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Abstract

In this paper it is shown that almost local connectedness is hereditary for the subspace that is the
union of regular open sets and is preserved under almost-open (in the sense of Singal) ^-continuous
surjections.

1980 Mathematics subject classification (Amer. Math. Soc): 54C10, 54D05.

1. Introduction

Recently, V. J. Mancuso [3] has introduced and investigated the concept of almost
locally connected spaces. In [3], among others, the following theorems have been
established:

THEOREM A. Let f: X -» Y be an almost-open, almost-continuous and connected
surjection. If X is almost locally connected and Y is almost-regular, then Y is almost
locally connected.

THEOREM B. Let f: X -> Y be an open, almost-continuous and connected surjec-
tion. If X is almost locally connected, then so is Y.

The main purpose of the present paper is to improve the previous theorems. In
Section 4 it will be shown that almost local connectedness is preserved under
almost-open and almost-continuous surjections. By making use of this result we
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shall show in Section 5 that the word "regular open" in Theorem 3.8 of [3] can be
replaced by "the union of regular open sets".

2. Preliminaries

Throughout this paper spaces mean topological spaces on which no separation
axioms are assumed unless explicitly stated. Let S be a subset of a space X. The
closure of S and the interior of 5 in X are denoted by Clx(S) and I n t ^ S ) (or
simply Cl(5) and Int(S)), respectively. A subset S is said to be regular open (resp.
regular closed) if Int(Cl(5)) = S (resp. Cl(Int(5)) = S). The family of all regular
open sets of a space X is denoted by RO(A'). A function/: X -> Y is said to be
almost-continuous [12] (resp. 6-continuous [1], weakly-continuous [2]) if for each
point x G X and each open set V of Y containing/(x) there exists an open set U
of X containing x such that /([/) C Inty(Cly(F)) (resp. f(C\x(U)) C Cly(K),
f(U) C Cly(K)).

REMARK 2.1. It is known that continuity => almost-continuity => 6-continuity =>
weak-continuity and none of these implications is reversible ([6], [12]).

3. Almost locally connected spaces

DEFINITION 3.1. A space X is said to be almost locally connected (simply a.l.c.)
[3] if for each x G X and each G G RO(A") containing x there exists an open
connected set V such that x G V C G.

We shall begin by giving a characterization of a.l.c. spaces which will be used in
the subsequence.

THEOREM 3.2. The following statements are equivalent for a space X:
(\)Xis a.l.c.
(2) The components of regular open sets in X are regular open in X.
(3) For each x G X and each G G RO(X) containing x, there exists a regular

open connected set V such that x G V C G.

PROOF. (1) => (2): Let G G RO(Ar) and C be a component of G. By Theorem
3.5 of [3], C is open in X and C C Int^(Cl^(C)). On the other hand, since C is
connected, so is Int x(Cl X(C)). Since C is a component of G, Int^-(C1^(C)) C C.
Therefore, we have C - lntx(Clx(C)) which shows that C G RO(A').

(2) => (3) and (3) =• (1) are easy and the proofs are thus omitted.
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DEFINITION 3.3. A space X is said to be nearly-compact [11] if every regular
open cover of X has a finite subcover.

COROLLARY 3.4. A nearly-compact a. I.e. space has a finite number of components.

PROOF. Let Xbe a nearly-compact a.l.c. space. Since X G ROCX), by Theorem
3.2 the family of components of X is a regular open cover of X. Therefore, X has a
finite number of components.

A space X is said to be weakly-Hausdorff [13] if every point of X is the
intersection of regular closed sets.

THEOREM 3.5. A nearly-compact weakly-Hausdorff space X is a.l.c. if and only if
every regular open cover of X is refined by a cover consisting of a finite number of
regular open connected sets.

