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A;-INVARIANT SUBSPACES ON THE TORUS

KEIJI IZUCHI AND YASUO MATSUGU

ABSTRACT. Generalizing the notion of invariant subspaces on the 2-dimensional
torus T2, we study the structure of A,-invariant subspaces of L?(T?). A complete
description is given of A,-invariant subspaces that satisfy conditions similar to those
studied by Mandrekar, Nakazi, and Takahashi.

1. Introduction. Let L2(T?) and L>°(T?) be the usual Lebesgue spaces on the 2-
dimensional torus T2. We use (z. w) or (€, €?) as variablesin T2. Let Z and Z, be the
sets of integers and non-negative integers respectively. A closed subspace M of L%(T?)
is called z-invariant if zM C M, and called invariant if zM C M and wM C M. For a
function f in L2(T?), let

fy= [ 71" e ™I dody/@n). (n.K) € 2

where df dy / (27)? is normalized L ebesgue measure on T2. The Hardy space H3(T?) is
the spaceof f € L2(T2) suchthat f(n. k) = Ofor every (n. k) € 22\ z2. For f.g € L4(T?),
we write f L g if [§" j2"fgdody/(2r)? = 0. Subsets E and F of L%(T?) are called
mutually orthogonal whenf L gforeveryf € Eandg € F,andinthiscase E® F
denotes the direct sum of E and F. When F C E C L?(T?), we denote by E © F the
orthogona complement of F in E.

The Beurling theorem saysthat every invariant subspaceN on the unit circle T hasthe
form N = q(2H?(T) or N = xgL?(T), where q(2) isaunimodular function on T and x is
the characteristic function for a subset E C T. To avoid confusion, we use the notation
T, for the unit circle with the variable z. Hence every f in L%(T,) is a z-variable function
and f = f(2). We may consider L2(T,), H?(T,). L?(Ty), and H%(T,,) as closed subspaces
of L?(T?) by the natural way. We note that T? = T, x T

For a subset E of L2(T?), we denote by [E] the closed linear span of E in L2(T?). Let
HZ(T2) = [U{z "H*(T?) ; n € Z,}]. Then

HZ(T?) = S @ZHY(Ty) = > awLA(T,).
j=—o0 j=0

Now we give notations and definitions to state our results. Our main purpose is to
study generalized invariant subspaces. To define them, let

¢:Zy —ZU{—00} and ¢(0)=0,
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and let .
Ay ={ZW ;i > ¢()).j € Z:}.

When ¢(j) = —oo, wemeanthat {i € Z; i > ¢(j)} = Z. Moreover we assume that

® A, isasemigroup.

Then, if (j) = —oo then ¢(i) = —oo for every i > j. Foreachn € Z,, let A, = {ZWK;
i > ¢(k),k > n}. A, is called cyclic if there exists p > 1 such that ¢(p) # —oo and
A, p = Z(PWPA,. Itisnot difficult to seethat A, iscyclicif and only if there existsp > 1
such that ¢(p) # —oo and ¢(p) + ¢(j) = ¢(p +j) for every j € Z.. When A, is cyclic,
we have ¢(j) > —oo forj € Z,.

A closed subspace M of L?(T?) is called A-invariant (see [7]) if

AM = {fg;f €A, M} C M.

Moreover if A, iscyclic, M is called cyclic A;-invariant. Since A, , \ A ne1 = {z‘vv” ;
i > oM}, [Asn \ Apnea] = WZ2WH2(T,), where we consider that 22 (WH2(T,) = L%(T,)
if () = —o0. Then [A;] = 2, EW'ZWH?(T,), and [A,] is an A,-invariant subspace.
For a z-invariant subspace Sof L?(T?), let

2MWs= |J ZS if ¢(n) = —o0.
i>¢(n)

In this paper, we study the structure of A, -invariant subspaces. Since z € A, A;-
invariant subspaces are z-invariant. When ¢o(j) = O for every j € Z,, the family of
Ay -invariant subspaces coincides with the family of usual invariant subspaces. In [2],
Curto, Muhly, Nakazi, and Yamamoto studied An-invariant subspaces for a positive
integer n, where A, = {Zw ;i € Zforn <j,i € Z. for 0 < j < n}. Also Helson and
Lowdenslager [4] studied invariant subspaces for A;. When ¢1(j) =0for0 <j < n,
and ¢1(j) = —oo for n < j, we have Ay, = A,. Hence the concept of A,-invariant
subspacesis a generalization of invariant and A,-invariant subspaces. We note that A-
invariant subspaces need not be invariant subspaces. For, let ¢,(j) = j for j € Z,; then
[Ag,] = 5% ®(2w) H2(T,) is cyclic Ay, -invariant but not an invariant subspace. It is not
difficult to see that for a given ¢, every A, -invariant subspaceisinvariant if and only if
we A,

In Section 2, we give the basic procedure to study A,-invariant subspaces which is
used several times |ater.

In Section 3, we determine the A,-invariant subspacesM such that M © [A, 1M] isa
nonzero z-invariant subspace. This is a generalization of the work by Nakazi [10]. Also
we give a characterization of closed subspaces of the form %, &g (2W/H?(T,), where
0;(2) isaunimodular function on T,. These invariant subspaces are studied in [1].

In Sections 4, 5 and 6, we discuss the following special type of ¢. Let p € Z, \ {0}
and k € Z. For each n € Z,, let ¢(n) be the smallest integer such that pp(n) — kn > 0.
Then A, = {ZW! ; pi —kj > 0.(i.j) € Z x Z:}. To have a one to one correspondence
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between A, and (p. k), we assumethat p and |k| are mutually primeif k # 0, and p = 1 if
k = 0. Inthecase k = 0, the family of A,-invariant subspaces coincides with the family
of usual invariant subspaces. We have ¢(p) =k andk+ ¢(j) = ¢(p+]j) for everyj € Z,,
so that A, is cyclic. In Section 4, we solve the following problem.

ProBLEM 1. Describe every A, -invariant subspace M such that M = [A; 1M] and
M # M.

Let M be an A -invariant subspace. For h € A, let Vi:M > f — hf € M. Let P be
the orthogonal projection of L2 onto M. Then the adjoint operator V; on M is given by
Vit = P(hf) for f € M. In Section 5, we solve the following problem.

PROBLEM 2. Describethe A;-invariant subspaces M such that Vs Vs = V3 Ve.

The motivation of this problem comes from [9, 12], but obtained A -invariant sub-
spacesresemble the invariant subspacesgivenin [11, 13].

In Sections 6 and 7, we define (see Section 6) a homogeneous-type A,-invariant
subspace. This definition is similar to the one given in [11, 13], and we study the
following problem.

ProBLEM 3. Determine the homogeneous-type A,-invariant subspaces M with
ZWPM C zM and ZWPM # zM.

We cannot give the complete answer. It seems very complicated. In Section 7, we
consider two special cases.

2. TheBasic Procedure. Thefollowing lemmafollows from [2, Lemma2.2].

LEMMA 2.1. Let M be an invariant subspace of L2(T2). Suppose that M = zM and
M # wM. Then M can be represented as follows

M = ¢ (xk(@HI(T?) & xeLX(T?)).
where ¢ is a unimodular function on T2, K C T,, d¢/2x(K) > 0, E C T2 and
(K x Ty) NE = 0. Moreover if N2, WM = {0}, we have M = ¢y (2H2(T?).
LEMMA 2.2. Let M be an A,-invariant subspace. If zZM = M, then M isan invariant
subspaceand wM = [A,, 1M].

PROOF. Since Ajn \ Asner = {ZW' ; i > ¢(n)}, by our assumption we have
(Apn \ Apne1)M = WM for every n € Z,. Since M is A-invariant, WM C M, so
that M becomes an invariant subspace. Hence we get

(A = (Ul \ AW = [ w] =

Let M be an Ag-invariant subspace with zM = M. Moreover if M = wM then M =
xeL?(T?) for some E C T2, and if M # wM then the form of M is determined by
Lemma2.1. So that we are interested in the case of M # zM.

We use the following procedure (developed in the remainder of this section) several
times in this paper.

https://doi.org/10.4153/CJM-1998-006-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-006-0

102 KEIJI IZUCHI AND YASUO MATSUGU

THE BASIC PROCEDURE. Let M bean A-invariant subspaceof L%(T?) andletp > 1.
Supposethat there exists anonzero z-invariant subspace N such that

N C Mo [A;pM].

Let
M=[{ZM;nez}].

