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Abstract
We study climate change policies using the novel pattern scaling approach of regional
transient climate response in order to develop a regional economy–climate model under
conditions of deep uncertainty. We associate welfare weights with regions and analyze
cooperative outcomes derived by the social planner’s solution at the regional scale. Recent lit-
erature indicates that damages are larger in low latitude (warmer) areas and are projected to
become relatively even larger in low latitude areas than at temperate latitudes. Under deep
uncertainty, robust control policies are more conservative regarding emissions and, when
regional distributional weights are introduced, carbon taxes are lower in the relatively poorer
region.Mild concerns for robustness are welfare improving for the poor region, while strong
concerns have welfare cost for all regions. We show that increasing regional temperatures
will increase resources devoted to learning, in order to reduce deep uncertainty.

Keywords: regional temperature anomalies; deep uncertainty; distributional weights; cost of robustness;
learning
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1. Introduction
The need for regional analysis of the impacts of climate change – in contrast to the global
approach taken by Integrated Assessment Models (IAMs) such as DICE (Nordhaus and
Sztorc, 2013; Nordhaus, 2014) – has been clearly recognized in the literature (see, for
example, Easterling, 1997). In fact, major IAMs – such as RICE (e.g., Nordhaus, 2011),
FUND (e.g., Anthoff and Tol, 2013) or PAGE (e.g., Hope, 2006) – explicitly include
regional components. The regional aspects have been extended to both regional temper-
ature effects and regional economic effects (e.g., FUND, PAGE) or to regional economic
effects with predictions about mean global temperature (e.g., RICE).

Multi-region modeling in climate change economics has been developed since RICE.
Desmet and Rossi-Hansberg (2015) developed a spatial model of climate change, Krusell
and Smith (2017) introduced a 20,000 region spatial model, and Hassler and Krusell
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(2018) discuss approaches to multi-region climate modeling. Regional aspects of cli-
mate change and associated policies have been introduced in low-dimensional IAMs
in which regional temperature dynamics are driven by endogenous mechanisms of heat
and precipitation transport from the Equator to the Poles (see Brock et al., 2013, 2014;
Brock and Xepapadeas, 2017, 2019; Cai et al., 2019). The climate science part of these
models is based on one- or two-dimensional dynamic energy balance models, defined
either in continuous space (e.g., North et al., 1981) or in discrete South-North ‘two-box’
models (e.g., Langen and Alexeev, 2007; Alexeev and Jackson, 2013). Energy balance
climate models generate spatial variability of temperature across regions through the
endogenous mechanism of heat transfer. Another approach which climate science uses
to generate spatial temperature variation across regions is pattern or statistical downscal-
ing, or statistical emulation methods (see, for example, Castruccio et al., 2014; Hassler
et al., 2016; Krusell and Smith, 2017).

Regional temperature differentiation also emerges from the use of the transient cli-
mate response to cumulative carbon emissions (TCRE) on a regional basis. The TCRE
embodies both the physical effect of CO2 on climate and the biochemical effect of CO2 on
the global carbon cycle (e.g.,Matthews et al., 2009, 2012; Knutti, 2013; Knutti and Rogelj,
2015;MacDougall et al., 2017). The TCRE, denoted by λ, is defined as λ = �T(t)/CE(t),
where CE(t) denotes cumulative carbon emissions up to time t and �T(t) the change
in temperature during the same period. The approximate constancy of λ suggests an
approximately linear relationship between a change in global average temperature and
cumulative emissions. This roughly linear relationship has also been recognized by the
IPCC (2013).

In a recent paper, Leduc et al. (2016) identify an approximately linear relation-
ship between cumulative CO2 emissions and regional temperatures. This relationship is
quantified by regional TCREs (RTCREs). The RTCRE parameters range from less than
1◦Cper TtC for some ocean regions to 5◦Cper TtC in the Arctic. Leduc et al. (2016) con-
sider their approach to be a novel application of pattern scaling. The high RTCRE in the
Arctic is indicative of the larger anomaly at the high northern latitudes. It is understood
that this anomaly could cause serious detrimental environmental effects which could be
diffused to other regions south of the Arctic (IPCC, 2013; Brock and Xepapadeas, 2017).
Thus one implication of adopting a regional representation of climate is that changes in
the temperature in one region could generate damages in another region. It should be
noted that the existence of geographical spillover damage effects across regions is sup-
ported by recent studies1 and that this issue could be important for policy purposes but,
as far as we know, is not addressed by large-scale IAMs.

Inmodels of climate and economy, the use of the RTCRE approach tomodel regional
differences – rather than the structural approach based on surface albedo feedback or
endogenous heat and precipitation transfer mechanisms – could provide a simplified
but realistic reduced-form mechanism for modeling regional temperature dynamics.

The explicit introduction of regional temperature dynamics allows us to obtain a
clearer picture of the impacts of climate change across regions, and especially across rich
and poor regions. Recent literature, such as Burke et al. (2015), Hsiang et al. (2017) and
Diffenbaugh andBurke (2019a), stresses that damages are larger in low latitude (warmer)

1See, for example, Francis and Skific (2012), Francis and Vavrus (2014) and Francis et al. (2018), who
suggest that furtherArctic warmingmay favor persistent weather patterns that can lead toweather extremes,
or Diffenbaugh et al. (2017) and Wu and Francis (2019).
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areas around the Equator and are projected to become relatively larger in low latitude
(warmer) areas than at temperate latitudes.

It is well-known that the study of climate change, andmore specifically the economics
of climate change, is characterized by fundamental uncertainties (Heal and Millner,
2014). As Pindyck (2017) points out, we know very little or nothing about parameters or
functions which are fundamental in climate change economics, such as climate sensitiv-
ity or the damage function. In the same context, Anthoff and Tol (2013) and Gillingham
et al. (2015) characterize parameters of climate–economymodeling which embody con-
siderable uncertainties, while Lemoine (2010), Nordhaus and Moffat (2017), Hassler
et al. (2018) and Cai and Lontzek (2019) discuss in detail the impacts of uncertainty
on climate sensitivity. Brock and Hansen (2017) distinguish three forms of uncertainty:
(i) risk, which is the traditional case studied in economics in which objective or subjec-
tive probabilities are assigned to stochastic events; (ii) ambiguity, which is the case where
the decision maker has concerns and is uncertain about how to weight alternative mod-
els for explaining a phenomenon, in a case where a benchmark model is ‘surrounded’
by these alternative models or probability measures; and (iii) misspecification, which is
associated with the way in which we use models which are imperfect approximations of
the true model.

In this paper, we refer to cases (ii) and (iii) as deep uncertainty. Since damages from
climate change are projected to become relatively even larger in low latitude (warmer)
areas than at temperate latitudes, it is reasonable to expect deep uncertainty to loom
larger in poorer regions which tend to be lower latitude regions.

Thus the contribution of our paper is to introduce deep uncertainty and aversion
to ambiguity (or concerns about model misspecification) into a multi-regional model
of climate and the economy by using the robust control approach of Hansen and Sar-
gent (e.g., Hansen and Sargent, 2001; Hansen et al., 2006; Hansen and Sargent, 2008).2
Robust control methods have been applied to the economics of climate change (e.g.,
Hennlock, 2009; Athanassoglou and Xepapadeas, 2012; Anderson et al., 2014). Barnett
et al. (2020) explore asset pricing implications under risk and types of deep uncertainties
when there are damages induced by climate change to preferences and capital accumu-
lation. Unlike our analysis, theirs is on the planetary scale. Hence they do not analyze
regional scale issues as we do here. In this literature, ambiguity or deep uncertainty
was mainly associated with uncertainty of temperature dynamics or, equivalently, car-
bon stock dynamics. This type of deep uncertainty indirectly affects damages since the
damage function depends on temperature or, equivalently, on carbon stock in the atmo-
sphere. In the present paper, we augment the sources of uncertainty by allowing for deep
uncertainty from the regulator’s point of view, with regard to both regional damages and
regional temperature dynamics.

