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ON CONICS OVER A FINITE FIELD
FUANGLADA R. JUNG

1. Introduction. Let F denote a Galois field of order ¢ and odd character-
istic p, and F* = F\{0}. Let .S, denote an n-dimensional affine space with base
field F. E. Cohen [1] had proved that if » = 4, there is no hyperplane of S,
contained in the complement of the quadric Q, of S, defined by

11) a=ax?®~+...4+ax2 (@=a...a, #0)

and in S;, there are ¢ + 1 or 0 planes contained in the complement of Q3
according as —ae is not or is a square of F.

In this paper, we determine the number of lines of S, contained in the
complement of a given conic of S, (see Theorems 2 and 4). Moreover, we
obtain directly from the proofs of Theorems 2 and 4, the number of lines of
S, which are 1-dimensional subspaces of S; contained in the complement of
a given conic of S, (see Theorems 3 and 5). We note that Theorems 2 and 3
are concerned with central conics and Theorems 4 and 5 with noncentral
conics. Finally, by applying the preceding results, we obtain the number
of planes of S; which are in the complement of the intersection of a diagonal
quadric and a plane of S; and which are not parallel to the given plane (see
Theorem 6).

2. Let ¥(a) denote the Legendre symbol in F; that is, ¥(a) = 1, —1 or 0
according as a is a square, a nonsquare or zero in F. Furthermore, for any set.S,
let |S| denote its cardinal number.

For any a, a1, a» € F such that a,as % 0, let

N(a; a1, as) = {(x1, x2) € F X Flawx:? + asxe® = a}
LemMA 1 [2, §64]. For any a, a1, a2 € F such that o = aa2 #~ 0,
. _J)q— ‘I’(—a) 1:fa¢0’
(21) lN(d, a, a2)l = {q + (q _ 1)‘1,(_“) ifa = 0.

For convenience, we say that any two elements (xi, x2) and (y1, y2) of
F X F are proportional, and write (x1, x2) ~ (y1, ¥2) if and only if (x1, x2) =
(01, py2) for some p € F*. Clearly, ~ is an equivalence relation. We denote
the equivalence class containing (x1, ) € F X F by [#1, x2] and the quotient
set F X F/~ by Q, and let Q* = Q\{[0, 0]}.

2.1 Remarks (a). It follows from Lemma 1 that for any squares g, » in F*,
|N (u; a1, a2)] = |[N(@v; a1, a2)|, where a;, as € F*. Moreover, it is easily seen
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that any (x1, x2) in N(u; a1, a2) is proportional to some element (y;, y2) in
N (v; a1, a2). Furthermore, since for any fixed nonsquare X in F*, {\p?|p € F*}
is the set of all nonsquares in F*, the above remark also holds true when u and
v are both nonsquares.

(b) It is easily seen that if

P(a; ar, az) = {[x1, %] € Q*|(x1, x2) € N(a; a1, an)},
then
|P(a; ay, a2)| = [N(a; a1, a2)|/2 or {|N(a;ay, a2)| —1}/(¢ — 1)
according as ¢ # 0 or ¢ = 0.
(c) Throughout the remainder of the paper, for any b, b;, b2 € F, where

at least one of b; and b, is nonzero, let L(b; by, b2) denote the line of S; which
is represented by the equation

(22) b = b1x1 + szCz.

We observe that L(0; b1, b2) and L(O by, by') are the same if and only if
[b1, b2] = [bY, b'].

THEOREM 1. Let a, b, a1, as, b1, be denote elements of F such that aias % 0
and at least one of by and by is nonzero. If o = aias: and B = bi12/a; + bs?/as,
then the system of equations

a = a1x1? + agxe?
b = bix1 + baxe

is not solvable if and only if either 8 %~ 0, ¥(—a(b? —aB)) = —lorB =0 =
03 a, ¥(—a) =

Proof. The proof follows immediately from [1, Theorem 2].