Then M is A,-invariant and ZM = M. Hence by Lemma 2.2, M is an invariant subspace
and M C M. Since N L [A,pM] and N is zinvariant, Z'N L ZwPM for n € Z, and
i > ¢(p). Hence

(2.1) N L wPM.
so that M # wM. Then by Lemma 2.1, M has the following form
M = ¥ (xk(@HZ(T?) ® xeL*(T?)).
where ¢ is aunimodular function on T2, K C T,, df/2r(K) > 0, E C T2, and
2.2) (K x Tw) NE = 0.
For the sake of simplicity, we assume
=1,

so that M = xk (H2(T?) @ xeL?(T?). Since HX(T?) = % @wWIL(T),

23) M = (3w @LAT)) & xelX(T).
i=0

SinceM C M, for eachf € M we can write as
f= (L aw@i@) e o
j=0

wherefj(2) € L%(T,) and g € xeL?(T?). Using the above representation of f, we set
(2.4) §={xx@f@;f eM} Cxx@LX(T). jeZ.
Then § isalinear subspace of L3(T,). Since M # wM, we have
S # {0} forevery j € Z,.
We note that § may not be closed. SincezM C M,

(2.9) z§CS. jez.
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We have also that
(2.6) M C (Y owls) @ xel AT,
j=0

By (2.1), (2.3), (2.4), and (2.6)

(2.7) NC pf@wis; C xk@ pf@wi L2(T,).
j=0 j=0
By (2.4) and (2.6),
(2.8) [A,nM] C (i EBWJS) @ yeLX(T?) forne Z.
j=n

Sincel € A;, Ay;M = M, so that by (2.6) and the definition of S,

(2.9) S = i 2g = Lnjzﬁ*(”ﬂ')a. ne Z.,
j=0 =0
here by (2.5),
zg= | Zs.

i>p(n—)
By (2.7) and (2.9),
(2.10) AN C i@wja.

j=0

Here we have the following lemma for acyclic A;.

LEMMA 2.3. Suppose that A, is cyclic and z(PwPA, = A, . Let M be a cyclic
Ag-invariant subspace such that N = M © [A, ,M] is nonzero and z-invariant. Then we
havewP12(P-Dg, ¢ N and W+ (P-D-9(Pg) « NN S, where § is the closure of S
in L2(T,).

Proor. SinceN =M © [A; ,M], by (2.4), (2.6), (2.7) and (2.8) we obtain
(2.11) S={x@fi@;feN}. 0<j<p-1.

Let ¢ = 2(PwP. By our assumption, (M = ([A,M] = [A, pM] and N = M & (M. Hence
we can write M as

— (S~ Al
(2.12) M (,Zo &C N) ® (J_Q)g M).
By (2.4) and (2.6), (M C (255, &W xk (QLX(T,)) © xeL*(T?), so that
(2.13) ﬁgiM C xeL?(T?).
j=0
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Since M is A;-invariant, by (2.10), (2.12), and (2.13),

(2.14) AN C ST @¢N.

j=0
To prove our assertion, let f € N. By (2.7) we canwritef as

p-1 )

(2.15) f=> ewxk@i@, fi(@ LTy,
j=0

where xk(fi(2) € §. By (2.14), 2P DwPf € 23, &¢/N. Moreover by (2.7) and
(2.15),

‘ p—1 ) )
20w @) @ (3 02w (@) € NN,

Therefore by (2.11), z2(P~YwP~1S, C N. Since N is aclosed subspace,

(2.16) 2(P-DwP1g C N.
Next we prove that
(2.17) A W+e(p=1)—( p)é) CNNS.

In the same way as in the first paragraph, we have wz/®N C N & ¢N. Then by (2.16),
wPzM*(PIg, ¢ ZWWN C N @ ¢N. Since A, is asemigroup, by (2.5) and (2.7) it is
easy to see that wPZ?W*(P-1g) (NN ). Consequently we get (2.17).

Now we continuethe basic procedure. We consider thefollowing two casesseparately;
ZN=NandzN #N.

CAast 1. Supposethat zZN = N. Then we have the following lemma.

LEMMA 2.4. Ifp=1andzN = N, then M isan invariant subspacewith zM = M and
wM Z M.,

PROOF. Suppose that zZN = N. By (2.7) for p = 1, N C xk(2)L?(T,). Hence by the
Beurling theorem,

(2.18) N = xk, (DL(T).

where Ko C K and df/2r(Ko) > 0. Since Ay \ Apnet = {ZW" ;i > ¢(n)}, w'N =
[(Asn \ Asne1)N]. SinceN € M and A,M C M,

2.19) S BWIN = [AN] C M.
n=0

Let M; = M & [A;N]. Then

(2.20) M =[AjN] & M;.
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SinceM; ¢ M, wiM; ¢ wM forj > 1. By (2.1) for p= 1, wIN L M; for j > 1. Hence
by (2.18), (2.19), and (2.20), we have xk,(2)L?(T?) = =2_., &W'N L M;. Thus we get

(2.21) xks(DM1 = My.

SincezM C M, zM; C M. Since zN = N and Mz L [A4N], zM; L [A;N]. Hence by the
definition of M1, ZM; C M;. Wenotethat {f € L>(T,) ; fM; C M;} is aweak*-closed
z-invariant subalgebra of L>(T,). Since df / 2(Ko) > 0, the Beurling theorem says that
the weak* -closed invariant subspace [{z”XKg(z) ;ne Z+}]Oo of L>°(T;) generated by
{z“XKg(z) ; N € Z,} coincides with XKSLO"(TZ). Since zM; C My, by (2.21) we have
ZM; = M. Therefore by (2.18), (2.19), and (2.20), zM = M. Henceby Lemma2.2, M is
an invariant subspace. By (2.18), (2.19), (2.20), and (2.21), wM # M.

Case 2. Supposethat zZN # N. To prove
(2.22) K=T,,

supposethat K # T,. By (2.7), xk (2N = N. Thenin the sasmeway asin thelast paragraph
of Lemma2.4, we havezN = N. Thisis a contradiction. Hence we get (2.22).
By (2.2) and (2.22), E = (). As a consequence, by (2.3), (2.4) and (2.6)

(2.23) M C fj owl§ c M= i EW LA(T)).
j=0 j=0
By (2.7),
p-1 . p-1 )
(2.24) NC Y ewsc > awl(T).
j=0 j=0
By (2.8),
(2.25) [AsaM] C i aw'§ C fj ewLX(T)., neZ.
j=n j=n

This is the end of the basic procedure. In the rest of this paper, we use the same
notationsin the basic procedure.

3. SimpleA,-Invariant Subspaces. AnA,-invariant subspaceM of L%(T?) iscalled
simpleif z(M & [A; 1M]) C M & [A, 1M]. The following theorem is a generalization of
Nakazi’stheorem [10].

THEOREM 3.1. Let M bean A,-invariant subspace of L%(T?) such that M & [A; 1M]
is a nonzero z-invariant subspace. Then
(i) zM © [A,aM]) = M © [A,1M] if and only if M is an invariant subspace with
M =2zM and M # wM.
(i) zM ©[A,1M]) # M S [A,1M] if and only if there exists a unimodular function
on T2 suchthat M = y[A,].
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ProOOF. Supposethat M © [A, 1M] is a nonzero z-invariant subspace. Then we can
use the basic procedurein Section 2 for p=1andN = M & [A, 1M]. Now we have

(3.1) M =N & [A,1M].
By (2.7), N C S C xk(9L?(T,). SinceN = M & [A,; 1M], (2.11) holds for p = 1, hence
(3.2) N =% C xx(@LX(T).

(i) Suppose that zZN = N. Then by Lemma 2.4, M is an invariant subspace with
M =2zM and M # wM.

To provethe converseassertion, supposethat M is an invariant subspacewith M = zM
and M # wM. Then we can use Lemma 2.1 to describe M, and it is not difficult to see
that z(M © [A;1M]) = M © [A; 1M].

(i) Supposethat N # zN. Then Case 2 in the basic procedure in Section 2 occurs.
By (2.22) and (3.2), S = N C L%(T,). SinceN is z-invariant and N # zN, by the Beurling
theorem § = N = q(2)H?(T,), where g(2) is a unimodular function on T,. By induction,
we shall prove

(3.3) S = q@ZWH3(T,) forj € Z.,
where § is defined in (2.4). Supposethat n > 1 and
(3.4) S =q@2WH*(T,) for0<j<n-—1

By (31) and (32), [Aq)lM] =M&N=Mo6S%. By (29), Z?:z)lz‘f)(n*i)a CcCS C
[2}1:—01 z(-Ng] for n > 1. Hence by (3.4),

(3.5) q2 rilz”*(“‘i)z””(j)Hz(Tz) CSca@d [nf 20 VZOHA(T,)|.

j=0 =0

Since A, is a semigroup, ¢(n) < ¢(n — j) + ¢(j), so that ¥t 2 DZDHA(T,) =
ZMHZ(T,). Hence by (3.5), S = q(2)2*™H?2(T,). Therefore we obtain (3.3).

Since q(2H(T,) = S =N C M, by (3.3) and A;,M C M we have
w'§ =wq@ZWHX(T) c M forj € Z.

Henceby (2.23), M C ©%, @WJS] C M. Asaconsequence,
M= ew's = 9@ > ewz'VHA(T,) = g@[A].
=0 =0

To prove the converse assertion, let M = [A,] for a unimodular function +» on T2.
Since Ay 1A; = Ay 1, [AsaM] = Y[A; 1]. Since[Ay] © [Ay1] = [{Z"; n € Z.}] = H¥(T)),
M © [A;1M] = YH3(T,). Of course, YHA(T,) is z-invariant and zyH?(T,) # YH(T).
This completes the proof.