PROOF. Let A'be a nearly-compact a.l.c. space and T = { K J o £ v } a regular
open cover of X. By Theorem 3.2, for each a G V the components Ca(y) of Va are
regular open in X, where a{j) G V(a). Since X is nearly-compact, there exist a
finite subset v 0 of V and a finite subset V0(a) of V(a) for each a G v 0 such
that

X=\J {Ca(j)\a(j) G V0(a),a G Vo).

Thus, the family {Ca(j) \a(j) G V0(a), « G Vo} is a desirable refinement of tV.
Conversely, under the condition that X is a weakly-Hausdorff space and the

hypothesis holds, we shall show that X is a.l.c. Let x G X and x G G G R O ^ ) .
Since X is weakly-Hausdorff, for each y G X — G there exists Uy G RO( X) such
tha t j G Uy and x £ Uy. Then G U {Uy \y G X - G) is a regular open cover of X
By the hypothesis, it has a refinement {Fa | a G V} consisting of a finite number
of regular open connected sets. There exists an a0 G V such that x £ V . If
Vao C £/>, for some y €L X — G, then x G Uy. This is a contradiction. Therefore,
we obtain x G Va C G. This shows that X is a.l.c.

4. Preservation theorems

A function/: X -> Y is said to be almost-open (simply a.o.R.) [10] if f(U) C
Inty(Cly(/(£/))) for every open set (/ of I A function / : X -> Y is said to be
connected [8] if for each connected set C of X, f(C) is connected in Y. The
following theorem is an improvement of Theorem B.
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THEOREM 4.1. Let f: X -* Y be an a.o.R., weakly-continuous and connected
surjection. If X is a.I.e., then so is Y.

PROOF. Lcty E Y andy G G G RO(Y). It follows from Theorem 3.4 of [6] that
f~\G) G RO(X). Since X is a.l.c, for x G /""\y) there exists an open connected
set U of X such that x G U Cf~\G). Since / is a.o.R., we have f(U) C
Int(Cl(/(£/))). Since/is connected,/(I/) is connected and so is Int(Cl(/(£/))).
Moreover, we obtain

This shows that Y is a.l.c.

We shall show the main theorem of this paper which is an improvement of
Theorem A and Theorem B. For this purpose we need some lemmas.

DEFINITION 4.2. A function / : X -> Y is said to be almost-open (simply a.o.S.)
[12] if for each U E RO(X) f(U) is open in Y.

REMARK 4.3. It is known in [7] that "a.o.S." neither implies "a.o.R.", nor does
"a.o.R." imply "a.o.S.".

LEMMA 4.4. Let f: X -> Y be a weakly-continuous surjection and Xo be a subset of
X. Iff(X0) is open in Y, then the function f0: Xo -* f(X0), defined by fo(x) = f(x)
for each x E. Xo, is weakly-continuous.

PROOF. Put Yo = f(X0). Let x G Xo and Vo be an open set of Yo containing
fo(x). Since Yo is open in Y, Vo is open in Y. By weak-continuity of/, there exists
an open set U of X containing x such that / ( [ / ) C Cly(F0). Put Uo = U n Xo,
then Uo is an open set of Xo containing x and fo(Uo) C Cly(F0) n Yo = Clyo(Ko).
This shows that /0 is weakly-continuous.

LEMMA 4.5. Let f: X -» Y be an a.o.S. weakly-continuous surjection. If U is a
regular open connected set of X, then f(U) is open connected in Y.

PROOF. Since / is a.o.S. and U G R O ^ ) , f(U) is open in Y. It follows from
Lemma 4.4 that the function/0: U -> f(U) is weakly-continuous. Since U is a
connected set of X, by Theorem 3 of [4] fo(U) = f(U) is connected.

THEOREM 4.6. Let f: X -» Y be an a.o.S. d-continuous surjection. If X is a.l.c,
then so is Y.
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PROOF. Let y G Y and y G G G RO(y). Every a.o.S. function is weakly-open
[7, Lemma 1.4]. Hence, it follows from Theorem 4.4 of [6] that/^'(G) G RO(A")-
Since X is a.l.c, for x Gf~\y) by Theorem 3.2 there exists a regular open
connected set U of X such that x £ [ / C f ' ( ( ? ) . Every ^-continuous function is
weakly-continuous. Therefore, by Lemma 4.5 f(U) is open connected in Y and
y G/({/) C G. This shows that Y is a.l.c.