However, climate and damage uncertainty is not the only source of uncertainty that
we study in this paper. Recently policy makers have pointed out that climate change pol-
icy introduces transition risks, which are risks that firms will face as climate policy is
introduced (e.g., Carney, 2015), as well as physical risks, which in principle are captured
by the introduction of uncertainty in temperature dynamics and the damage function.
These transition risks, which are associated with changes in policy and technology, are

2Note that since the case of risk can be analyzed as a limiting case of ambiguity, this approach
encompasses risk analysis.
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not faced by the regulator who designs climate policy but by firms which are the sub-
ject of climate policy. In this context, we also allow for policy uncertainty and study the
decisions of a robust firm which has concerns about the actual climate policy.

To summarize, the present paper contributes to climate change economics by study-
ing climate change policies in a multi-regional model based on the novel pattern scaling
approach of RTCREs under conditions of deep uncertainty associatedwith regional tem-
perature dynamics, regional climate change damages, and policy in the form of carbon
taxes. The paper consists of a part in which a conceptual model is developed of a social
planner or regulator whomaximizes global welfare in amulti-regionalmodel under deep
uncertainty, and an applied part. The applied part is based on a three-region model –
the South, the Tropics and the North – with temperature dynamics characterized by
RTCREs and regional damage functions. To capture the different development stages of
the regions, we introduce welfare weights based on the regional GDP per capita to global
GDP per capita ratio, and examine weighted and unweighted solutions.

Our results suggest that, in general, under deep uncertainty robust control policies
are more conservative regarding emissions, the higher the aversion to ambiguity is,
while damage uncertainty seems to produce more conservative behavior than climate
dynamics uncertainty. Conservative behavior regarding emissions implies higher carbon
taxes.

At the weighted – by distributional weights – solutions, carbon taxes are always rela-
tively lower in the Tropics, which is the poorest region and bears the largest share of the
global externality cost. We also show that, with the exception of the Tropics, robust cli-
mate change policies are more costly in terms of welfare relative to deterministic policy.
Thus regulation when there are concerns about model misspecification and ambiguity
aversion is costly. This raises the issue of learning. Thus in the final section we consider
the possibility of diverting resources to learning, whichwill reduce concerns aboutmodel
misspecification.

2. Modeling climate policy under deep uncertainty
It is clearly understood that the climate modules used in the coupled models of climate
and economy, whether they are embedded in high- or low-dimensional IAMs, represent
an approximation ofmore complexmodels. Therefore, in order to obtain tractability and
better understanding of the basicmechanisms driving the results, we adopt themodeling
approach which is based on the approximate linear relation between cumulative emis-
sions and regional temperatures and which is quantified by the RTCREs. Having chosen
an approximate model, we concentrate on deep uncertainty and concerns about model
misspecification.

In the context of robust control methodology, ambiguity is introduced by allowing
for a family of stochastic perturbations to a Brownian motion characterizing stochastic
dynamics. The perturbations are defined in terms of measurable drift distortions. The
misspecification error which expresses the decisions maker’s concerns regarding depar-
tures from a benchmarkmodel is reflected in an entropic constraint (Hansen et al., 2006;
Hansen and Sargent, 2008). Ambiguity and concerns about the possibility that ‘an adver-
sarial agent’ – often referred to as ‘Nature’ – will choose not the benchmark model but
another one within an entropy ball, which will harm the decision maker’s objective, are
reflected in a quadratic penalty term which is added to the regulator’s objective. This
type of ambiguity has also been referred to asmodel uncertainty andHansen and Sargent
call the decision maker’s optimization problem with a quadratic penalty ‘the multiplier
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robust control problem’. A crucial parameter of the problem is the robustness parameter,
which reflects the decision maker’s concerns about model uncertainty or his/her aver-
sion to ambiguity. It has been shown that as the robustness parameter, which is positive,
tends to the limiting value of zero or infinity,3 the decision problem is reduced to the
standard optimization problem under risk – that is, a problem with no ambiguity aver-
sion. When the robustness parameter increases from zero, then concerns about model
uncertainty increase.4

If the distortion of the dynamics benchmark model at time t is denoted by hit , then
the drift distortion of the stochastic dynamics is expressed by

√
εσ (hit + dWit) , (1)

where σ is the volatility of the stochastic dynamics, Wit is a Brownian motion and ε
is a small noise parameter. If the term hit = 0, then the problem is reduced to the case
of risk. In the multiplier robust control problem (e.g., Hansen et al., 2006), the penalty
associated with the distortion is expressed by

1
2θ (ε)

h2t , (2)

where θ(ε) is the robustness parameter. It has been shown by Anderson et al. (2012,
2014) that if θ(ε) = θ0ε, then if ε → 0, the stochastic robust control problem is reduced
to a simpler ‘deterministic robust control problem’. To simplify and increase tractability,
we adopt the assumption leading to a deterministic robust control problem.

To develop the climate model, we assume that the globe is divided into i = 1, . . . ,N
regions. Note that Leduc et al. (2016) divide the globe into 21 land regions. Following
the RTCRE approach, regional temperature dynamics, Ṫit , under model uncertainty can
be written as

Ṫit = λiEt − BiTit + σihit , Ti0 = TiB ≥ 0, i = 1, . . . ,N, (3)

where Et = ∑N
i=1 Eit is aggregate global carbon emissions from all regions. Taking into

account that a fraction of the heat stored in the atmosphere escapes, we assume that this
is captured by the term BiTit , where Bi > 0 is the heat dissipation parameter in region i
(see Nævdal and Oppenheimer, 2007; Heutel et al., 2016; Lemoine and Rudik, 2017 ). In
(3), the parameter σi represents volatility of regional temperature dynamics, and hit the
corresponding drift distortion reflecting deep uncertainty and concerns about misspec-
ification of temperature dynamics. The initial conditions reflect that Tit represents the
temperature anomaly relative to a given base period Ti0, which is regarded as the initial
period. We assume that concerns about regional temperature dynamics are specific for
the region and, therefore, embody concerns about the RTCRE, which is also an uncertain
parameter.5

3The limiting value depends on the way in which the problem is formulated.
4If ambiguity vanishes when the robustness parameter tends to infinity, then increased ambiguity is

associated with reduction in the robustness parameter.
5For a thorough discussion of uncertainties associated with climate change and approaches which do not

rely on expected utility, see for example Heal and Millner (2014).
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To construct the economic part of themodel, we follow Brock and Xepapadeas (2017,
2019) and consider a simple welfare maximization problem with logarithmic utility,
where global welfare is expressed by the sum of welfare in each region and is given by:

∫ ∞

t=0
e−ρt

N∑
i=1

viLit ln(yitEαite
−ψi(T)) dt, T = (T1, . . . ,TN) , (4)

where yitEαit , 0 < α < 1, Eit , T = (T1, . . . ,TN), and Lit are regional output per capita,
fossil fuel input or carbon emissions, temperatures in each region i at date t, and fully
employed population, respectively. We assume exponential damages (see also Golosov
et al., 2014)6 and a quadratic ψ , to allow for the possibility of increasing regional
marginal damages. Thus,

ψi (T) =
N∑
j=1

(
dijTj + 1

2
vijT2

j + kitTj

)
, dij, vij ≥ 0, i = 1, . . . ,N, (5)

where ki represents ambiguity about damages in region i. Thus the damage function in
region i embodies geographical damage spillovers, or cross effects, which are damages
caused by temperature increases in other regions. For example, the larger anomaly at the
high northern latitudes may generate damages in terms of sea level rise or greenhouse
gases emitted by permafrost melting in southern regions. It is assumed that yit and Lit
are exogenously given. That is, we are abstracting away from the problem of optimally
accumulating capital inputs and other inputs in order to focus on optimal emissions
paths and fossil fuel taxes. In this context, yit could be interpreted as the component of a
Cobb-Douglas production function that embodies all other inputs along with technical
change which evolves exogenously. We assume autarky for the multi-region model and
no world market for loans (see also Hassler and Krusell, 2012) for this approximation.
Finally, vi represents welfare weights associated with region i. To increase tractability,
we assume that regional populations are immobile and normalized to one and define
ωi = viLi,

∑
i ωi = 1. Furthermore, to simplify the exposition even more, we assume

that fossil fuels are abundant in both regions and provided at zero cost. The use of fossil
fuels is, however, costly in terms of climate.