Thefollowing is a characterization of the invariant subspacesstudied in [1].
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THEOREM 3.2. Let M bean A -invariant subspaceof L(T?) with M # zM. For each
n € Z., let N, be the largest z-invariant subspace which is containedin M © [A n+1M].
Then Np # {0} and for eachn € Z,

(@) MO ([ApmaM] © Ny) L ZN,  for everyi € Z

if and only if M is represented as follows

(b) M = (3 eq@WHAT,)

=0

or there exists a positive integer | such that
© M = ¢((Z' ~ Lo ® G@WHAT)) @ (L ow LZ(TZ))).
j=!

where and g;(2).j € Z., are unimodular functions on T2 and T, respectively, and
200(HA(T,) C guj(@H(T,) for (i) € Z2.

ProOOF. First, suppose that M is represented by the form in (b). Since M is A,-
invariant, by the form in (b) we have ¢(i) > —oo fori € Z, and

2OW (W H(T,) C guj(@WHA(T,) fori,j € Z..
Then for each t € Z,, we have Y, &2 qi(9H*(T,) C q@H?*(T,). Hence M ©
[As.naM] equals

i—

n 00 j 1
w{(z eqAWHAT)) @ ( 3 ew (q@HAT) & [ @z"")“*”qi(z)Hz(Tz)]))}.

n—
=0 j=n+1 i=0

Now it is easy to see that Ny = v( L, ©ai(WH(T,)), No # {0} and condition (a) is
satisfied. In the same way, we can prove the same conclusion for M in (c).

Next, supposethat N # {0} and M satisfies condition (8). Then we can use the basic
procedure in Section 2. For the space Ny, we can apply the case p = 1. If ZNg = Ng, then
by Lemma 2.4 we havezM = M. Hence by our assumption, zZNg # Np. By (2.22),K = T,.
Then by (2.24) for p = 1 and the Beurling theorem,

(3.6) No = q(2H?(T,)

for a unimodular function q(2) on T,. By (2.23),

(3.7) M C fj@wis,. § C LY(Ty),
=0
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By (2.25),
(3.9) AuniM] C 5> GWILA(T,).
j=n+1

Also for the space N, we can apply the basic procedure for the casep = n+ 1. Since
ZNo # No, by (3.8) we have zZN, # N,. Then by (2.24),

n i n X
(3.9) Ny C S ew§ C > awlLi(T,).
j=0 j=0

SinceNo € M, WizZ)Ny M for j € Z,. By (3.9), No C S, S0 that by (2.9) we have
Yy @wWiZNg € M N (T, @w! §). Then by (3.6), (3.8) and the definition of Ni, we
obtain

n . .
(3.10) a2 > W ZOHAT,) C Na.
j=0

Here we shall use condition (a). Then by (a) and (3.10),
n ,
M ([As.ntM] & Np) L > dWLX(T).
j=0

Then by (3.7), (3.8) and (3.9), we have M C Ny @ (55,,, @WILA(T,)) for n € Z.. By
this fact and the definition of §,

n .

(3.11) S awl§ =N, C M.
j=0

Hence Y5, &w!§ C M. Therefore by (3.7),

(3.12) M=>ows.

j=0
By (3.112), WiS =Ny&N_iforj > 1and S = Ny, so that § is a closed z-invariant
subspace of L%(T,) for every j € Z,. By the Beurling theorem,

(3.13) S = q@HX(T)
or
(3.14) S = xg LA(To).

where gj(2) is a unimodular function on T, and E; C T,. If (3.13) happens for every
j € Z4+, by (3.12) M has the form of (b). Suppose that (3.14) happensfor somej € Z,.
Let | be the smallest integer in Z. such that § = ygL%(T,). Then § = q;(2)H?(T,) for
0<j <l Since S = Ny, by (3.6) wehavel > 1. By (2.9),

AQZ"HYT,) + 20xg LA(T,) = 2Mg + 20§ C Sy, j € Z..

HenceS.j = L%(T,) forj € Z.. Therefore, inthiscase, M hastheform (c). Thiscompletes
the proof.
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4. A Semi-Double Type of A,-Invariant Subspace. In this section, we study an
Ag-invariant subspace M with M = [A, ;M] which is called of semi-double type. A
closed subspace M of L?(T?) is called doubly invariant if zZM = wM = M. In this case
M = xegL?(T?) for some E C T2. First we prove the following.

PrROPOSITION 4.1.  Suppose that there exists a sequence of positive integers {kn}>2;
suchthat ky — oo and z % (A, 1)"Uw (A, 1)" C A, 1. If Misan A -invariant subspace
with M = [A, 1M], then M is doubly invariant.

PROOF. Supposethat M = [A, 1M]. ThenM =[(A, 1)!M] for every j € Z.. Henceby
our condition, for n > 1 we have

ZRAM =ZA 4 [(Ay )M C [Z7(A,1)"M] C [A,aM] = M.
In the same way, w A, 1M C M. We note that {f € L*(T? ; fM C M} isa

semigroup. Since the semigroup generated by {z~ ""AM Uw- knA(/s,_l ; n > 1} coincides
with {Zw! ; i,j € Z}, by the above two inclusions M becomes doubly invariant.

ExAMPLE 4.1. Let ¢(0) =0and ¢(j) = 1forj > 1. Then ¢ satisfies the condition of
Proposition 4.1.

ExXAMPLE 4.2. Letn > 1. Let ¢n(j) =0for 0 <j < n—1and ¢n(j) = —oo for
j > n. Then ¢, satisfiesthe condition of Proposition 4.1.

Asmentioned in Section 1, in the rest of this paper we consider the following special
¢.Letp € Z, \ {0}, k € Z, and assumethat p, k| are mutually primeif k #0,andp = 1
if k= 0. For eachn € Z,, let ¢(n) be the smallest integer such that p¢(n) —kn > 0. Then

Ay ={ZW;pi—k > 0.(i.]) € Zx Z.}.
Itistrivial that A, isasemigroup. In this section, we solve the following problem.

ProBLEM 1. Describe every A -invariant subspace M such that M = [A; 1M] and

™M # M.

By our definition of ¢, ¢(p) = k. ¢(p) + ¢(j) = ¢(p+]j) forj € Z., and hence A, is
cyclic, that is,
(4.1) A, p = ZPWPA, = ZWPA,.

Since p and |k| are mutually prime (when k # 0),
Po(j) — K #po() —ki for0<i.j <p—1Li#],

and po(j) —kj > 0for 1 <j < p— 1. Rearranging the order, let {jo,j1,....Jp-1} =
{0,1,..., p — 1} such that

Po(ji) — Kii < po(jise) —Kjisr, 0<i<p-—2
We note that j, = 0 and
(4.2) po(ji) —kji =i, 0<i<p—1

When p = 1 and k = 0, we do not need the above argument. Also we have the following
lemma.
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LEMMA 4.1.
(i) o(p) =k.
(i) o()+o(p—j)=k+1lfor1<j<p-1
(iii) j1+jp-1=p.
(iv) Ifji+ji <p,0<i <p—1thenj+ji =jixa and ¢(j1) + &(Ji) = ¢(ji+a)-

(V) Ifji+ji >p,0<i<p—1thenjs +ji =p+jisa and ¢(j1) + ¢(ji) = k+ d(jis1).

PrOOF. (i) is aready mentioned.

(i) Leel<j<p—1Thenl < p—j, sothat by the definition of ¢ we have
P(6(i)—1)—kj < 0 < pe(j)—Kj and p(¢(p—j)—1)—k(p—j) < 0 < pg(p—j)—k(p—j).
Hence

p(6(j) + d(p—j) — 2) —kp < 0=pk —kp < p(4(j) + ¢(p—J)) — kp.
Thismeansthat ¢(j) + ¢(p—]j) — 2 < k < ¢(j) + ¢(p —j). Therefore we get (ii).

(iii) Sincepand |k| are mutualy prime, (4.2) gives (iii).

(iv) Supposethat 0 <i < p—121andj; +j < p.By (4.2), po(ji) — Kjj = i. Then
p(¢(j1) + 6(ji)) — k(ja +ji) =i + 1. Sincejs +ji < p, (4.2) impliesthat j; +ji =jis2 and
o(j1) + ¢(ji) = o(ji+a)-

(v) Supposethat ji +ji > p. By (4.2), p(¢(j1) + ¢(ji) — k) — k(j1 +ji —p) =i+ 1.
Sincej; +ji —p < p, by (4.2) againweget j +ji —p = ji+a and ¢(ju) + ¢ (i) —k = (jira).
Thuswe get (v).

The following lemma follows from the Beurling theorem (see the proof of [11, The-
orem 3)).

LEMMA 4.2. Let Sbe a closed subspace of L%(T?) such that Z2wPS = S. Moreover
suppose that S L ZwiSfor (i,j) ¢ {(nk,np) ; n € Z}. Then there exist a unimodular
function ¢ on T? and Egp C T2 such that S = ¥xg,[{(ZWP)" ; n € Z}] and xg, €
[{(ZwP)";ne Z}].