THEOREM 2. Let S; denote a 2-dimensional affine space with base field F and
Q2 a conic of S; defined by

2.3)  a = awx:®+ awxs? (@ = a1a2 # 0),

where a, a1, a2 € F. If N denotes the set of all lines of Ss contained in the complement

of Qs, then
(¢ —1 ifa =0, ¥V(—a) = —1,
) = {0 ifa=0 ¥(—a) =1,
2 + 3g(g — 1) Ya <0 ¥a) =1,
3@+ (g —2) tfa#0, ¥(—a) = —

Proof. Let No and N, denote the sets of homogeneous and nonhomogeneous
lines in N, respectively. Then N = No\U N; and |N| = |No| + |Ni|. Since
we are only interested in |No| and |Vy|, it suffices to consider only those lines
in Ny of the form (2.2) with b = 0 or 1. Moreover, itis clear that L (b, b1, b:) € N
if and only if the equations (2.2) and (2.3) have no common solutions. For
convenience, we write N(8; ai™!, a:™!) = N(8), for any B € F. Clearly,
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N(@) N\ N(y) = 0, for any v # B. To complete the proof we evaluate |No| and
| V4] in the following cases.

Casel (@ = 0, ¥(—a) = 1). By Theorem 1, | No| = |N;| = 0. Hence |N| = 0.
Case2 (a = 0, ¥(—a) = —1). By Theorem 1

(24) N =0

and

[Vy| = l{(bl,bz) € (FX F)*|(bs,b2) € U N(B)}l = 2. |IN@®)I,
BeF pern

where (F X F)* = F X F\{(0, 0)}. Hence, |N:| = ¢ — 1 by virtue of (2.1),
so that |[N| = |N,| = ¢ — 1.

Case 3 (¢ # 0, ¥(—a) = 1). By Theorem 1, L(b; by, bs), where b = 0 or 1,
is in N if and only if either 8 # 0, ¥ (b2 — aB)) = —1 or B8 = b = 0, where
B = bi%/a1 + b22/as. Hence, by 2.1(c),

(2'5) 'Nol = 1{[171, bz] € Q*Ieither

(b1, b2) € U N(B) or (b1, bs) € N(O)}l
BEF*, ¥ (—af)=—1
and

(2.6) [Na] = l{(’h, bs) € (F X F)*|(b1, bs) € U N(ﬁ)}‘ =2 IN®)I
ger fer

where T = {8 € F¥|W(1 — aB) = —1}.Hence,by2.1(a),2.1(d), (2.1) and (2.5)
2.7 |No| = |P0; a7} ax )| + [P(Bos el a0t = 2+ 3(¢ — 1),

where 8o € F* such that ¥(—aB,) = —1. Moreover, since, for any 8 € T,

N(B) = g — 1 by virtue of (2.1) and since |7 is equal to the number of

nonsquares in {1 — aB|B € F*, B # a~1} = F*\{1}, it follows from (2.6) that
|V = (¢ — DI|T] = 3(g — 1)

Hence, |N| = [No| + |N1| = 2 4 q(¢g — 1)/2.
Case 4 (a # 0, ¥(—a) = —1). By an argument similar to that used in
Case 3, we have

(2.8)  [No| = |P(Bo; a1}, a7 V)| = 3(¢ + 1),

and

(29) [Nl =2 IN®)| = 3@+ 1) —3),

BeT’

where 8y € F* such that ¥(—aBy) =1 and 77 = {8 € F¥|¥(1 — aB) = 1}.
Consequently, by (2.8) and (2.9), [N] = (¢ + 1)(g — 2)/2.
The proof of the theorem is now complete.

The following result is obtained directly from the proof of Theorem 1.
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THEOREM 3. With the same notation of Theorem 2, if H denotes the number of
lines in N which are 1-dimensional subspaces of Se, then

{2+%<q— 1) ifa #0, ¥(—a) =1,

0 otherwise.

Proof. Since H = |Ny|, the theorem follows immediately from (2.4), (2.7),
(2.8) and the fact that |[N| = 0if ¢ = 0 and ¥(—a) = 1.