Under these assumptions, the optimization of the world’s welfare which corresponds
to the cooperative solution for designing climate policies can be written as

Wc =
∫ ∞

t=0
e−ρt

N∑
i=1

ωi

⎡
⎣ln yit + α lnEit −

N∑
j=1

(
dijTjt + 1

2
vijT2

jt

)⎤⎦ dt, (6)

where ωi > 0,
∑

i ωi = 1 are welfare weights associated with each region. If we impose
ambiguity concerns regarding damages and temperature dynamics in region i, the coop-
erative solution will be the outcome of the following deterministic multiplier robust

6A large body of research in climate change economics assumes that damages are not exponential (e.g.,
Weitzman, 2010; Nordhaus and Sztorc, 2013).We use exponential damages for the same tractability reasons
as in Golosov et al. (2014).
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control problem:

max
{Eit}

min
{kit ,hit}∫ ∞

t=0
e−ρt

N∑
i=1

ωi

⎡
⎣ln yit + α lnEit −

N∑
j=1

(
dijTjt + 1

2
vijT2

jt + kitTjt

)
+ k2it

2ηi
+ h2it

2θi

⎤
⎦ dt

subject to (3) . (7)

3. Robust climate policy
The cooperative regional climate policy emerges from the solution of problem (7). For
this problem, the relevant current value Hamiltonian, after omitting the constant ln yit
is:

HC =
⎧⎨
⎩

N∑
i=1

ωi

⎡
⎣α lnEit −

N∑
j=1

(
dijTjt + 1

2
vijT2

jt + kitTjt

)
+ k2it

2ηi
+ h2it

2θi

⎤
⎦

×
N∑
i=1

μi[λiEt − BiTit + σihit]

⎫⎬
⎭ ,

N∑
i=1

ωi = 1. (8)

In this robust control problem, the social planner chooses regional emission paths Eit
to maximize the Hamiltonian but the adversarial agent chooses distortions (kit , hit) to
minimize the Hamiltonian.

The optimality conditions for the control choices for i = 1, . . . ,N are:

αωi

Eit
+

N∑
i=1

μitλi = 0 ⇒ E∗
it = −αωi∑

i μitλi
(9)

hit = −(θi/ωi)σiμit , kit = ηiTit (10)

μ̇it = ρμit − ∂HC

∂Tit
⇒ (11)

μ̇it = (ρ + Bi) μit +
N∑
j=1

ωj(dji + vjiTit)+ ηiTit (12)

Ṫit = λiE
∗
t − BiTit − σ 2

i (θi/ωi) μit . (13)

From (9), it follows that if the social planner weights all regions equally, or ωi = ω for
all i, then all regions should have the same emission paths,

Eit = Ejt = −αω
Xt

≡ E∗
t , Xt =

∑
i
μitλi, i, j = 1, . . . ,N. (14)

System (9)–(13), with Et , hit , kit substituted by their optimal values from (9)–(10), is the
dynamic Hamiltonian system for the social planner. Since the robustness parameters

https://doi.org/10.1017/S1355770X20000248 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X20000248


218 William Brock and Anastasios Xepapadeas

{ηi, θi} reflect the ‘intensity’ of the social planner’s ambiguity, the impact of deep uncer-
tainty on optimal policy can be studied by performing comparative analysis with respect
to the robustness parameters.

Another characteristic of the solution is that Xt = ∑
i μitλi is the cost of the climate

externality, which consists of the sum of regional shadow temperature costs weighted
by RTCREs. Thus the solution of the regional problem provides information about the
contribution of each region to the global cost of the climate externality. The issue of
regional contributions, which has been examined recently at the empirical level by Ricke
et al. (2018), could help characterize the heterogeneity of climate impacts across the globe
and provide information which could help policy design.

We examine the steady state of the cooperative solution. From (12), we obtain at a
steady state:

μ = − 1
(ρ + Bi)

⎡
⎣ N∑

j=1
ωj
(
dij + vijTi

)+ ηiTi

⎤
⎦ . (15)

Substituting into (13), we obtain that the steady-state regional temperatures are solutions
of the system:

(ωiα)

/(∑
i

[
λi

(ρ + Bi)
(
i + (�i + ηi)Ti)

])
− BiTi

+ θi

ωi

σ 2
i

(ρi + Bi)
[
i + (�i + ηi)Ti] = 0, (16)

where


i =
N∑
j=1

ωjdij, v̄i = Ti

N∑
j=1

ωjvij. (17)

Proposition 1: If Bi 
= 0 and θi = 0 for all i, then in an open neighborhood of the point
o = (v11, . . . , v1N , . . . , vN1, . . . , vNN , η1, . . . , ηN) = 0, a steady state for the regional tem-
perature anomalies which is determined by the the system (12)–(13) for μ̇it = 0, Ṫit = 0
exists.

For the proof, see appendix A.

Thus it is expected that for small second-order parameters in the damage function
and small robustness parameters for damages, a steady state will exist. Furthermore, at
point o, the Jacobian determinant of the linearized Hamiltonian system (12)–(13) hasN
negative eigenvalues {−B1, . . . ,−BN} andN positive eigenvalues {(ρ1 + B1), . . . , (ρN +
BN} and therefore the steady state at o has the saddle point property.

The saddle point property implies that the social planner can choose initial values and
a path for regional emissions, determined by (9), so that theworld economywill converge
along an N-dimensional manifold to the socially-optimal steady state. The paths of the
costate variables μit will determine the optimal carbon tax. The steady-state distortions
(h∗

i , k
∗
i ) are obtained directly from (10) by substituting the corresponding steady states

for regional temperatures and their shadow costs.
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4. Optimal carbon taxes
In a global market economy, the representative ‘small’ consumer takes everything
regarding climate change as fixed, beyond his/her control, and has no decision to make.
The representative firm, however, does have decisions to make regarding emissions. We
assume that the representative firm is subject to an emission tax or equivalently a carbon
tax, and to simplify things we assume that energy has no private costs. The problem for
the firm in each region is:

max
Eit

[
ln yit + α lnEit − τiEit

]
, (18)

with optimality conditions

α

Eit
= τit ⇒ Eit = α

τit
. (19)

Combining (19) with (9), it follows that the optimal emission tax will be:

α

τit
= −ωiα∑

i λiμit
⇒ τ ∗

it = − 1
ωi

(∑
i
λiμit

)
> 0. (20)

It is clear that unless the regulator attaches equal welfare weights to different regions, the
optimal carbon tax will be different across regions. The higher the welfare weight is, the
lower the optimal carbon tax for the specific region will be. If, as expected, the costates
μit are negative and declining with time, the optimal carbon tax increases through time
until it reaches a steady state.

Since the robust control problem is concave, the time paths of the costate vari-
ables as they converge to the steady state along the stable manifold are expected to
be concave. This suggests that the optimal carbon tax will be increasing and concave.
This tax, however, is expressed in terms of utils. To express it in terms of consump-
tion at date t, it should be divided by the marginal utility of consumption, which is
1/yitEait exp(−Di(Tt)). Since yit is expected to increase over time like exp(git), this would
give a convex increasing tax ramp in date t consumption units. This implies that our tax
ramp is compatible in consumption units with results obtained by Nordhaus (2014) or
Golosov et al. (2014). Furthermore, in all numerical simulations the steady-state costate
values increase as the ambiguities in terms of ηi and θi increase. Thus the optimal tax
increases with ambiguity from the regulator’s point of view.