Let o

Hpx = {ZW ; pi — Kj > 0,(i,]) € Z%}.
Then A, C Hpx and

(4.3) Hok = U{EWP)'A, i n € Z} = J{(@PWP)"A, s ne Z}.
Now we solve Problem 1.
THEOREM 4.1. Let M be an Ag-invariant subspace such that M = [A,;M] and
zZM # M. Then
M = xe,[Hpi] © xel?(T?)
for a unimodular function v on T2, xg, € [{(ZWP)"; n€ Z}].E C T?,and EgNE = ).
Moreover
(i) if 2o Z'M = {0}, then M = ¥x e [Hpidl;
(i) if N2e2"™ = {0} and there exists h € M such that |h| > 0 a.e. on T2, then
M = y[Hpi].
It is not difficult to prove our theorem for the casep = 1 and k = 0 (see Lemma 2.1).
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PROOF OF THEOREM 4.1. Let D = M © zZM. SincezZM # M, D # {0}. Since M is
z-invariant,

(4.4) M:D@ZM:(i@z“D)@DOO and Do, = ()Z'M.

n=0 n=0
Then D, is Ag-invariant and zD,, = Do,. By Lemma 2.2, D, is an invariant subspace.
SinceM = [A; 1M], M = [(A;,1)PM]. Since (A, 1)P C Ay p, M = [A, pM]. Then by (4.1),
(4.5) M = [A, pM] = ZWP[A,M] = ZWPM.
By (4.4) and (4.5),

wPD,, = (| ZWPM = ) Z(ZWPM) = | ZM =D.,.
n=0 =k =k

Since D, is an invariant subspace, wD., = D,,. Therefore D, is a doubly invariant
subspace and

(4.6) D = xel%(T?). EcC T2
By (4.3), (4.5) and M = [A;M], we have M = [H,,xM]. Hence by (4.4),
4.7 M =D @ ZHpM].

Let {jo.j1.....Jp-1} ={0.1....,p— 1} such that (see above Lemma4.1) pé(ji) —
kji < po(jiv1) — Kji+1, 0 <i <p—2.Let

(4.8) Lp=zHpx and L =2UwiH,, foro<i<p-1.

Sincejo =0, Lo = Hpk. ThenHpx = Lo D Li D Li+1 D Lp=2zHpfor0<i <p—1.By
the definition of H,

(4.9) ZWPH, x = Hpk-

Hence by Lemma4.1, z2UdwitL; = Li;1, and then

(4.10) Livg = Z200WiL,.

Let D; = [LiM] & [Li+aM]. Then by (4.7),
p—1
(4.12) D=3 @D
i=0
Here we have
Di = 2UWwh (z*Ww[LM] & [LiM]) by (4.10)
= 20w ([HpM] © [LaM]) by (4.8)
- Zﬁb(Ji)WjiDo_
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Thuswe get
(4.12) D =2WwiD,, 0<i<p-1

By (4.8) and (4.9), ZWPL; = L;. Hence ZwPD; = Dj, so that by (4.11) and (4.12),
ZWPDg = Dy, and Dy L. ZwDy for (t,s) € Z? and pt — ks # 0. Then by Lemma 4.2,
there exists a unimodular function «» on T2 and Eq C T? such that

(4.13) Do = Yxe,[{@WP)';nez}] and xg, € [{(ZWP)"; ne Z}].

Therefore by (4.3), (4.4), (4.6), (4.11), (4.12) and (4.13),

M

(g@z”(iz:@m)) @ yeL3(T?)

00 p—1 . .

(Z @zn(z @Z@(Ji)wliDo)) o) XELZ(TZ)
n=0 i=0

= (Vxe,[Hpil) @ xeLA(T?).

Therest is easy to prove. This completes the proof.

5. Commuting Operators and A,-Invariant Subspaces. In this section, we dis-
cuss a special type of ¢ which is studied in Section 4. Letp € Z. \ {0} and k € Z
such that p and |k| are mutualy prime if k # 0, and p = 1 if k = 0. For each
n € Z, let ¢(n) be the smallest integer which satisfies p¢(n) — kn > 0. We note
that ¢(p) = k. Let A, = {zZw/ ; pi — kj > 0,(i,j) € Z x Z,}. Rearranging the order,
let {jojas- - 2jp-1} = {0.1....,p— L} such that po(ji) — Kii < p(jis1) — Kjisa for
0<i<p—2 Wenotethat jo = 0. When p = 1 and k = 0, we do not need the above
argument.

Let M be an A,-invariant subspace. For h € A, let

Vi:M 3 f —hf € M.

Let P be the orthogonal projection of L? onto M. Then the adjoint operator V;; on M

satisfies _

Vif =P(hf) forf e M.
Hence we have that
(5.1 KerVa=MozZ'™M forn>1;
(5.2) KerVi,» =M © ZwPM.

We study the following problem (see[9, 12]).

PROBLEM 2. Describe A -invariant subspacesM such that Vy ,Vz = V;V3 -
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ProposITION 5.1. Let M be an Ag-invariant subspace. Then the following three
conditions are equivalent.
() VigwVz = VaVie-
(i) VeV = VaVy,, for everyn > 1.
(iii) VipVa = VaVy,, for somen > 1.

PROOF. It is easy to prove that (i) <= (ii) and (ii) = (iii). So we only have to
provethat (iii) = (i). Supposethat Vj,Va = VaVj,, forn > 2. Then

(5.3) Vi Ve = Vo Vin.

By (5.1), Ker Vi, = M © Z'"M. Hence by (5.3),

(5.4) ZWP(M & Z'M) Cc M © 2'M.
To prove Vj,»,Vz = V2V, We need to prove that

(5.5) ZWP(M & z2M) C M & ZM.

Wenotethat zM C M. If zM = M, there is nothing to prove. Supposethat zM # M. Then
n—1 X

(5.6) M = (Z aZ(M e zM)) o 2M.
j=0

To prove (5.5), suppose not. Then there existsan f in M © zZM such that

(5.7) WPt =fipd,e MozM)@ M.  f, #0.
Then

n—1 X
(5.9) WP =2 @ € ( S edMo zM)) @M.

=0

Sincef € Mo zZM, 21 € M © Z'M, so that by (5.4) we have ZwPZ"1f € M © 2'M.
But by (5.6), (5.7) and (5.8), ZwPz""1f ¢ M © Z'M. This s a contradiction. Hence we
get (5.5).

Then by (5.1) and (5.5), VeV = V; Ve = 00nM © M. Also we have Vi, V; =
V; Ve 0N ZM. Hence Vo V; = V;Vaye ONM = (M © ZM) & zM. Therefore V3V, =
VoV

In the same way asin the proof of Proposition 5.1, we can prove the following.

LEMMA 5.1. Let M bean A;-invariant subspace. Then Vj, .V = V,V , if and only
if (M © Z2WPM) C M © ZwPM.

https://doi.org/10.4153/CJM-1998-006-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-006-0

114 KEIJI IZUCHI AND YASUO MATSUGU

THEOREM 5.1. Let M bean A-invariant subspacewith [A; 1M] # M. ThenV;, .V, =
V,V.» if and only if one of the following happens.
(i) There exists a unimodular function +» on T? and a positive integer n such that
l1<n<pand
n—1 p—1

M = ¢§ B(ZwP)! { (Z @Z@(j.)wj.Hz(Tz)) @ ( S @qu(Ji)—le.Hz(Tz)) }
j=0 i=0 i=n

(i) Misaninvariant subspacewith zM =M and wM # M.

Thecasep = 1 and k = 0 of thistheorem is proved in[9, 12].

PrROOF OF THEOREM 5.1. Let

(5.9) ¢ = ZwP.
Suppose that
(5.10) VIV, = VRV,

Let N = M S (M. By (4.1) and (5.9), CA, = A, . Since[A,M] = M, (M = [A, ,M]. Then
N =M6&[A;pM]. SinceA, , C A, 1,¢M C [A,1M]. Henceby our assumption, N # {0}.
Then we have the following decomposition

(5.11) M = (i EBCjN) © CM.
j=0 j=0

By (5.10) and Lemma 5.1, zZN C N. Therefore we can use the basic procedure in
§ection 2. Using it, we shall study the ~structuresNOf N arJd M. As in Section 2, If:t
M = [U{ZM ;| € Z}]. Then by (5.9), (M = ZwPM = wPM, and by (2.1), N L wPM.

By (2.4) and (2.7),

(5.12) N C Tz:;@sz, C XK(z)(:;l ow! LZ(TZ)) and § C xk(@LA(Ty).
By (2.3),

(5.13) MCM= XK(z)(j:i; ewl LZ(TZ)) & xelX(T?).

Then we have

(5.14) ﬁ (M c fj) WIPM = yeL(T?).

By Lemma4.1 (ii), (1) + ¢(p — 1) — k = 1. Since ¢(p) = k, by Lemma 2.3 we have
(5.15) 2P OwPlg cN;

(5.16) 7 CNNS.
Now we separate the proof into two cases; 25 # S and 25 = K.
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Case 1. Supposethat z5 # S. Then by (2.5) and the Beurling theorem,
(5.17) S = q@HA(T,)

for a unimodular function q(z) on T,. By (5.12), S C xk(2LX(T,). Hencein this case,
we haveK = T,, and by (2.2), E = (). Hence by (5.11)—(5.14),

(5.18) M=3adNC s @(pz_jl@zikwjp+is> C M= GwL(T)).
i=0 =0 \i=0 =0

We note that for each pair of i and j there correspondsa uniquet such that Z*wiP*'s
WL2(T,) andt = jp+i. By (5.16), 2 C S C S, henceby (5.17) we haveq(2)zH3(T,) C
S C gH?(Ty). Since dim(HZ(TZ) 6 ZHA(T,)) = 1, S becomes a closed subspace, and

(5.19) S = S = q@HA(TY).