COROLLARY 4.7. Almost local connectedness is preserved under a.o.S. almost-con-
tinuous surfed ions.

PROOF. This is an immediate consequence of Theorem 4.6.

REMARK 4.8. The previous corollary shows that the hypothesis "connected" on
/ in Theorems A and B and also "almost-regular" on Y in Theorem A can be
removed.

In this paper, for simplicity, we call the set X with the topology having RO( X)
as a basis the semi-regularization, denoted by Xs, of a space X.

COROLLARY 4.9. A space X is a.l.c. if and only if the semi-regularization Xs is
locally connected.

PROOF. Necessity. Let X be a.l.c. The identity function ix: X -* Xs is a.o.S. and
continuous. Thus, by Corollary 4.7 Xs is a.l.c. and it is locally connected by
Proposition 3.3 of [3].

Sufficiency. Let Xs be locally connected. The identity function j x : Xs -» X is
open and almost-continuous. It follows from Corollary 4.7 that X is a.l.c.

THEOREM 4.10. Let f: X -> Y be an almost-continuous surjection. If X is compact
a.l.c. and Y is Hausdorff, then Y is a.l.c.

PROOF. Since / is almost-continuous and X is compact, Y = f(X) is nearly-
compact [11, Theorem 3.2]. Moreover, since Y is Hausdorff, it is almost-regular
[11, Theorem 2.4]. It follows from Theorems 4.9 and 2.5 of [5] that fs is a
continuous function of a compact space Xs onto a Hausdorff space Ys. Therefore,
fs is closed. Since X is a.l.c, by Corollary 4.9 Xs is locally connected and hence
fs(Xs) — Ys is locally connected. It follows from Corollary 4.9 that Y is a.l.c.
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5. Subspaces of a.l.c. spaces

Theorem 3.8 of [3] states that if A is a regular open set of an a.l.c. space X then
the subspace A is a.l.c. The following theorem shows that the hypothesis "regular
open" on A in this result can be replaced by " the union of regular open sets".

THEOREM 5.1. If X is an a.l.c. space and A is the union of arbitrarily many
regular open sets, then the subspace A is a.l.c.

PROOF. It follows from Corollary 4.9 that Xs is locally connected. Since the
identity function ix: X -* Xs is a.o.S., ix(A) is open in Xs and hence the subspace
ix(A) is locally connected. The identity function^: Xs -> X is open and almost-
continuous. Since A is open in X, by Lemma 4.4 the induced identity function
(Jx)o' 'x(-A) ~~* -̂  ' s ° P e n weakly-continuous. Moreover, every open weakly-con-
tinuous function is almost-continuous [12, Theorem 2.3]. Therefore, it follows
from Corollary 4.7 that A is a.l.c.

A subset K of a Hausdorff space X is said to be H-closed relative to X [9] if for
every cover {v a | a G V} of K by open sets of X there exists a finite subset v 0 of
V such that K C U{C\x(Va)\a £ v } .

COROLLARY 5.2. If a space X is a.l.c. Hausdorff and K is H-closed relative to X,
then X - K is a.l.c.

PROOF. Let x G X - K. Since X is Hausdorff, for each y & K there exist
regular open sets V(y) and W(y) containing x and y, respectively, such that
V(y) D C\{W{y)) = 0. Since [W(y) \y G K) is a cover of K by open sets of X,
there exists a finite subset Ko of K such that

tf-C U {C\x(W(y))\yGK0}.

Put Vx - H [V{y)\y G Ko}, then x G Vx G RO(X) and Vx C X - K. It follows
from Theorem 5.1 that X — K is a.l.c.
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