Optimal taxation of the form discussed above captures mainly physical risks and
uncertainty associated with climate change as seen from the regulator’s point of view.
To capture policy risks and ambiguity associated with firms’ responses to climate policy,
we need to introduce ambiguity aversion and preferences for robustness into the prob-
lem of the firm which maximizes profits by taking environmental policy as exogenous
to the firm but uncertain. Thus we introduce policy uncertainty or ambiguity by con-
sidering the profit maximization of a firm with preferences for robustness and concerns
about the size of the carbon tax which will apply to the firm’s emissions under two types
of robustness: (i) additive policy uncertainty, and (ii) multiplicative policy uncertainty.
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Under additive policy uncertainty, the firm solves:

max
Eit

min
fit

[
ln yit + α lnEit − (

τit + fit
)
Eit + 1

2ξi
f 2it

]
, (21)

with optimality conditions

fit = ξiEit (22)
α

Eit
= τit + fit = τit + ξiEit ⇒ α = τitEit + ξiE2it . (23)

Taking the total differential of (23), we obtain

dEit
dξ

= −Eit
(τit + 2ξiEit)

< 0. (24)

Thus an increase in policy uncertainty will reduce emissions for a given carbon tax.
Taking the positive root of the quadratic (23), the emissions of the robust represen-

tative firm are

Eit = 1
2ξi

[
−τit + (

τ 2it + 4αξi
)1/2] . (25)

Combining (25) with (9), it follows that the optimal emission tax, if the regulator takes
into account the firm’s concerns about policy uncertainty, is the solution of:[

−τit + (
τ 2it + 4αξi

)1/2] = −2ξiωiα∑
i λiμit

. (26)

Under multiplicative policy uncertainty, the firm solves

max
Eit

min
fit

[
ln yit + α lnEit − (

τit(1 + fit)
)
Eit + 1

2ζi
f 2it

]
, (27)

with optimality conditions

fit = ζiτitEit (28)
α

Eit
= τit(1 + fit) = τit (1 + ζiτitEit) ⇒ α = τitEit + ζiτ

2
itE

2
it . (29)

Solving for Eit , we obtain

Eit = 1
2τitζi

[−1 + (1 + 4aζi)1/2
]
, (30)

and the optimal tax, if the regulator takes into account the firm’s concerns about policy
uncertainty, is the solution of

1
2τitζi

[−1 + (1 + 4aζi)1/2
] = −ωiα∑

i λiμit
. (31)

Taking the total differential of (29), we obtain

dEit
dζ

= −τ 2itE2it/(τit + 2ζiτ 2it) < 0. (32)

Thus, as in the case of additive uncertainty, an increase in policy uncertainty will reduce
emissions for a given carbon tax.
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If the regulator does not consider the possibility that the firm is concerned about
policy uncertainty and sets the optimal carbon tax in the way described in the previ-
ous section, then conditions (23) or (29) suggest that the robust equilibrium for the
decentralized firm is more ‘conservative’ in emissions than the robust planner. Thus,
because of policy uncertainty, it may be optimal to set the tax rate a bit below the optimal
Pigouvian rate.

5. Optimal robust climate policy: simulations
Although it is clear from (15) and (16) that ambiguity, misspecification concerns and
regional spillovers affect steady states, emission policies and carbon taxes, the nonlinear-
ities and the dimensionality of the problem do not allow for the derivation of tractable
comparative static results. To obtain some insights into the impacts of these effects, we
resort to simulations.

It should noted, however, that because of the simplicity of our model, the values
obtained by our simulations should be regarded as quantitative story telling about the
impacts on the optimal policies of the combined effects of deep uncertainty and mis-
specification concerns across regions along with regional temperature spillovers on
damages. Thus our simulations depict the direction of changes on the optimal tempera-
ture anomaly paths and carbon taxes asmisspecification concerns change across regions,
and spillovers effects are accounted for, rather than accurate point estimates.

In designing our simulations, we chose to concentrate on a three-region model. The
regions are defined as follows: R1 from 90S to 30S; R2 from 30S to 30N; and R3 from
30N to 90N. R2 contains mainly the developing world, while R3 is mainly the industri-
alized North. R1 is mostly ocean with parts of South America, Australia, South Africa
and New Zealand. The choice of these three regions is motivated by work such as that
of Burke et al. (2015), Hsiang et al. (2017) and Diffenbaugh and Burke (2019a). These
studies argue that since damages are larger in low latitude (warmer) areas and are pro-
jected to become relatively even larger in low latitude areas than at temperate latitudes, it
is reasonable to expect that robustness analysis of the impact of climate change on devel-
opment is likely to be relatively more important for R2 than for R1 and R3. These three
regions are also the focus of articles and reviews, such as Ghil and Lucarini (2020, e.g.,
figures 7 and 8) or Siler et al. (2018), and represent regions in which climate phenom-
ena associated with damages are different. For example, hurricanes loommuch larger in
[30S, 30N], and droughts and floods loom larger in the two regions outside the tropics.
An additional reason for choosing them and identifying the tropical zone [30S, 30N] as
a separate region is that development economists such as Sachs (2001) have emphasized
the problems which the tropical zone faces in doing as well economically as the temper-
ate zones. This leads to the surmise that the tropical zonemay have less adaptive capacity
to cope with climate change than the temperate zones.

Recent data indicate that the regional distribution of the temperature anomaly is
dominated by the larger anomaly at the high Northern latitudes, as shown in figure 1.

Since we are interested in exploring the impact of the larger anomaly at the high
Northern latitudes, in the regional model we considered only unidirectional spatial
spillovers effects due to the larger anomaly at the high Northern latitudes, from R3
to R2 and R1. Using Leduc et al. (2016), we associated approximate RTCREs with
each region.We used RTCRE(R1) = λ1 = 0.75◦C/TtC, RTCRE(R2) = λ2 = 1.3◦C/TtC
and RTCRE(R3) = λ3 = 2◦C/TtC. The next step was to calibrate regional damage
functions.
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Figure 1. The temperature anomaly 90◦S-90◦N.
Source: GISTEMP Team, 2019: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space
Studies. Dataset accessed 25/10/2019 at data.giss.nasa.gov/gistemp/.

Using data from Berkeley Earth Surface Temperatures (BEST),7 we set approxi-
mate average annual mean land temperature for 1951–1980 at: R1 ≈ 15◦C, R2 ≈ 26◦C,
R3 ≈ 13◦C. Then we added approximate anomalies from the NASA data –0.5◦C for
R1, 0.75◦C for R2 and 1.25◦C for R3 – to obtain approximate regional temperatures
for 2018. These temperatures are regarded as the base temperatures for calculating the
optimal cooperative future regional anomalies. To calibrate a damage function of the
form exp[di�Ti + 1

2vi(�Ti)
2 + w3i�T3], for i = 1, 2, 3 with w33 = 0, we considered

an average future anomaly of 3◦C which is distributed across regions in proportion to
the historically-observed anomalies and added these anomalies to the average regional
level temperatures calculated for 2018 to obtain regional temperatures under an aver-
age 3◦C anomaly. In Diffenbaugh and Burke (2019a, supplementary information, figure
S1), temperature levels are associated with damages as a proportion of GDP. Using this

7See https://climatedataguide.ucar.edu/climate-data/global-surface-temperatures-best-berkeley-earth-
surface-temperatures. We acknowledge that the BEST dataset has coarse spatial resolution relative to other
datasets with finer resolutions such as GLDAS v2.1 (https://ldas.gsfc.nasa.gov/gldas), and this may result in
unknown biases. However, our model is stylized and coarse grained, since it has only three regions, which
means that it is low in the hierarchy of climate models as characterized by Ghil and Lucarini (2020). Using
a fine-grained dataset like GLDAS v2.1 to calibrate such a low hierarchy model is not expected to provide
any significant improvement relative to a dataset with a coarser spatial resolution. Why work with a model
so low down in the model hierarchy? Ghil and Lucarini (2020) quote climate scientists back to Held (2005)
on the value of low hierarchy elements as useful tools to assist in understanding and suggesting what might
happen at the next higher level in the hierarchy.
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information, we associated average regional temperature levels calculated for the aver-
age 3◦C anomaly with the corresponding damages fromDiffenbaugh and Burke (2019a).
This approach resulted in these approximate regional damages as proportions of GDP:
R1 ≈ −2.5%, R2 ≈ −15%, R3 ≈ −2.0%.