Since § is a closed subspace, by (5.16) we have

(5.20) ZSCNNS CS.
Here we want to prove

(5.21) S CN.

To provethis, suppose not. Then by (5.19) and (5.20),

(5.22) NNS =2%.

For f € N, by (5.12) we can write f asf = Zj’igl @Wifj (2, € §. By (5.18), using the
above representation of f € N we have

(5.23) S={fi;feN} for0<i<p-—-1

Then 2Mwf = Zjﬁgl Gz Dwwifi(2) € M. SinceM = NB(N@¢2M, by (5.12) and (5.22)
we have ZOwwP1S, 1 C (NN ) = (zS. Therefore by (5.15) and Lemma 4.1 (i),

(5.24) wPls, 1 c Z79OwlzS = 2P YwPlg C N.
Next we shall prove
(5.25) wP2g, , C N.
Since Z@AWN C M and f = =2t ewlifi(2) € N, we have »2 " &2@wPwifi(2) € M.

Then by (5.18), Z@AwW2wP-1f,_1(2) + Z@wPwWP-2f,_»(2) € ¢(N. By (5.18) and (5.24),
2AwWwP,_1(2) € ¢N, so that Z@PwwP—2f, »(2) € ((N N ). Therefore by (5.22),
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2AwPwP23, , C (NN S) = (2. Since 2@Aw?Z(P-AwP-2 = (zby Lemma 4.1 (i),
we obtain

(5.26) wP2S, , C 2P AwP 2,
Since 2/ (P-AwP2f = y-P ot @ (P-AwP-2wifi(2) € M, we have
2(P-AWP=2f)(2) @ 2(P-AwP1f,1(2) € N.

Then z2(P-2wP-1f)(2) € wP1S, 4, so that by (5.24) we have Z(P-2wP—25 C N.
Therefore by (5.26), we obtain (5.25). In the same way, we can prove by induction that
wPiS, i Cc Nfor1 <i <p-—1Sincef = Zjﬂgl@wifj(z) e Nandfi(2) € §, by
the above we have fo(2) € N. By (5.23), S C N and this contradicts (5.22). Thus we
get (5.21).

Now we shall prove that

(5.27) WS CN for0<j<p-1.

The reader may think that (5.27) is already proved in the last paragraph. But these
arguments are done under the assumption N N S = z&. Here we want to prove (5.27)
under the assumption NN'S = S. By (5.21), (5.27) istrue for j = 0. By induction we
prove (5.27). Suppose that

(5.28) wiSCcN for0<j<n-1

for nwith 1 < n < p— 1. We provethat w'S, C N. Whenn = p — 1, by (5.12), (5.23)
and (5.28) we have w"S, = wP~1S, ; C N easily. Hence we assumen < p — 1. For
f =0t dwifi(2) € N, Z(P-"-DwP--1f € M. Then

n ‘ ) p-1 ‘ )
(Z @f’(p‘”‘l)wm"”‘lfj) ® ( 3 @f’(p‘”‘l)wm"”‘lfj) e N@¢N.
=0 j=n+1

Hence by our assumption (5.28), z’(P~"-DwP-1f, € N. By (5.23),
(5.29) 2P-DywP-1g N,

This implies that ™YWz (P--Dwp-15 < (N NW'S,). Since ¢(p) = k, by
Lemma4.1 we have

(5.30) 'S, C NNW'S, C W'S,.

We note that (5.29) and (5.30) correspond to (5.15) and (5.16) respectively. By the same
argument used to prove (5.21), we can prove W'S, C N. Herewe only give an outline of
this proof. If zS, = S, (5.30) immediately givesw"S, C N. Next supposethat zS, # S.
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Then S, becomes a closed subspace of L?(T,). To prove w'S, C N, suppose not. Then
by (5.30),

(5.31) NAW'S, = 2w'S,.

By the fact Z™DwW™IN C N ¢ ¢N and (5.31), we have wP~1S, ;1 C N. By induction,
we can prove that w'S, C N. Asaconsequence, we get (5.27).
Therefore by (5.12) and (5.27), we obtain

(5.32) N = pf@sz,.
i=0

Here we note that Z(PDwPIwl§ C (S for 0 < j < p — 1. By Lemma 4.1 (ji),
d(p—1j) +o(j) = #(p) + 1, so that by (5.19) we have

(5.33) S cq@ZVHYT,), 0<j<p-1

Now we shall prove that there exists an integer n suchthat 1 < n < pand
n-1 o -1 _
(5.34) N = q(Z)((Z @zmi’w“HZ(Tz)) T (Z @Z”)(“)_lwl'Hz(Tz))),
i=0 i=n
By (5.19) and (5.21),
p-1 o
(5.35) 9@ (X ez DwHAT,) CN.
j=0

If 9(2)(22% " @2’ PWIH2(T,)) = N, then N hasthe desired form and in this casewe have
n = p. Suppose that q(2)(x%," @z’ PWIH2(T;)) # N. Then there is a positive integer n
such that

(5.36) whs, #q@Z2UPwWhHX(T,), 1<n<p-1

Here we may assumethat n is the smallest integer which satisfies (5.36). Then

(5.37) w's, = q@2WH(T,), 0<i<n.

By (5.32) and (5.35), wing, D ZUnwihSy = q2z?UnwinH%(T,). Then by (5.33) and
(5.36),

(5.38) whg, = q@2’ U0 twihH(T)).

Whenn = p— 1, N hasthe desired form in (5.34), so that we may assumen < p — 1.
We shall prove that

(5.39) w'S, = q@2?0WWiH(T,) forn<i<p-—1.
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By (5.32) and (5.38),
(5.40) qu)(jl)wjle“ﬁ - q(z)zv‘>(i1)+9">(J'n)*1WJ'1+inHZ(TZ) c M.

We notethat p # j; +jn, becausen < p— 1. Henceit happensji +jn < porp <ji +jn.

First, supposethat j; +j, < p. Thenby Lemmad4.1 (iv), ¢(j1) + ¢(jn) = ¢(j1 +jn) and
j1 +jn = jre1. Hence by (5.40), q(2)2’Un)—twintH2(T,) € M. Sincejn1 < p, by (5.32)
wehaveq(2)z?Urd)-IwimH2(T,) C wim§, . Thenby (5.33), S,., = q(22°U)~1H2(T,).

Next, suppose that p < j1 +jn. Then by Lemma 4.1 (v), j1 +jn = P+ jne1 and
¢(j1) + ¢(jn) = K+ ¢(jnra), s0 that by (5.40), q(z)¢z* )~ TwitHX(T,) C M. By (5.18),
q(2)¢z’Um)-twin1H2(T,) C ¢N. Hence q(2z’(Um)-1wimH2(T,) C wi=S, . By (5.33),
we get S,., = q@z°U)~twi=H2(T,). Therefore by induction, we can prove (5.39).
By (5.32), (5.37) and (5.39), we get (5.34), so that by (5.18) M is of the form (i).

CAsE 2. Supposethat 25 = . By (5.16), 25 C NN'S C . Hence S is a closed
subspace of L%(T,) and 2 = § C N. By (5.8), S C M & [A, 1M], so that S playsthe
role of N in the basic procedurein Section 2 for p = 1. Since z$ = &, Case 1 happensin
the basic procedure. Then by Lemma 2.4, M is an invariant subspace with zM = M and
wM # M. Therefore M satisfiesthe condition (ii).

By Lemmab.1, it is not difficult to prove the converse assertion.

6. Homogeneous-TypeA,-Invariant Subspaces. We discussthe same ¢ whichis
studied in Section 4. Let p € Z, \ {0} and k € Z such that p and |k| are mutually prime
if k#0,andp = 1if k= 0. For each n € Z,, let ¢(n) be the smallest integer such that
pp(n) — kn > 0.

Let M be an A;-invariant subspace. For n € Z,, let

(6.1) My = L:io(zkwp)iz”‘iM].

ThenM, isA,-invariantandM = Mg D My D My D - --. Let Xy = Mp&©Mpa forn € Z,.
Then we have the following decomposition

6.2) M= (i X ) © Moo,

where M, = N2 M. Here we call M ahomogeneous-type A, -invariant subspaceif

(6.3) X, C X1 and ZWPX, C Xpy forne z.
and
(6.4) M., = {0}.

In this section, we study the following problem (see[11, 13]).
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ProBLEM 3. Determine the homogeneous-type A,-invariant subspaces M with
ZWPM C zM and ZwPM # zM.
In[11], Nakazi gave an answer for the casep =1 and k = 0.

LEMMA 6.1. Let M be Ag-invariant. Then M is of homogeneous-type if and only if
thereis a closed subspace E of L%(T?) such that M = Y32, [T fLy(ZwP) 2 IE].