THEOREM 4. Let C, denote the conic of S» defined by
a = ox1? + A\xa,

where a, o, N € F, 0 # 0 # \. If N denotes the set of all lines of S» contained in
the complement of Cs, then |N| = q(qg — 1)/2.

Proof. We may (and shall) assume without loss of generality that ¢ = 1.
Let Ny and N; denote the sets of homogeneous and nonhomogeneous lines in
N, respectively. Then N = No\U N; and |N| = |No| + |Ni|. In order to
evaluate |No| and |N,| we consider two cases in accordance with a % 0 or
a=0.

Case 1 (a # 0). As in the proof of Theorem 2, we assume that any line
in N, is of the form (2.2) with & = 1. Clearly, L(b; b1, b2) € N if and only if
the system of equations

(2.10) a = x:2 + Mo
b = b1x1 + bzxg

is not solvable. If b, = 0, (2.10) is always solvable. Assume now that b, # 0;
then eliminating x» and completing the squares, (2.10) yields

a — )\bz_lb + i‘)\2b2_2b12 = (xl —_ %)\bz_lblz)z.

Hence, (2.10) is not solvable if and only if ¥ (4aby? — 4N\bsb + A25,2) = —1,
where b = 0 or 1. Consequently, it follows from 2.1(¢) and the above con-
sideration that

(2.11)  |No| = [{[b1, ba) € Q*| ¥ (4abs? + N2:2) = —1}|,
and
(2.12) |Ny| = |[{ (b1, b2) € F X F\{(0,0)}|¥(4abs® — 4N\bs + N2,2) = —1}|.
Hence, if S,, denotes the number of solutions of the equation
4ax,? + N2xo? = 1y,
where {, is any nonsquare in F*, then

(2.13) |No| = 354, = (g — ¥(—a))
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by virtue of 2.1(a), 2.1(b), (2.1) and (2.11). Moreover by (2.12),
lNll = E T,

LEF*, ¥ (1)=—1
where T', denotes the number of solutions of the equation
(214) 4ax22 — 4 A\x2 + )\2x12 = {.

By completing the square (2.14) becomes
4a(xe — N/2a)® 4+ N2 =t + N/a
so that, by (2.1)
I {q — ¥(—a) if £+ N/a # 0,
¢ g+ (g — 1)¥(—a) ift + 2\/a = 0.
Hence

|N,| = {%(q —1)2 if ¥(—a) =1
! 3g—3)g+1+1 if W(—a) = —1.

It now follows from (2.13) and (2.15) that |[N| = ¢q(g — 1)/2.
Case 2 (¢ = 0). By an argument similar to that used in Case 1,

(2.16) N, =0,

and
Nl = Z Rtr
EF*, ¥ (1)=—1
where R, denotes the number of solutions of (2.14) with ¢ = 0. Clearly, by
assigning arbitrary values in F to x;, we can determine x,. Hence, R, =
for all ¢ € F* such that ¥(¢) = —1. Consequently, N = N; = q(g — 1)/2.
The theorem is now established.

The following theorem concerned with a subset of IV is essentially obtained
from the proof of Theorem 4.

THEOREM 5. With the same notation of Theorem 4, let H denote the number of
lines in N which are 1-dimensional subspaces of S.. Then H =0 or
(g — ¥(—a))/2 according as a = 0 or a ¥ 0.

Proof. Since H = |N|, the theorem follows immediately from (2.13) and
(2.16).

2.2 Remark. If L denotes a line of .S,, then the number of lines contained in
the complement of L is ¢ — 1 and if L denotes two parallel lines of S;, then
the number of lines contained in the complement of L is ¢ — 2.

Finally, as a consequence of a complete evaluation of the number of lines
contained in the complement of a conic of S, we obtain the following theorem.
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THEOREM 6. Let Q; denote a quadric of S; defined by
a = aw:® + axe? + asxs®  (aawas # 0),
and P2 a plane of S; defined by
¢ = C1%1 + Caxa + C3x3.