Then the parameters of the value functions were calibrated using the relations:

(1 − γ1 − γ31) = exp
[
d1�T1 + 1

2v1 (�T1)
2 + w31�T3

]
(33)

(1 − γ2 − γ32) = exp
[
d2�T2 + 1

2v2 (�T2)
2 + w32�T3

]
(34)

(1 − γ3) = exp
[
d3�T3 + 1

2v3 (�T3)
2] , (35)

γ1 = 2.5%, γ2 = 15%, γ3 = 2%, (36)

where γi, i = 1, 2, 3 are the damages as a proportion of GDP, and �Ti the tempera-
ture anomalies in each region. Terms γ31, γ32 are introduced to correspond to potential
impact on GDP of regions R1 and R2 respectively, due to the the larger anomaly at the
high northern latitudes occurring in region R3. The terms w31,w32 correspond to the
parameter of the damage function reflecting the spatial spillover effects.

Since we have no reliable information on the values γ31, γ32, we considered two
scenarios. In the first – which we call ‘No spillover effects’ – it is assumed that the tem-
perature anomaly R3 does not affect damages in the other region, or γ31 = γ32 = w31 =
w32 = 0. In the second, ‘Spillover effects’, we assume that the larger anomaly at the high
Northern latitudes in R3 increases damages in R2 by 1% of GDP, γ32 = 1%, and in R3
by 0.5% of GDP, γ31 = 0.5%. Note that these parameters are hypothetical because of
the lack of relevant data. We believe, however, that the ‘Spillover effects’ scenarios could
provide useful qualitative information regarding the impact of the larger anomaly at the
high Northern latitudes, especially in the developing world.8,9

The regional damage functions under the simplification implied by (33)–(35) become

D1 (T1t ,T3t) = exp
(
d1T1t + 1

2v1T
2
1t + w31T3t + k1T1t

)
(37)

D2 (T2t ,T3t) = exp
(
d2T2t + 1

2v2T
2
2t + w32T3t + k2T2t

)
(38)

D3 (T3t) = exp
(
d3T3t + 1

2v3T
2
3t + k3T3t

)
. (39)

Then the optimality conditions (9)–(13) become, for i = 1, 2, 3,

E∗
it = −αωi∑3

i=1 μitλi
(40)

hit = −
(
θi

ωi

)
σiμit , kit = ηiTit , (41)

μ̇1t = (ρ + B1) μ1t + ω1(d1 + v1T1t)+ ω1η1T1t (42)

8In Liu et al. (2017), exposure to climate change refers to damages from climate change; it is pointed out
that for the high IPCC emissions scenario 8.5, the average exposure for Africa is over 118 times greater than
it has been historically, while the exposure for Europe increases by only a factor of four.

9The parameters of the damage function, along with the rest of the parameters used in the simulation,
are shown in table B1 of appendix B.
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μ̇2t = (ρ + B2) μ2t + ω2(d2 + v2T2t)+ ω2η2T2t (43)

μ̇3t = (ρ + B2) μ3t + ω3(d3 + v3T3t)+ ω3η3T3t + ω1w31 + ω2w32 (44)

Ṫit = λiE
∗
t − BiTit − σ 2

i

(
θi

ωi

)
μit . (45)

The optimality conditions also depend on the robustness parameters (θi, ηi) and
the welfare weights ωi, i = 1, 2, 3. In (41), the optimality condition for ki indicates the
maximum upwards distortion in damages which could emerge given the value of the
robustness parameter ηi which reflects the planner’s misspecification concerns about
regional damages. If there are no concerns, ηi = 0 and ki = 0, but if there are concerns,
then the distortion is proportional to the temperature anomaly. Therefore, for given
concerns, the higher the anomaly, the higher the potential distortion in damages.

In terms of the calibration, there is no information about the possible value of the
misspecification concerns that a plannermight have regarding regional damage function
and temperature dynamics.We know, however, from studies such as Burke et al. (2015),
Hsiang et al. (2017) and Diffenbaugh and Burke (2019a), that damages are larger in low
latitude (warmer) areas and are projected to become relatively even larger in low latitude
areas than at temperate latitudes. Hsiang et al. (2017) project larger damages for lower
latitudes even for an advanced country like the U.S. This suggests that it would be rea-
sonable to stratify the planner’s problem with misspecification concerns about damages
that increase as the latitude gets closer to the Equator because of lack of understanding
of the inefficiencies of adaptive response to climate change which is increasing as the
latitude gets closer to the Equator. This could be attributed to the lack of understanding
of the inefficiencies of adaptive response to climate change which is a given part of ‘tech-
nology’ and includes limits on adaptive capacity. The lack of understanding increases as
we move towards the Tropics, along with the ambiguity associated with the large het-
erogeneities of the returns to factors of production in developing countries (our Tropics
region R2) relative to developed countries.10 This implies that θ2 should be greater than
θ1 and θ3.

Furthermore, given the uncertainties associated with the larger anomaly at the high
Northern latitudes, it might be reasonable to assume that the planner might have
strongermisspecification concerns about temperature dynamics in regionR3, theNorth.
This implies that η3 should be greater than η1 and η2.

The spatial structure of themodels and the associated differences in the average devel-
opment stage of each region implies that there should be differentiation among welfare
weights. We followed the cost benefit analysis literature (e.g., OECD, 2018, chapter 11)

10The scientific backgroundmaterial for the 2019 Prize in Economic Sciences inMemory of Alfred Nobel
states that the work of Abhijit Banerjee and Esther Duflo has articulated how pieces from microeconomic
studies can help move us closer to solving the broad development puzzle of what explains the enormous
difference in per capita income across countries. According to the Prize Committee Nobel Prize Org (2019:
4), Banerjee and Duflo started by documenting the striking empirical fact that ‘low- and middle-income
economies encompass enormous heterogeneities in the rates of return to the same factors of production
within countries, which dwarf observed cross-country heterogeneities in economy-wide (average) returns.
In other words, some firms and individuals in developing countries use the latest technology, while others
in the same country and sector use outdated production methods. In high-income countries, these within-
sector differences in productivity are much smaller.’
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in defining distributional weights as

ω̂i =
(
ȳ
yi

)e
, e = 1, i = 1, 2, 3,

where ȳ is world GDP per capita, yi is GDP per capita in region i, and e is the elasticity of
marginal utility. We use e = 1 to be compatible with our assumption about logarithmic
utility. Using World Bank data for GDP per capita in 2018, we obtain ω̂i and then we
normalize them to ωi:

∑3
i=1 ωi = 1. By associating R1, R2 and R3 with GDP per capita

of upper middle income countries, low and middle income countries, and high income
countries respectively, the values of the welfare weights obtained are:

ω1 = 0.33, ω2 = 0.54, ω3 = 0.13.

5.1. Simulation results
To study the differentiation of optimal robust policies when misspecification concerns
and welfare weights differ across regions, we consider the following four simulation
scenarios:

1. S1: No spillover effects and equal welfare weights.
2. S2: No spillover effects and unequal welfare weights.
3. S3: Spillover effects and equal welfare weights.
4. S4: Spillover effects and unequal welfare weights.

In each scenario, we consider four cases:

(a) D: Nomisspecification concerns, θi = 0, ηi = 0, i = 1, 2, 3. This is the determin-
istic case.

(b) Rb1: Robust control with θ2 = 1, θ1 = θ3 = 0, η3 = 0.5, η1 = η2 = 0.
(c) Rb2: Robust control with θ2 = 2, θ1 = θ3 = 0, η3 = 0.75, η1 = η2 = 0.
(d) Rb3: Robust control with θ2 = 3, θ1 = θ3 = 0, η3 = 1.0, η1 = η2 = 0.

Cases Rb1, Rb2 and Rb3 capture the notion of higher concerns about damages in the
Tropics and higher concerns about temperature dynamics in theNorth.Misspecification
concerns increase as we move from Rb1 to Rb3.