PROOF. Supposethat M is of homogeneous-type. Then by (6.2) and (6.4),
(6.5) M=>"&Xn.
n=0
We shall show that

(6.6) Xq = [é(zkwp)izﬂ' xo] forn € Z.
£

By (6.3), [ZWPXq + 2Xn] C Xne1. Then by (6.1) and (6.5), My = 322, G[ZWPX, + 2Xp],
sothat Xo = MO My = Xo @ (552 B(% © [ZWPX_1 +2Xq-1])). Thus Xy = [ZWPX, 1 +
ZXp-1] for n > 1. Hence we have (6.6). Set E = Xp; then M hasthe desired form.
Next, suppose that there exists a closed subspace E of L2(T?) such that
0 n . .
M=3 @[Z(z“wp)'z"‘l E].
=

=0
Then we have o .
M =3 o[> @w?)iZIE].
n=i j=0
Hence N
Xo = {Z(zkwp)iz”*j E] and M., = {O}.
j=0

Now it is easy to seethat X, satisfies (6.3), so that M is of homogeneous-type.

LEMMA 6.2. Let M be an A,-invariant subspace with Z2wPM C zM and M # {0}.
Suppose that M is of homogeneous-type. Let E be the closed subspace of L2(T?) which
isgivenin Lemma 6.1. Then M = Y22, &>2"E and Z~wPE C E.

PROOF. Let( = ZwP. Supposethat M is of homogeneous-type. Then by Lemma6.1,
there is a nonzero closed subspace E of L2(T?) such that

6.7) M=3 Xy X = [gnjgjz”—l' E].
n=0 i=0

By our assumption,(M C zM, sothat (M = 02, BCXn C 02, B2Xn. Since(X,UzX, C
Xn+1, by the above inclusion we have (X, C zX,. Hence

[znj (12 g| [an (7 IE|. nez.
i=0 i=0

When n = 0, (E C zE. Hence X, = [, ¢!Z"JE] C 2'E C X, so that we get X, = Z'E.
Therefore by (6.7), M = 2, ®©Z'E.
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THEOREM 6.1. Let M bean A -invariant subspacewith Z“wPM C zM and ZwPM #
ZM. Supposethat M is of homogeneous-type. Then M has one of the following forms.

0 ) p-1 L
(i) M=) o wP) (G ey ez0w H2(TZ)>) .
j=0 i=0
where v is a unimodular function on T2 and G is a closed subspace such that
G [{20W, 202 ; 1<i <p—1}],
00 ) p-1 » )
(i) M= 03 @ wP) (G@ (> eazw)ﬂvVHz(Tz))).
j=0 i=0
where ) is a unimodular function on T2 and G is a closed subspace such that
GcC [{1L.20W.207W. 207w ; 1<i<p—1}].

The structure of G is in general too complicated to describe more explicitly. In
Section 7, we determine G for two special kinds of ¢.

PrROOF OF THEOREM 6.1. Let
(6.8) ¢ = ZwP.

Since M is of homogeneous-type, by Lemmas 6.1 and 6.2 there is a honzero closed
subspace E of L2(T?) such that

(6.9) M = i @[iciz“—l' E] = f ®'E, (Z'ECE.
n=0 'j=0 n=0

If ¢z 'E = E, then by (6.9), (M = zM. This contradicts our assumption. Therefore
(ZE#E LetY=ECG(ZE#{0}. Then

(6.10) E=Yal(zE

By (6.9), ZY L ZiYfori,j € Z.,i #]. Let

(6.11) N=3 @z
i=0

Then by (6.9), (6.10) and (6.11),

(6.12) M=Na& ¢z M.

Here let B be the semigroup in {Zw! ; i.j € Z} generated by ¢z~ and A,. For each
n € Z., weput u(n) = min{i € Z; Zw" € B}. Then 4(0) = 0and A, = B. By (6.8) and
the definition of ¢,

(6.13) ulip+j) =d(@ip+j)—i foriez.,0<j<p-—-1;
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(6.14) u(p) =k—1;

(6 15) CZ_lA;t = A/t.p'

Hence A, is cyclic. By our assumption, (z M C M, so that M is A,-invariant. Then
by (6.15), [A,.pM] = ¢(z M. Hence(6.11) and (6.12) imply that N isanonzero z-invariant
subspace, zZN # N and

(6.16) N=M& [A.pM].

Now we can use Case 2 of the basic procedurein Section 2 for p(n) instead of ¢(n).
Then by (2.23), there is a nonzero subspace § of L%(T,) (perhaps not closed) such that

(6.17) MC> awl§ cM=3 aw LT,
=0 =0
and by (2.24),
p-1 ) p-1 )
(6.18) NC Y owsg c S awlL?(T).
i=0 =0

By (6.12) and the definition of § (see (2.4)),

(6.19) (1§ =wPSsp, jEZ.

By (2.25),

(6.20) [AunM] C J_ifn@wia c ji_?@wi L2(T). nez.
By (2.9),

(6.21) S0 C 5 C [i 209g]. nez.

=0 =0

By (6.13), (6.14) and Lemma4.1 (ii), p(1)+p(p—1)—p(p) = 2. Henceby Lemma2.3,
(6.22) 29 CNNS.

By (2.5), S is a z-invariant subspace of L(T,), so that by the Beurling theorem § =
q(29HA(Ty) or S = xe(2)L2(T,), where q(2) is a unimodular functionon T, and F C T..
By (6.22), 22§) CSHC é, Then for both cases, S becomes a closed subspace and
S = q(2H?(T,) or S = xr(2)L%(T,). Moreover by (6.22),

(6.23) ZS CN.
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Here we note that S # xr(2)L3(T,). For, suppose that S = xr(2)L%(T,). By (6.20),

S L [A,1M]. Thenby Lemma2.4, Misaninvariant subspacewith zM = MandwM # M.

But by (6.9), M satisfieszM # M. Thisis a contradiction. Therefore S = q(2)H(T).
For the sake of simplicity we assume that

(6.24) S = HY(T,).

Now recall the proof of (5.21) in the proof of Theorem 5.1. In the same way, from (6.23)
we can prove z5 C N. Since 2§ C NN'S C S, by the aboveinclusion we have

(6.25) NNS=% oo NN =25%.
By (6.19) for j = 0, (Z 'S = wWPS,. Then by (6.21),
(6.26) 2P DwPIwlg c(z's, 0<j<p-1.

By (6.13), (6.14) andLemma4.1 (i), u(p)—p(p—j) = u(j)—2. Henceby (6.8) and (6.26),
§ ¢ 2'V25,. On the other hand, by (6.21) we have 7'(VS; € §.0 < j < p— 1. Hence
200 c § c 2025 for 0 < j < p— 1. Then by (6.24), § is a closed subspace of

L%(T,) and
(6.27) § = 2~lgy = 220~<DH(T,)  for somee(j) = 0,1,2.
Since 14(0) =0,
(6.28) €(0) = 0.
By (6.16), (6.18), (6.20), and the A, -invariantness of M,
p—1 L
(6.29) S ez 0Ow(NN'S) C N.
j=0
By (6.18) and (6.27),
1 opl
(6.30) NC Y ows =3 az0-<OwHX(T,).
j=0 j=0

By (6.29), we can define

p-1 L
(6.31) G=No (Z @z Dwi (NN so)).
=0
We consider thefollowing two casesseparately (see (6.25)); NNS = S andNNS = 2.
WhenNNS = Sy, by (6.24) and (6.31) we have

p-1 N
N=Ga Y ezOWHXT,).
j=0
By (6.12) and (6.17), M = Y% @z HIN. Hence, in this case, M has the form given
by (i). By (6.28), (6.30), and (6.31), it is not difficult to see that G satisfies the desired
condition.
In the sameway, when NN S = 25, M has the form given by (ii).

https://doi.org/10.4153/CJM-1998-006-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-006-0

A,-INVARIANT SUBSPACESON THE TORUS 123

7. Examples of Homogeneous-Type A,-Invariant Subspaces. This section is a
continuation of Section 6. Let {jo,j1.....jp-1} = {0,1.....p — 1} such that p¢(ji) —
Kjii < po(ji+1) —kjixz for 0 < i < p—2. Wenotethat jo = 0 (seefor detail Section 4), and
the structure of { j; }i'igl dependsstrongly on the given p and k. We study in Theorem 7.1
thecasejj=i,1<i<p—1,andin Theorem7.2thecasejj =p—i,1 <i<p-1
Comparing these theorems, we find that the structures of G are completely different. For
general cases, it is natural to expect that G hasthe mixed structures of G in Theorems7.1
and 7.2.

THEOREM 7.1. Supposethatj; = ifor 0 <i < p—1for givenpandk. LetM beanA,-
invariant subspacewith Z2wPM C zM and ZwPM # zM. Then M is of homogeneous-type
if and only if

M =1 ,2 (2 wP)] (G & (T_Zol oz’ Ow H2(TZ))) .
where ¢ is a unimodular function on T2 and G has one of the following forms.
(i) G={0} or G=[{Z9W ;s <s<p-—1}]
for somes  withl <s <p—1
(ii) G=[{z0W. 202wl ;5 <i<p-1ls <j<p-—1}]
for somes,ands, withl <s <s, <p— 1
(iii) G=G o [{Z0W. 2072wty <i<p-Lt <j<p-—1}]

where
‘ CMms—j-l o ) o )
Gy = [{(ﬂ“’w)l (X (@t g ) o < <ty -5 - 1}}
i=0
for some complex numbers { ;. Gi }f;gsl_l with ag Z 0 and 8y # 0, and for some 53, s,
t,hbwithd<g <ti <s <t < pandtz—szztl—sl.

We note that for a given p € Z. \ {0}, a pair (p,k) satisfies the assumption of
Theorem7.1ifandonly if k=Ip— 1 andIp # 1 for somel € Z.

