chebyshev’s inequality, we obtain

(2. 8)
jDy̨h(x)j ≥

þþþþdH0

dí (x)
þþþþ � k maxfjH0(z)j : z 2 Tg

� k maxfjh(z)j : z 2 Γg,

for an arbitrary vector y at x tangent to Γ. From (2.7), (2.8), the lemma follows.

REMARK. In view of (2.7), the constant
p

2 may not be sharp: the maximum of normal
and tangential derivatives cannot be attained at the same point. In particular, it would be
interesting to know whether

p
2 can be replaced by 1. This is true, e.g., when h is real-

valued (cf. [S, Equation (12) ff.]).

PROOF OF LEMMA 5, CONT’D. From Lemmas 4, 6, and the fact that um ≥ fm on Γ, we
obtain for x 2 Γ þþþþ ∂

∂xj
um(x)

þþþþ � mX
k≥0

CNk
N
2 +1Fm

https://doi.org/10.4153/CMB-1997-007-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-007-3


CAUCHY’S PROBLEM 65

and, finally,

(2. 9) krum(x)k � CNm
N+4

2 Fm � CNm2NFm.

Now, (2.6) and (2.9) imply the lemma.

3. Proof of Theorem 1. Fix R Ù 0. To show that for any x : 1
R Ú jxj Ú R, the seriesP1

m≥0 jUm(x)j Ú A(R) Ú +1, where Um is defined by (2.2), it suffices to show that the
series

(I)
P1

m≥0
Pm

k≥0 jum,k(x)j,
(II)

P1
m≥2

Pm�2
k≥0

2
j2�N�2kj

jvm,k(x)j
jxjN�2+2k , and

(III)
P1

m≥2
Pm�2

k≥0
2

j2�N�2kj jvm,k(x)j
all converge. Set Fm ≥ ¢m

m, where, according to Lemma 3, ¢m ! 0 when m ! 1. For
series (I) we have, in view of Lemma 4,

(3. 1) jum,k(x)j � CNk
N
2 ¢m

mjxjk � C0
NAk

N¢m
mRk,

where AN Ù 1 is a constant that depends on N. Thus,

(3. 2)
mX

k≥0
jum,k(x)j � C0

N¢m
m

mX
k≥0

(ANR)k � C00
N¢m

m(ANR)m+1,

and hence,
1X

m≥0

mX
k≥0

jum,k(x)j � C00
NANR

1X
m≥0

(¢mANR)m Ú A(R) Ú +1,

because ¢m ! 0 when m ! +1.
It is worth pausing here to observe the following Corollary (cf. Theorem 2, [KS2]).

COROLLARY 1. The solution u0 :≥ P1
m≥0

Pm
k≥0 um,k(x) of the Dirichlet problem

(
∆u0 ≥ 0 in B;
u0 ≥ f on Γ

with entire data f extends to RN (and hence to CN) as an entire harmonic function.

Note that the above argument immediately implies the convergence of series (III), as
well. Indeed, let Vm :≥ maxfjvm(x)j : x 2 Γg ≥ ém

m. Then, Lemma 5 implies that ém ! 0
when m !1, while Lemma 4 provides the estimate

(3. 3) jvm,k(x)j � CNk
N
2 ém

mjxjk,

which is identical with (3.1).
Finally, to establish the convergence of (II), we fix x : 0 Ú 1

R Ú jxj Ú R Ú 1. Without
loss of generality, we can assume jxj Ú 1, since for jxj Ù 1 convergence of series (II) is
implied by that of (III). Then, (3.3) yields (cf. (3.2)):

m�2X
k≥0

jvm,k(x)j
jxjN�2+2k

� CNém
m

m�2X
k≥0

k
N
2 RN�2+k � C0

Ném
mRN�2(ANR)m�1.
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Therefore, as above,
1X

m≥2

m�2X
k≥0

jvm,k(x)j
jxjN�2+2k

� A(R) Ú +1,

and hence, series (II) converges as well.
From the estimates we have given it follows at once that the series u ≥ P1

m≥0 Um(x),
giving the solution of the Cauchy problem (1.1) on the sphere converges absolutely ev-
erywhere in CN n fz :

PN
0 z2

j ≥ 0g. Thus, we obtain the following corollary also due to
G. Johnsson [J].

COROLLARY 2. The solution of the Cauchy problem for the Laplace equation with an
entire data on the sphere extends as an analytic (multi-valued for odd N) function to the
whole complement in CN of the isotropic cone Γ̂0 :≥ fz 2 CN :

PN
1 z2

j ≥ 0g.

REMARK. It is plausible that this way of reasoning can be somewhat modified to give
a proof of Johnsson’s theorem for general ellipsoids Γ :≥ fx 2 RN :

PN
1 a�2

j x2
j ≥ 1g.

The singularity set then is the “caustic” Γ̃ :≥ fx 2 RN, xN ≥ 0,
PN�1

1
xj

a2
j
�a2

N
≥ 1g (we

assume that a1 Ù a2 Ù Ð Ð Ð Ù aN). All the estimates related to the Dirichlet problem
extend to that case mutatis mutandis (cf. [KS2]). The difficulty lies in extending Lemma 2.
Although, in the earlier unpublished joint work with H. S. Shapiro, we have been able to
show explicitly that the analogues of functions Um (i.e., solutions of the Cauchy problem
(1.1) with polynomial data on an ellipsoidal surface) do extend to the complement of the
caustic Γ̃ in RN , the formulae for those solutions obtained in terms of ellipsoidal harmonics
seem too complicated to allow establishing a readable analogue of Lemma 5.
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