In the simulations, we first obtain numerical solutions for the steady state of the non-
linear system (40)–(45). This corresponds to a steady state for the temperature anomalies
and the corresponding shadow cost for the anomaly – that is, the costate variable – in
each region. Then the Hamiltonian system (42)–(45) is linearized at the steady state and
its Jacobian matrix is calculated. It is verified that this matrix has three negative and
three positive eigenvalues; therefore the steady state is a saddle point, and transversal-
ity conditions at infinity are satisfied. The system of the six linear ordinary differential
equations (ODEs) resulting from the linearization of (42)–(45) is solved with initial val-
ues for the temperature anomalies and terminal values for the steady-state vector, by
setting the constants corresponding to positive eigenvalues equal to zero. This allows us
to obtain the optimal transition paths toward the steady state in the neighborhood of the
steady state. In figure 2 we present the paths for optimal anomalies (left panel) and emis-
sions (right panel) resulting from the solution of the linearized Hamiltonian system, for
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(a) (b)

Figure 2. Paths for optimal temperature anomalies (left panel) and emissions (right panel) for scenario S4, Rb1.

scenario S4, Rb1. The paths for all the rest of the cases are similar, with convergence to
different steady states.

In table 1, we present simulation results regarding optimal steady-state anoma-
lies, optimal steady-state taxes as defined in (20), for steady-state values μ∗

i , and
the proportion of the global cost of climate externality attributed to each region
defined as Xi = (λiμ

∗
i )�(

∑
i λiμ

∗
i ), i = 1, 2, 3. The steady-state anomalies �Ti are

expressed in ◦C, while the taxes are presented as an index in which the scenario S1, D,
which is a deterministic case without spillover effects and region-specific distributions
weights – the scenario most analyzed in low-dimensional climate models – is regarded
as the base.11

The simulation results suggest the following:

• Increase in preferences for robustness, ormisspecification concerns, reduces emis-
sions in all regions.

• Increase in preferences for robustness reduces temperature anomalies in the South
and the Tropics, but not in the North. This can be justified in the following way.
We run a large number of simulations which indicated that under robust con-
trol, and provided that the worst scenario emerges, increasing the θ–ambiguity
with no η–ambiguity leads to higher steady-state emissions, because the choice of
the adversarial agent is equivalent to increasing the impact of emissions on the
change in temperature. In this case, the planner’s policy is to reduce emissions and
increase the carbon tax, but the distortion which increases the temperature rate
of growth eventually leads to a relatively higher steady-state anomaly relative to
the no ambiguity case. Since in our simulations temperature dynamics misspeci-
fication affected only the North, the anomaly increases only there, despite the fact
that theNorth’s emissions are reduced. On the other hand, increasing η–ambiguity
with no θ–ambiguity leads to lower steady-state temperatures under robust con-
trol. When both types of ambiguity exist, as in the case of table 1, there are two
opposite impacts on steady-state anomalies and the final outcome will depend on
the relative strength of the effects. In the cases reported in table 1, the θ–ambiguity

11As mentioned at the beginning of this section, given the simplicity of our model, we prefer to present
the direction of changes in optimal policy as new elements are taken into account, rather that providing
point estimates.
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Table 1. S1–S4: No spillover effects and (a) equal welfare weights, (b) region-specific welfare weights, (c)
equal welfare weights and (d) region-specific welfare weights

(a) Equal welfare weights

�T1 �T2 �T3 τ ∗
1 , X1(%) τ ∗

2 , X2(%) τ ∗
3 , X3(%)

D 0.76 1.31 2.63 1.00, 9 1.00, 78 1.00, 13

Rb1 0.34 0.60 1.65 2.11, 3 2.11,92 2.11, 5

Rb2 0.26 0.46 1.56 2.84, 2 2.84, 95 2.84, 3

Rb3 0.22 0.38 1.66 3.42, 2 3.42, 95 3.42, 3

(b) Region-specific welfare weights

�T1 �T2 �T3 τ ∗
1 , X1(%) τ ∗

2 , X2(%) τ ∗
3 , X3(%)

D 0.61 1.07 2.13 1.16, 6 0.74, 90 3.16, 4

Rb1 0.27 0.47 1.35 2.68, 2 1.68, 97 7.11, 1

Rb2 0.20 0.35 3.26 3.63, 1 2.26, 95 9.58, 4

Rb3 0.17 0.30 4.01 4.37, 1 2.68, 96 11.53, 3

(c) Equal welfare weights

�T1 �T2 �T3 τ ∗
1 , X1(%) τ ∗

2 , X2(%) τ ∗
3 , X2(%)

D 0.71 1.24 2.48 1.05, 8 1.05, 71 1.05, 21

Rb1 0.34 0.58 2.12 2.21, 3 2.21, 88 2.21, 9

Rb2 0.25 0.44 2.37 2.89, 2 2.89, 91 2.89, 7

Rb3 0.21 0.37 2.87 3.37, 2 3.37, 91 3.37, 7

(d) Region-specific welfare weights

�T1 �T2 �T3 τ ∗
1 , X1(%) τ ∗

2 , X2(%) τ ∗
3 , X3(%)

D 0.57 0.99 1.98 1.32, 6 0.79, 80 3.42, 14

Rb1 0.26 0.46 3.3 2.79, 2 1.74, 91 7.37, 7

Rb2 0.20 0.34 4.6 3.68, 1 2.26, 93 9.68, 6

Rb3 0.17 0.29 6.3 4.37, 1 2.68, 93 11.42, 6

effect dominates when the θ–ambiguity is more than Rb2 and in some cases more
than Rb1 and, therefore, the temperature anomaly in the North increases.

• Increase in preferences for robustness uniformly increases the optimal robust car-
bon tax relative to the benchmark case of no ambiguity and equal welfare weights
(S1D), when welfare weights are equal.

• Increase in preferences for robustness, with unequal welfare weights, uniformly
increases the optimal robust carbon tax relative to the benchmark case of no ambi-
guity and equal welfare weights (S1D), but the carbon tax for the Tropics is always
lower than the tax for the South and the North. The tax for the North is always
the highest. This result is in line with the report by the High-Level Commission on
Carbon Prices (2017), and Stiglitz’s (2019) recommendations of nonuniform car-
bon taxes, with carbon taxes being relatively higher in regionswhere consumers are
disproportionally rich. Brock et al. (2014), in a continuous space model with heat
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transport Polarwards, also show that optimal carbon taxes are higher in relatively
richer regions in which the marginal utility of consumption is lower.

• The proportion of the global cost of climate externality attributed to each region
(X%) is always the highest in the Tropics and increases with unequal welfare
weights and misspecification concerns.

Regarding the choice of the damage function, we understand that there are con-
troversies around the empirical paperswe use to calibrate our damage function. For
example, Rosen (2019) argues that the temperature estimates in Diffenbaugh and
Burke (2019a) are biased upward and their regression analysis is flawed because
of omitted variable bias.12 While it is beyond the scope of this paper to deal with
this debate, it is suggestive of a rather large layer of uncertainty surrounding the
three damage functions in our formulation. The extensive discussions and the con-
troversies associated with the damage function (e.g., Pindyck, 2017) and, more
specifically for our case, the controversy between Diffenbaugh and Burke (2019a)
and Rosen (2019) – since we use Diffenbaugh and Burke (2019a) for our cali-
brations – is a good reason to use alternative damage functions in a robustness
analysis.

We thus performed sensitivity analysis by uniformly reducing the coefficients
of the quadratic formulations (37)–(39) and by using a linear version by setting
vi = 0, i = 1, 2, 3. In all simulations the qualitative structure of the results remains
the same as our central results presented in table 1. The linear formulation of the
damage function leads to higher steady-state temperatures for all three regions,
but the qualitative behavior remains the same as with the quadratic specification.
More specifically, with a linear damage formulation the steady-state anomalies cor-
responding to rowD of table 1 are (�T1,�T2,�T3) = (1.62, 2.81, 5.62), while the
steady-state anomalies corresponding to row D of table 1 are (�T1,�T2,�T3) =
(2.04, 3.54, 7.08), which suggests that the specification of the damage function,
and for our case the existence or not of strict convexity, is important in deter-
mining the socially-optimal steady-state levels and the paths to the steady state.
The debate over specifying a realistic damage function is an open issue in climate
change economics.13

6. The welfare impact of robustness
An issuewhich ariseswhen a robust climate policy is pursued is whether the policy incurs
additional welfare costs or benefits relative to the case in which nomisspecification con-
cerns are involved.14 To obtain an approximation of these costs, we calculate the global

12See Diffenbaugh and Burke (2019b) for their response to Rosen.
13An interesting exercise (which is beyond the scope of this paper) would be to take an estimation pro-

cedure such as the one that Rosen (2019) suggests for each of the three regions and use it as the baseline
model around which the robustness analysis is centered, where the set of deviations to robustify against are
large enough to include the Diffenbaugh and Burke (2019a) estimates. Reverse the procedure and put the
Diffenbaugh and Burke (2019a) estimates as the baseline, but make the set of deviations to robustify against
large enough to include the estimates using the Rosen procedure. Then report what differences there are in
the results of the robustness analysis. Since we do not know which method delivers the ‘truth’, this kind of
procedure would hopefully bound the truth in some way.