PROOF OF THEOREM 7.1. Supposethat M is of homogeneous-type. We use the same
notations as in the proof of Theorem 6.1 and we continue our proof from the end of the
proof of Theorem6.1. Sincejj =ifor0 <i <p-—1,

(7.1) 20w = Z@Ow)), 0<j<p-1

Thisisthe key point of our assumption.
First suppose that

(7.2) NNS =S = HA(Ty).
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Then by the end of the proof of Theorem 6.1, we may consider
00 . p-1 .

(7.3) M =5 (2 wP)] (G ® (Z az2Ow HZ(TZ))) :
j=0 i=0

where G is a closed subspace with

(7.4) GC [{zq’(j)_le. 2072yl 1<j<p-— 1}]

Using the property that A,M C M, we will describe G.

For i = 1 or 2, we define positive integers t; and 5. When 220~'w! € G for some
1 <t<p-—1 lett bethe smallest integer t satisfying the above condition. For
convenience, lett; = pwhenz’O-w ¢ Gforevery1 <t < p—1. Whenf(gb(s)—i. s)#0
for somef € G and for someswith 1 < s < p— 1, let 5 be the smallest integer s
satisfying the above condition. Then f(qﬁ(s) — 1, s) =0foreveryf e Gand1l <s< s
and §(¢(s) —i.s) # O for someg € G. Wenotethat s; and s, may not exist. If 5 exists,
by the definitonswe have s < t;. In the following, we shall see that the structure of G
depends on the data of 5 and t;. To study the structure of G, we separate into several
cases. The following follows from (7.4).

(@) If boths; and s, do not exist, G = {0}.

(b) If 51 existsand s, doesnot, then s, =t; and

G=[{Z0w ;5 <s<p-1}]. 1<s<p-L1
For, by our assumptions and the definitions of s; and s,
(7.5) GC[{z9w ;s <s<p—1}]
and there existsf € G such that
-1
(7.6) f=3 a0, ag #0.
ss1
Since Z/(P~s-DwP-s-1G C 2(P-s-DwP-s-1M C M,
p—1
Z asz¢’( pfslfl)"'@b(s)flwp'*yslfl e M.

Ea!

Then by (6.16), (6.18) and (6.20), a5, z/(P~~D*)-1wP-1 ¢ N. Since as, # 0, by (7.1)
we havez/(P-D-1wP-1 ¢ N. By (6.13), (6.31), and (7.2), we have z(P-D-1wP-1 c G, so
that by (7.6) we get ¥ a;z’9~ws € G. Inthe sameway, using z/(P~~AwP572G C
M, we have z/(P-2-1wP-2 ¢ G. By induction, we can prove that &~ € G, 5 <
s < p— 1. By (7.5), we seethat G hasthe desired form.

The above proof also shows the following two facts (c) and (d).
(© Ifti <p—1,then 20w € Gforeveryt <t <p-—1.
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@) 1If o2 asz?®-'we € Ganda # 0, thenty <.
(e) If s, exists, then s existsand s, <t < sp.
For, supposethat s, exists. Then by (7.4) thereexistsf € G such that

p-1 p-1 .
(7.7) f=3 az® 2w+ bz, a, #0.
% =51

When s; doesnot exist, weconsider by = 0fors; <j < p—1.Sincezf € zG C zZN C N,
by (6.31) and (7.2) we have >2 ! asz?®~'w® € G.a5, # 0. Then by (d), t1 < 5. The
inequality s; < t; follows from the definitions of s; and t;.

(f) If s, existsand s; = t3, thens, =t, and

(7.8)
G=[{Z0"W. 202w ;5 <i<p-1s<j<p-1}], 1<s<s<p-1

For, supposethat s, existsand s; = t;. Then there existsf € G satisfying (7.7). Since
s; = ty, by (0) we have Y21 asz?®2w® € G,s;, # 0. By (d), t; < . The opposite
inequality follows from the definitions of s, and t, sothat 55 < s, = t;. Then (¢)
gives (7.8).

Finally, supposethat s, existsand s; < t;. We first prove that

(7.9 tb—S=th—s.

Letf € G suchthat

p-1 ‘ p-1 )
f=3 a0 2w+ 3 20wl by #O0.
&9 j=st

Since Z/(z=2)wk~%f ¢ M, by (7.3) and (7.4)

—t,—1 —t—1
TN agtesreeayres ST p sty ¢ G,
S =1
By (7.1),
prep—te-1 + 2 + prop—te—1 H(tot 1, +
3 asz</>(tz S=9)-2 eSS 4 3 b].zw(tz i=—2)-lykti-= o G,
=S, i=s

Sincet, +s—s; > t, for s > s, by (c) we have Zj'i?’tz’l bz (- -Intti—= ¢ G,
Sincebs, # 0, by (d) wehavet; <t, +s — . Hencet; — 5 <t — .
Let g € G such that

p-1 p-1 .
9= > cZ9 W+ Y gz0w, ¢, #0.
=% i=s;
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Since z’(i—swh—Sig € M, in the same way as above we have
ptsi—ti—1 ‘
S

Sincecs, 70, by (d) wegett, <tj+s,— 5, s0that t, — s, < t; — 5. Therefore we

getc(:z.r?s)équentlythereexist ti,to, s, ands; suchthats; <t < <, th—th =S —51,
and

(7.10) G=Gia[{z0W.20%w  y <i<p-Lt<j<p-1}]

where

(7.12) G C [{Z07W. 2072w ;5 <i <t 5 < <t}

and

(7.12) Zw ¢ Gy forevery (i.j) € Z2.

To describe Gy, fix fy € Gy such that fo(¢>(sg) —2.5) # 0. Thenwe have

fo(¢(51) —1s)#0.
For, write fy as
tg—l ‘ tl—l o .
fo=>" aZ’O2ns + > bjzﬂ“(l)*lwl. a;, #0.
&% ==
For the sake of simplicity, leta; =0fort;, <s<p—1,andb =0fort; <j <p—1.
Then
p-1 ‘ p-1 . )
fo=>" aZ’O2ns + > bjzﬂ“(l)*lwl. a;, #0.
&% i=s1
To show bs, # O, suppose that bs; = 0. By our assumption, t; — 53 > 0, so that
s -Dywhi—s-1f; ¢ M. Hence

ptsi—t1 ptsi—t . .
S a2 tits—si—1 _ S b Z2t=si=D+o(-lptt-si-1 - g
= j=si+1
ptsi—ty ptsi—ty ‘ . .
3 a s s—D-2fits—s—1 4 . S b Alti—s—D-lptt-s-1 o G,
= j=si+1

Sincet; +j — 5 — 1 >ty forj > s + 1, by the definition of t; and (c) we have
ptsi—ty

Z aszq‘)(t1+s—srl)72vvt1+$sﬁl cG.
S
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§ince as, # 0, by (d) we havet, < t; +s, — 51 — 1. This contradicts (7.9), so that
fo(¢(s1) — 1.51) =bs, #0.
By (7.9) and the abovefact, we can rewrite fy as

p-1 L . o .
(713) fO - Z(ai Zq>(sz+l)72\st+l +ﬁi Zq)(slﬂ)il\/\lslﬂ).
i=0

ap 70,8070 and o=p5=0 fortyj—s <i<p-—1.
Now we shall provethat
e o ) ) :
Gu=[{@MWI( Y (P4 gz ) ) J0 < <t — s -1,
i=0

wherel <sg <t < <t <p.
Let0<j<t;—s — 1. Since ZWwify € M,

L S NFHO(S+)—2, 4 ,j S+ . -1 NFAO(S1+)—1,,,j+S +H
o 2ot =2 it BiZ2FreEH-yitst o G,

@0

o
o
n
o

By (7.1),

Pt p(j+Sp+i)—2, 5 j+S2H Paj-1 p(jH+spH)—1yp j+s1+i
Z oz’ Wi + Z ﬁiZq Wi e G.
i=0 i=0

By (7.10) and (7.11),

s j-1 oy sl S
Z aizq>(1+52+|)72W]+sz+| + Z ﬁizq>(1+sl+|)fle+sl+| € Gy.
i=0 i=0

By (7.1) and (7.9),
ti—s —j—1

. . S . . . .
(7.14) ZOw) ST (&2 4 g 2SI TIysty € Gy,
i=0

For convenience, put

P e = . o .
(7.15) f=@Ou) S (g2 @2 Ly
i=0

for0<j <t;—s — 1. Thereforeby (7.14),

(7.16) Hf';OSjStl—Sl—l}]CGL

To show the converseinclusion, let takef € Gy, f # O, arbitrary. We can write f as

f= Z (aqus(52+i)72vvsz+i +biz¢(51+i)’1wsl+i).

t1—s—1
i=0
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By the same reasoning as in the paragraph before (7.13), there exists an integer m,
0<m<t;—s — 1, suchthat

t1—s—1 o . o .
(7‘17) f= Z (aizqu(sz+|)—2vvsz+| + biZq)(Slﬂ)_l\NslH), am # 0. b, # 0.
i=m
Here we have
X0 _ @m
7.18 —=—.
( ) 60 bm

For, suppose not, that is, ao/fo # am/bm. By multiplying z&—S=Dwh=s=1 with fo,
by (7.9), (7.10), (7.11), and (7.13) we have

(7.19) a2t 4 g iDL € Gy
By multiplying z?(t—Si—1=-Myh—si—1-M with f by (7.17) we can also get
(720) anﬂ(tz—l)—ZWZ—l + bmz(,“)(tl—l)—lvvtl_]_ € Gy

Sinceap /Bo # am/ bm, by (7.19) and (7.20) wehave 2/ (- D=2yt~ 1, #(-D-Iyh—1 ¢ G;.
This contradicts (7.12). Hence we get (7.18).
By (7.1), (7.15), (7.16), (7.17), and (7.18),

am ti—s—1 ) . . , . .
Gu ot — 2= S (oo g2 6 ), sy,
0

i=mt+1

We note that the number of termsin the above sumislessthanin (7.17). Repeating these

arguments, we can prove that there exist complex numbers {Cm, Cm1, - . - , G;—g,—1 } Such
that f = SIt % tefi. Hence Gy C [{fj; 0 <j <t — s — 1}]. By (7.16), we get the

desired equality. This completes the proof for the case NN S = S = H3(T,), and in this
case, one of (i), (ii) and (iii) with s; > 1 happens.
Next we study the case

(7.22) NNS = 25 = 2HX(T).

