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Aû-INVARIANT SUBSPACES ON THE TORUS

KEIJI IZUCHI AND YASUO MATSUGU

ABSTRACT. Generalizing the notion of invariant subspaces on the 2-dimensional
torus T2, we study the structure of Aû-invariant subspaces of L2(T2). A complete
description is given of Aû-invariant subspaces that satisfy conditions similar to those
studied by Mandrekar, Nakazi, and Takahashi.

1. Introduction. Let L2(T2) and L1(T2) be the usual Lebesgue spaces on the 2-
dimensional torus T2. We use (zÒw) or (eiíÒ ei†) as variables in T2. Let Z and Z+ be the
sets of integers and non-negative integers respectively. A closed subspace M of L2(T2)
is called z-invariant if zM ² M, and called invariant if zM ² M and wM ² M. For a
function f in L2(T2), let

f̂ (nÒ k) =
Z 2ô

0

Z 2ô

0
f (eiíÒ ei†)e�(ní+k†) dí d†Û(2ô)2Ò (nÒ k) 2 Z2Ò

where dí d†Û(2ô)2 is normalized Lebesgue measure on T2. The Hardy space H2(T2) is
the space of f 2 L2(T2) such that f̂ (nÒ k) = 0 for every (nÒ k) 2 Z2 nZ2

+. For f Ò g 2 L2(T2),
we write f ? g if

R2ô
0
R2ô
0 f ḡ dí d†Û(2ô)2 = 0. Subsets E and F of L2(T2) are called

mutually orthogonal when f ? g for every f 2 E and g 2 F, and in this case E ý F
denotes the direct sum of E and F. When F ² E ² L2(T2), we denote by E 	 F the
orthogonal complement of F in E.

The Beurling theorem says that every invariant subspace N on the unit circle T has the
form N = q(z)H2(T) or N = üEL2(T), where q(z) is a unimodular function on T and üE is
the characteristic function for a subset E ² T. To avoid confusion, we use the notation
Tz for the unit circle with the variable z. Hence every f in L2(Tz) is a z-variable function
and f = f (z). We may consider L2(Tz)ÒH2(Tz)ÒL2(Tw), and H2(Tw) as closed subspaces
of L2(T2) by the natural way. We note that T2 = Tz ð Tw.

For a subset E of L2(T2), we denote by [E] the closed linear span of E in L2(T2). Let
H2

z (T2) =
hS
fz�nH2(T2) ; n 2 Z+g

i
. Then

H2
z (T2) =

1X
j=�1

ýz jH2(Tw) =
1X
j=0
ýwjL2(Tz)

Now we give notations and definitions to state our results. Our main purpose is to
study generalized invariant subspaces. To define them, let

û: Z+ ! Z [ f�1g and û(0) = 0Ò
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and let
Aû = fziw j ; i ½ û( j)Ò j 2 Z+g

When û( j) = �1, we mean that fi 2 Z ; i ½ û( j)g = Z. Moreover we assume that

(›) Aû is a semigroup

Then, if û( j) = �1 then û(i) = �1 for every i ½ j. For each n 2 Z+, let AûÒn = fziwk ;
i ½ û(k)Ò k ½ ng. Aû is called cyclic if there exists p ½ 1 such that û( p) 6= �1 and
AûÒp = zû( p)w pAû. It is not difficult to see that Aû is cyclic if and only if there exists p ½ 1
such that û( p) 6= �1 and û( p) + û( j) = û( p + j) for every j 2 Z+. When Aû is cyclic,
we have û( j) Ù �1 for j 2 Z+.

A closed subspace M of L2(T2) is called Aû-invariant (see [7]) if

AûM = f f g ; f 2 AûÒ g 2 Mg ² M

Moreover if Aû is cyclic, M is called cyclic Aû-invariant. Since AûÒn n AûÒn+1 = fziwn ;
i ½ û(n)g, [AûÒn n AûÒn+1] = wnzû(n)H2(Tz), where we consider that zû(n)H2(Tz) = L2(Tz)
if û(n) = �1. Then [Aû] =

P1
n=0 ýwnzû(n)H2(Tz), and [Aû] is an Aû-invariant subspace.

For a z-invariant subspace S of L2(T2), let

zû(n)S =
[

iÙû(n)
ziS if û(n) = �1

In this paper, we study the structure of Aû-invariant subspaces. Since z 2 Aû, Aû-
invariant subspaces are z-invariant. When û0( j) = 0 for every j 2 Z+, the family of
Aû0 -invariant subspaces coincides with the family of usual invariant subspaces. In [2],
Curto, Muhly, Nakazi, and Yamamoto studied An-invariant subspaces for a positive
integer n, where An = fziw j ; i 2 Z for n � j, i 2 Z+ for 0 � j Ú ng. Also Helson and
Lowdenslager [4] studied invariant subspaces for A1. When û1( j) = 0 for 0 � j Ú nÒ
and û1( j) = �1 for n � j, we have Aû1 = An. Hence the concept of Aû-invariant
subspaces is a generalization of invariant and An-invariant subspaces. We note that Aû-
invariant subspaces need not be invariant subspaces. For, let û2( j) = j for j 2 Z+; then
[Aû2 ] =

P1
j=0 ý(zw) jH2(Tz) is cyclic Aû2 -invariant but not an invariant subspace. It is not

difficult to see that for a given û, every Aû-invariant subspace is invariant if and only if
w 2 Aû.