14There is a conceptual issue as to whether the ‘welfare’ indicator we use for our Pareto optimal plan-
ner in the presence of misspecification concerns is a ‘true’ welfare indicator since it includes terms from
the minimizing agent as well as terms from the maximizing agent in the intertemporal zero sum dynamic
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Figure 3. Evolution of global welfare indicators (GW) for S1, . . . , S4 when preferences for robustness increase.
Note: On the horizontal axis, 1 is D, 2 is Rb1, 3 is Rb2 and 4 is Rb3.

welfare indicator:

Js,ν =
∫ ∞

t=0
e−ρt

3∑
i=1

ωi

[
α lnEs,νit −

(
diTs,ν

it + 1
2
vi
(
Ts,v
it
)2 + w3jTs,v

3

)]
dt,

j = 1, 2, ν = D,Rb1,Rb2,Rb3, s = S1, S2, S3, S4.

The indicator corresponds to the case in which the global regulator is committed to
the emissions paths obtained through the relevant robust control optimizations. The
indicators were calculated numerically and the results are shown in figure 3.

The results indicate that, with the exception of S4, welfare increases as the planner
has mild concerns about misspecification (case Rb1). Then, as misspecification con-
cerns become stronger, welfare is decreasing. This means that in Rb1 the global gains
from reducing emissions and global warming counterbalance the loss in terms of out-
put due to the lower emissions. As misspecification concerns increase, the output effect
becomes stronger and welfare is reduced. Therefore, for a given low level of aversion
to ambiguity by the planner, robust policy could be welfare enhancing at the global
level. For high aversion, our numerical results indicate that robust policies have a welfare
cost.

It will be interesting to examine this global result in terms of the impact of
robust control on individual regional welfare. In this case, the welfare indicator

game solution. Under appropriate sufficient conditions, Hansen et al. (2006, appendix D) show that one
can interchange maxmin with minmax and interpret the planner as a Bayesian facing a worst case distri-
bution. Hansen and Sargent (2019, 1) quote I.J. Good who says that a minimax solution is reasonable if the
worst case distribution is reasonable according to the planner’s body of beliefs. Hansen and Sargent (2019)
also quote George Box on when one might get a useful approximation out of a well-chosen parsimonious
model; they also discuss the consistency of their solutions. While our simple treatment here does not do
justice to the subtleties of the Hansen et al. (2006) and Hansen and Sargent (2019) discussions, we use our
welfare indicator as if we are treating our Pareto optimal planner with its regional weights as a Pareto opti-
mal Bayesian planner choosing an optimal solution under the worst case distribution. A more complete
treatment requires a full accounting of stochastic shocks and sufficient conditions for maximin solutions to
be equal to minimax solutions as in, for example, Hansen et al. (2006).
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(a) (b)

(c) (d)

Figure 4. Evolution of regional welfare indicators when preferences for robustness increase.
Note: On the horizontal axis, 1 is D, 2 is Rb1, 3 is Rb2 and 4 is Rb3.

will be:

Js,νi =
∫ ∞

t=0
e−ρtωi[α lnEs,νit −

(
diTs,ν

it + 1
2
vi
(
Ts,v
it
)2 + w3jTs,v

3

)
]dt,

i = 1, 2, 3, j = 1, 2, ν = D,Rb1,Rb2,Rb3, s = S1, S2, S3, S4.

The simulation results are shown in figure 4.
The results suggest that robust control at the global level is beneficial for the Tropics

only. The reason is that since global emissions are reduced by robust control, and the
Tropics suffermost of the damages, the gain for this region from the reduction in climate
change damages exceeds the losses from reduced output.

7. Learning and robust control
The numerical results of the previous section indicate that robustness could be costly,
relative to the case of no concerns aboutmodelmisspecification, especially in the cooper-
ative solution. This raises the issue of whether it is possible to avoid this cost by learning.
In Anderson et al. (1998: 2), it is stated that ‘Superficially at least, the perspective of the
‘robust’ controller differs substantially from that of a ‘learner”. In our dynamic settings,
the robust decisionmaker accepts the presence ofmodelmisspecification as a permanent
state of affairs, and devotes his/her thoughts to designing robust controls, rather than,
say, thinking about recursive ways to use data to improve the model specification over
time. The idea here is that the ‘learner’ cannot improve against model misspecification
even with a large amount of data.

However, when dealing with climate change issues, the stakes are high and learning
through scientific research is an ongoing process which might remove some concerns
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regarding damages or temperature dynamics. To model such a process, we consider
the case in which part of the labor force, which in the model without learning is fully
employed in the output producing sector, could be employed in the ‘learning’ sector.
Employment in the learning sector reduces misspecification concerns, since it allows
the regulator to learn about the processes for which there is ambiguity. We assume that
the robustness parameter can be expressed as the function:

φ (Li − lit) , φ′ > 0, i = 1, 2, (46)

where lit is labor input used in region i to produce output at time t, and Li − lit is labor
input allocated to the learning sector for climate damages. Assume that learning activ-
ities take place only with respect to damages from climate change and that the world
is changing rapidly so that no learning stock is accumulated.15 The regulator’s objec-
tive associated with the multiplier representation of the robust control problem can be
written as:

max
{Eit ,lit}

min
{kit ,hit}

(47)

∫ ∞

t=0
e−ρt

N∑
i=1

ωi

⎡
⎣ln yit + β ln lit + α lnEit −

N∑
j=1

(
dijTjt + 1

2
vijT2

jt + kitTjt

)

+ 1
2
φ (Li − lit) k2it + h2it

2θi

⎤
⎦ dt, (48)

subject to (3). For this problem, the current value Hamiltonian is:

HC =
N∑
i=1

ωi

⎡
⎣ln(yitlβitEαit)−

N∑
j=1

(
dijTjt + 1

2
vijT2

jt + kitTjt

)
+ 1

2
φ (Li − lit) k2it + h2it

2θi

⎤
⎦

+
N∑
i=1

μi[λiEt − BiTit + σihit]. (49)

Optimality conditions for i = 1, . . . ,N imply:

αωi

Eit
+

N∑
i=1

μitλi = 0 ⇒ E∗
it = −αωi∑

i μitλi
(50)

β

lit
= 1

2
φ′ (Li − lit) k2it (51)

kit = Tit

φ (Li − lit)
, hit = −(θi/ωi)σiμit (52)

15Both assumptions are simplifying. Accumulation of learning stock requires introduction of learning
dynamics of the form Ṡt = η(Li − lit)− δSt , S0 given. The introduction ofmore dynamic constraints would
have complicated the solution even more. However, the use of a ‘flow concept’ for learning at this stage
provides intuition to the problem and the use of learning dynamics is left for future research.
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μ̇it = (ρ + Bi) μit +
N∑
j=1

ωj(dji + vjiTjt)+ Tit

φ (Li − lit)
(53)

Ṫit = λiEt − BiTit − σ 2
i (θi/ωi) μit . (54)

This formulation implies that learning about climate damages from the regulator’s point
of view raises the cost of the ‘adversarial agent’ who tries tominimize the regulator’s wel-
fare. Sinceφ′ > 0, an increase in the amount of labor allocated to learningwill reduce the
penalty that the adversarial agent could impose on the regulator. To put it differently, an
increase in learning reduces misspecification concerns and ambiguity. Under this setup,
the following result can be stated.