By Theorem 6.1 (and its proof), we may assume

00 ) p—1 . )
M =3 @(ZwP)) (G ® (Z @z O+ H2(Tz))) .
j=0 i=0
and
p-1 S
(7.22) N=Ga (Z e ale H2(TZ)).
i=0
where G is a closed subspace such that

Gc [{1.20W.207W. 2072 ;1 <i <p—1}].
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In this case,
(7.23) Gc[{zWW. 20w ;0<i<p-11<j<p-1}|

To prove this, suppose that there exists h € G such that ﬁ(¢(i) — 2.i) # 0 for some
1<i<p-—1 Thenwecanwritehas

t ) .op-l ) .op1 ‘
h=>az02w + > b 20w + 3 2™, a #0
i=1 =1 M=o
for somet with 1 <t < p — 1. Since Z(P-9wP~th € M, by (6.9)(6.20) we have
—1
HP-0+60-2,yP 4 S [y #(P-0#0()—Lyy PH—t 4 o H(P-D+0(yyPH— < 37
az wP + 3" {7 w GZ wPI=t e (ZN.
j=t
Then
—1
/(P00 k-1 ¢ pz{b,- 2P0k g APV Kty ¢ N,
=

Hence by Lemma4.1 and (7.1),
p-1 _ _ _ _
a t+ Z{bqu)(J—t)ﬂWJ—t + Cqus(]—t)+2wj_t} eN.
j=t

Therefore by (7.22), 1 € G C N. By the definition of & (see (2.4)), 1 € &, so that
1 e NN'S. Thiscontradicts (7.21). Hence we get (7.23).
Since M can be written as

M = zgj) B wP)] (z‘le ® (zj)l oz’ 0w HZ(TZ))),

we can proceed in the same way asin thecase NN S = S. By (6.24), S = H3(T,).
By the definition of S, we note that (5.23) holds. Then there exists h € N such that
h(0,0) # 0. By (7.22), there exists g in G such that §(0, 0) # 0. By (7.21), 1 ¢ N. Hence
1¢ G, sothat z~* ¢ z"1G. Thereforein this case only (jii) happensand s; = 0.

The converse assertion is not difficult to prove. This completes the proof.

THEOREM 7.2. Supposethatj; = p—ifor 1 <i < p—1for agivene.LetM beanA,-
invariant subspacewith Z2wPM C zM and ZwPM # zM. Then M is of homogeneous-type
if and only if

00 ) p—1 o
M= B wP) (G o (Z 20w H2(TZ))) :
j=0 i=0

where ¢ is a unimodular function on T2 and G has one of the following forms.

(i) G=G o [{zZ0W;1<i<p-1}]
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where G; is a nonzero closed subspaceof [{z’()-2wi ; 1 <j <p—1}].
(i) Gisaclosed subspacewith G C [{Z?0~w ;1 <i<p-—1}].

(iii) G=Gi& [{z0W ;1<i<p-1}]
where G, is a closed subspace of [{z 1, 2#()=2wl ; 1 < j < p — 1}] and there exists a
function g in G; such that §(—1, 0) # 0.

We note that for a given p € Z. \ {0}, a pair (p.k) satisfies the assumption of
Theorem 7.2 if andonly if k =Ip+ 1 and Ip # —1 for somel € Z.

PROOF. We use the same notations as in the proof of Theorem 6.1 and we continue
our proof from the end of the proof of Theorem 6.1. By our assumption, we have

(7.24) ifl<st<p—1ands+t<p, then¢(s) +o(t) = p(s+t) +1,

(7.25) ifl<st<p—21lands+t>p. then¢(s) +¢(t) = p(s+t—p) + k.

We separate the proof into two cases, NN S = S = H3(T,) and NN S = zH(T,).
First supposethat NN S = H(T,). Then by Section 6,

p-1 .
(7.26) G=No (Z oz’ Ow H2(Tz))
i=0
and
G [{z0-w, 20-2w ;1 <i <p—1}]

Suppose that there exists f in G such that f(¢(i) — 2.i) # O for some1 <i <p-—1.
Then f can be written as

o .op1 )
aj-z‘f"(J)*zWJ + Z biZ(’c)(l)ith am # 0, & # 0

i=1

M-

f=

J

1l
3

wherel <m<t < p— 1. Since (P~ DwP-™1f c M,
amzq‘)(pfrrkl)m(m)fzwpfl + i bizq‘)(pfrrkl)m(i)flwpﬂfn%l e N.
i=1
By (7.24),

amz’ (PPt 4 Em: b/ (PH=m=DyPHi-m—1 ¢ N,
i=1
By (7.26) and an, # O,

(7.27) 2Pyl c G,
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Thenusing 2(P~™2wP~-™2f ¢ M, weget 2/(P-2~1wP—2 ¢ G. For, 2/(P-™2wP~m2f ¢
M implies that

m+1 ) . m+1 . .
3 aj.zsﬁ(pfrrﬂ)w(l)ﬁwpﬂfwﬂ +> by 22(P=M=2)+¢() =1\ pH—-m-2 N\
j:m i=1

By (7.24), (7.25) and (7.26), we have anz’(P~2~twP~2 + g 2(P-D-1wP1 ¢ G
By (7.27) and a, # 0, z’(P-2~1wP~2 ¢ G. Repeating this argument, we have

(7.28) 70-WeG m<i<p-1
Next we show
(7.29) 70-WeG 1<i<t-1

Since Z(PH-OywPHl-tf = M,

t —1
Z ajzgs(p+1ft)+¢(j)fzwp+j+1ft + pz biﬁ(p+17t)+¢(i)7lwp+i+17t c CZN
j=t=1 i=t—1

By (7.24) and (7.25),

atzgﬁ(l)+k72Wp+l + a{_1zk71Wp + b[_lszp + pz:lbizq)(i+17t)+kflwp+i+17t c CZN
i=t
Then by (7.26) and a; # 0, 201w € G. Then using Z(P*2OwP2-tf ¢ M, we get
7’@~w? ¢ G. Repeating this argument, we obtain (7.29).
Sincem < t, by (7.28) and (7.29) we havez’)~'w € Gforeveryiwithl <i < p—1.
Hencein this case G hasthe formin (i).
When f(¢(i) — 2.i) = 0for every f € Gand1 < i < p— 1, G hastheformin (ii).

Next suppose that
(7.30) NNS = zZH¥(T,).
Then by Section 6,
p—1 " )
(7.31) G=No (Z @20+ H2(TZ))
i=0
and

Gc [{1.20W.207W. 2072 ;1 <i <p—1}].
In this case, we prove

(7.32) Gc[{1L.20W. 207 W ;1<i<p-1}]
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To prove (7.32), suppose not. Then there exists g in G such that §(¢(i) — 2.i) # O for
somel <i<p-—1. Writegas

s ) opl ) . o
g=> az202w + 3" (020w + z2Ow),
] i=0

J=m

wherel <s<p—1a #0andby=0. Sincez@"(P—S)Wp—Sg €M,

—1
a2 (P92 P + S 295,201 + ¢ 2Ow) € (N,

i=s

Then by (7.24) and (7.25),

p—1 ) ) " .
as+bsz+cZ+ 3 (0209w S + 29w S) e N.

i=s+1
By (7.31), 1
P— . .
as+ > b2 S ecG.

i=st1

Thisfact givesusthat 20w € Gfor 1 <i < p— 1, whichis proved in the same way as
in the proof of (7.28). Sinceas # 0, wethereforehavel € G. Thismeansthat 1 € NN
and NN = H2(T,). This contradicts (7.30). Thus we get (7.32).

Since S = H(T,), thereexistshin N such that ﬁ(O. 0) # 0. By (7.31), wemay assume
h € G. Thenin the same way asin the proof of (7.28), we can provethat 20w € G for
1<i<p-1lLetG =Go[{ZOW ;1<i<p-1}],G =zGand G| =7 1G;.
Then G’ and G have the desired forms (jii) in place of G and G respectively.

The converse assertion is not difficult to prove.
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