If N; denotes the number of planes of S5 which are not parallel to Py and which
are in the complement of Qs (N Ps, then under the assumption that Q3 M Py %~ @,

we have

qg — 1) ify=c=a=0,
q(g — 2) ify =0 =¢, ¥(—aa) =1,
3¢%(g — 1) ify =0#c

Ns = 42¢ + 3¢*(g — 1) ify #0 5% C ¥(—ay) =1,
3q(q + 1)(g — 2) ify #0#C, ¥(—ay) = —1,
q(¢* — 1) ify#0=C, ¥(—ay) = —1,
0 ify#0=C, ¥(—ay) =1,

where v = ¢12/a; + ¢2/as + ¢32/as, C = ¢ — ay and a = a1a:a3.

2.4 Remark. By [1, Theorem 2], Q3 M P, = @ if and only if y = 0 = ¢ and
V(—aa) = —1.

Proof. Since Q3 M P, is a conic in S» and since, for any given line, there are
g + 1distinct planes passing through it, N3 = gL, where L denotes the number
of lines of S, contained in the complement of Q; M P..

Now, consider the system of equations

(2.17) a = a1%1® + a%:? + asxs? (@ = aiaqa; # 0)
' C = C1X1 + CoX2o + C3X3.

We may assume without loss of generality that ¢; # 0. Then eliminating x;,
(2.17) yields

(218) a — §'62 = (’le22 + 72%’32 + 2{6263362363) —_ 2;’6(62362 + ngg),

where ¢ = 16172, v1 = {€2? + a2 and 2 = {32 + a3. The discriminant of the
quadratic form enclosed in parentheses in (2.18) is ¢;%ay.

If y=c=a=0, then Q3N P, is a line; similarly, if y = ¢ =0 and
¥ (—aa) = 1, then Q3 M P, consists of two parallel lines. Assume ¥y = 0 # c.
Then at least two of the ¢, are nonzero; we may assume without loss of generality
that ¢; £ 0 # ¢.. By a simple calculaton, we see that (2.18) assumes the form

a — {c? = azxs® — 2{ccoxs,
or

(@y1 — ¢ctas)/v1® = x? + 2cyicsasxws,
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where ¥ = x5 4+ va{ca™cs %3 — cfcayi™!, according as ¢; = 0 or ¢; # 0. We
note that if ¢; # 0 = v, then v; # 0. Hence, by 2.2 and Theorem 4,

g—1 ify=a=c¢=0,
(219) L =<qg—2 ify =¢=0, ¥(—aa) =1,
3q(¢ — 1) ify =05 c.

Assume now that y # 0. If either v; or v: is nonzero, say v; # 0, then the
nonsingular transformation

Y2 = vi¥1 + {Calsx3
Y3 = X3
takes (2.18) into
(2.20) a — e = yi e + e tayyi st — 20cyi (caye + ascsys).
Putting ws = vy — {ccs and ws = y; — aicascs, (2.20) becomes
(2.21) —97IC = v we? 4 o ey wst
If y1 = 0 = vy, then ¥(—1) = 1. Applying the nonsingular transformation

Yo = Sc17leaws + Feilexs

Y3 = 3C17lcaxs — 3617 lCsxs
to (2.18) yields
(2.22) @ — ¢ = 201y — 2a1v5* — 4aicciy,.
If we put ¥’ = v2 — cer™, (2.22) becomes
(2.23) —+71C = 2a1y:'? — 2a1y:2.

Hence, it follows from (2.21), (2.23) and Theorem 2 that

(2+qgg—1) if C#0, ¥(—ay) =1,

_Ji g+ (g - 2) if C#0, ¥(—ay) = —1,

@24) L=10 i#C=0 ¥(—ay) = -1,
0 if C =0, ¥(—ay) = 1.

Hence, the theorem follows from (2.19) and (2.24). This completes the proof
of the theorem.
For an alternative proof of Theorem 6, see [3, §II1.4].
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