Proposition 2: An increase in the regional temperature will always increase the labor
input allocated to the learning sector.

For the proof, see appendix A.

Similar to condition (41), condition (52) shows that themaximum distortion of dam-
ages due to misspecification concerns is proportional to the temperature anomaly with
proportionality coefficient 1/φ(Li − lit). This proportionality coefficient depends on
labor allocation. Our proposition indicates that if the temperature anomaly increases,
the planner has an incentive to increase labor input allocated to learning. By doing so,
the regulator can reduce his/her concerns about misspecification, which means that the
maximum damage distortion according to which the regulator has to design emission
policy is lower. This implies more emissions along the optimal path. Allowing more
emissions, because of the lower damage distortion, will increase output. Of course there
is a trade-off here since, by allocating more labor to the learning sector, there will be a
negative impact on output. These trade-offs are captured by the optimal solution.

Other generalizations are also possible. One approach could be to consider alloca-
tion of labor across three activities: production of goods; mitigation of damages, that
is, adaptation to climate change; and our type of ‘learning’. In the optimal allocation of
labor across these three activities by a Pareto optimal planner, it could be possible to
locate plausible sufficient conditions for a positive amount of labor to be allocated to
all three activities, e.g., Inada type conditions. Furthermore, in a competitive model the
wage rate of labor in each region could increase as the demand for labor increases due to
increased labor demand for adaptation. A possible way of generalizing to a model with
three labor activities is tomake the damage parameters in equations (4) and (5) a function
of labor allocated to damage mitigation. This means defining the damage parameters as
dij(lij)where lij is labor allocated to damagemitigation. As this type of labor increases, dij
decreases. If we assume that dij(0) > 0, d′

ij(0) 
 0 and d′
ij(∞) = 0 while d′

ij(lij) < 0 for
all lij, along with d′′

ij(lij) > 0 and d′
ij(0) = −∞ for an Inada condition, the maximizing

agent’s problem (the social planner’s problem) is concave and the minimizing agent’s
problem is convex; therefore some labor should be allocated to mitigating damages. The
full analysis of such a problem is outside the objective of the current paper, but it repre-
sents an interesting area of further research, sincemuch attention has been given recently
to the mitigation of damages from climate change, that is, adaptation.
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8. Concluding remarks
Deep uncertainties are associated with both the natural and the economic characteris-
tics of climate change. These uncertainties are amplified by the fact that in reality the
temperature anomaly evolves differently across the globe, with a faster increase in the
area of the North Pole relative to the Equator, because of natural mechanisms. In this
context, we study climate change policies by using the novel pattern scaling approach of
RTCREs and develop an economy–climate model under conditions of deep uncertainty
associated with temperature dynamics, regional climate change damages, and policy in
the form of carbon taxes. The regional structure of the model allows us to analyze the
distributional effects of climate change on regional carbon taxes.

We applied robust control methods to derive optimal emission policies and the asso-
ciated price of the climate externality and carbon taxes under the different sources of
deep uncertainty. Our results indicate that in general robust policies under deep uncer-
tainty lead to more conservative emission policies relative to a deterministic situation.
Furthermore, ambiguity related to the damage function tends to produce more conser-
vative policies than ambiguity in temperature dynamics, while robust control with high
concerns aboutmodelmisspecification is relativelymore costly, but this could depend on
the vulnerability of a region in noncooperative solutions. The most vulnerable region in
our parametrization benefits inwelfare terms from robust policieswhenmisspecification
concerns aremild. Furthermore, themost vulnerable/poorest region pays a lower carbon
tax when distribution across regions is taken into account. We also show that competi-
tive firms, when facing ambiguity regarding carbon taxes, tend to be more conservative
and use smaller amounts of fossil fuels relative to the case of no policy uncertainty. Pol-
icy uncertainty could be important in practice because it relates to uncertainties in the
transition to a low carbon economy.

Our results suggest that in the context of the Paris accord (COP 21) and the further
development of the ‘Paris rulebook’, it will be important to address the need to differen-
tiate policy instruments, either as carbon taxes or tradable permits, among rich and poor
countries and the potential issues associated with the emergence of carbon leakage.

Future research is needed that focuses on impacts of climate change on the pricing
of regional assets and the pricing of uncertainties impacting such assets. At the global
scale, Barnett et al. (2020) have made progress on pricing a trinity of uncertainties, i.e.,
risk, ambiguity aversion andmisspecification uncertainties. At latitude-specific regional
scales, based upon the work of Burke et al. (2015), Hsiang et al. (2017) and Diffenbaugh
and Burke (2019a), it is plausible to speculate that all three of the trinity of uncertain-
ties are likely to grow relatively larger at lower latitudes compared to higher temperate
latitudes in future projections of climate impacts. Such impacts on assets plus the con-
cern about ‘stranded assets’ (e.g., Barnett, 2019) and potential impacts of climate change
on monetary policy (Economides and Xepapadeas, 2018; San Francisco Federal Reserve
Bank, 2019) suggest that research on pricing latitude-specific regional asset uncertainties
is an important area for future research.

Another line of research could focus on strategic interactions among regions, in a
set-up in which a cooperative solution cannot be attained and, as a result, each regional
planner maximizes own welfare by taking into account own misspecification concerns
and takes the emission paths and the misspecification concerns of the other regions as
given. Brock and Xepapadeas (2019) studied this problem in a deterministic set-up. It
would undoubtedly be interesting to study how differences in misspecification concerns
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would affect the open loop or feedback Nash equilibrium.16 Although the solution of
this problem is beyond the objectives of this paper, its solution would reveal the impact
of the interactions between regions exhibiting strategic behavior under deep uncertainty
which has a spatial structure, sincemisspecification concerns are expected to be different
across regions.
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Appendix A:
Proof of Proposition 1: The proof follows directly from the application of the implicit

function theorem. The system (12)–(13) has a straightforward solution at point o,

μ̄i = − 1
(ρ + Bi)

⎡
⎣ N∑

j=1
ωjdji

⎤
⎦

T̄i = 1
Bi

[ N∑
i=1

−αωiλi∑N
i=1 μ̄iλi

]
,

and the Jacobian determinant of (12)–(13) is nonzero at o. �

Proof of Proposition 2: If we substitute the minimizer for kit from the optimality condi-
tions (50)–(54), the reduced form Hamiltonian becomes:

HC = max
Ei ,lt

⎧⎨
⎩

n∑
i=1

ωi

⎡
⎣ln(yitlβitEαit)−
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(
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2
vijT2
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)

+ 1
2
φ (Li − lit) k2it + h2it

2θi

⎤
⎦ N∑

i=1
μi[λiEt − BiTit + σihit]

⎫⎬
⎭ .
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The optimal choice for the labor input is given by

β

lit
= 1

2
φ′ (Li − lit)
φ (Li − lit)2

T2
it .

Assuming that the learning function can be specified as φ(l) = (A/q)lq, we obtain

β (Li − lit)1+q = q2

2A
litT2

it , lit = hi (Tit) ,

which implies that the optimal allocation of labor to production and learning is a function
of temperature. Implicit differentiation results in

dlit
dTit

≡ h′
it (Tit) = −

(
q2/A

)
Titlit(

1 + q
)
β (Li − lit)q + (

q2/2A
)
T2
it
< 0.

Thus an increase in temperature in region i will reduce the labor input to production and
increase the labor input allocated to learning and to reducing ambiguity about climate
change damages. �

Appendix B:
The parameter values used in simulations are shown in table B1.
Table B1. Simulation parameters

ω1 0.33

ω2 0.54

ω3 0.13

α 0.05

d1 0.0301

v1 0.0402

d2 0.11286

v2 0.15048

d3 0.00898

v3 0.00674

γ31 0.01

γ32 0.05

bi, i = 1, 2, 3 0.008

σi, i = 1, 2, 3 0.1

ρ 0.02

λ1 0.75◦C/TtC

λ2 1.30◦C/TtC

λ3 2.00◦C/TtC
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