In Section 2, we give the basic procedure to study Aû-invariant subspaces which is
used several times later.

In Section 3, we determine the Aû-invariant subspaces M such that M 	 [AûÒ1M] is a
nonzero z-invariant subspace. This is a generalization of the work by Nakazi [10]. Also
we give a characterization of closed subspaces of the form

P1
j=0 ýqj(z)w jH2(Tz), where

qj(z) is a unimodular function on Tz. These invariant subspaces are studied in [1].
In Sections 4, 5 and 6, we discuss the following special type of û. Let p 2 Z+ n f0g

and k 2 Z. For each n 2 Z+, let û(n) be the smallest integer such that pû(n) � kn ½ 0.
Then Aû = fziw j ; pi � kj ½ 0Ò (iÒ j) 2 Z ð Z+g. To have a one to one correspondence
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between Aû and ( pÒ k), we assume that p and jkj are mutually prime if k 6= 0, and p = 1 if
k = 0. In the case k = 0, the family of Aû-invariant subspaces coincides with the family
of usual invariant subspaces. We have û( p) = k and k + û( j) = û( p + j) for every j 2 Z+,
so that Aû is cyclic. In Section 4, we solve the following problem.

PROBLEM 1. Describe every Aû-invariant subspace M such that M = [AûÒ1M] and
zM 6= M.

Let M be an Aû-invariant subspace. For h 2 Aû, let Vh: M 3 f ! hf 2 M. Let P be
the orthogonal projection of L2 onto M. Then the adjoint operator VŁ

h on M is given by
VŁ

h f = P(h̄ f ) for f 2 M. In Section 5, we solve the following problem.

PROBLEM 2. Describe the Aû-invariant subspaces M such that Vzkw pVŁ
z = VŁ

z Vzkw p .
The motivation of this problem comes from [9, 12], but obtained Aû-invariant sub-

spaces resemble the invariant subspaces given in [11, 13].
In Sections 6 and 7, we define (see Section 6) a homogeneous-type Aû-invariant

subspace. This definition is similar to the one given in [11, 13], and we study the
following problem.

PROBLEM 3. Determine the homogeneous-type Aû-invariant subspaces M with
zkw pM ² zM and zkw pM 6= zM.

We cannot give the complete answer. It seems very complicated. In Section 7, we
consider two special cases.

2. The Basic Procedure. The following lemma follows from [2, Lemma 2.2].

LEMMA 2.1. Let M be an invariant subspace of L2(T2). Suppose that M = zM and
M 6= wM. Then M can be represented as follows

M = †
�
üK(z)H2

z (T2) ý üEL2(T2)
�
Ò

where † is a unimodular function on T2, K ² Tz, díÛ2ô(K) Ù 0, E ² T2, and
(K ð Tw) \ E = ;. Moreover if

T1
k=0 wkM = f0g, we have M = †üK(z)H2

z (T2).

LEMMA 2.2. Let M be an Aû-invariant subspace. If zM = M, then M is an invariant
subspace and wM = [AûÒ1M].

PROOF. Since AûÒn n AûÒn+1 = fziwn ; i ½ û(n)g, by our assumption we have
(AûÒn n AûÒn+1)M = wnM for every n 2 Z+. Since M is Aû-invariant, wM ² M, so
that M becomes an invariant subspace. Hence we get

[AûÒ1M] =
h1[
n=1

(AûÒn n AûÒn+1)M
i

=
h1[
n=1

wnM
i

= wM

Let M be an Aû-invariant subspace with zM = M. Moreover if M = wM then M =
üEL2(T2) for some E ² T2, and if M 6= wM then the form of M is determined by
Lemma 2.1. So that we are interested in the case of M 6= zM.

We use the following procedure (developed in the remainder of this section) several
times in this paper.
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THE BASIC PROCEDURE. Let M be an Aû-invariant subspace of L2(T2) and let p ½ 1.
Suppose that there exists a nonzero z-invariant subspace N such that

N ² M 	 [AûÒpM]

Let
M̃ =

h[
fznM ; n 2 Zg

i


Then M̃ is Aû-invariant and zM̃ = M̃. Hence by Lemma 2.2, M̃ is an invariant subspace
and M ² M̃. Since N ? [AûÒpM] and N is z-invariant, znN ? ziw pM for n 2 Z+ and
i ½ û( p). Hence

(21) N ? wpM̃Ò

so that M̃ 6= wM̃. Then by Lemma 2.1, M̃ has the following form

M̃ = †
�
üK(z)H2

z (T2) ý üEL2(T2)
�
Ò

where † is a unimodular function on T2, K ² Tz, díÛ2ô(K) Ù 0, E ² T2, and

(22) (K ð Tw) \ E = ;

For the sake of simplicity, we assume

† = 1Ò

so that M̃ = üK(z)H2
z (T2) ý üEL2(T2). Since H2

z (T2) =
P1

j=0 ýwjL2(Tz),

(23) M̃ =
�1X

j=0
ýwjüK(z)L2(Tz)

�
ý üEL2(T2)

Since M ² M̃, for each f 2 M we can write as

f =
�1X

j=0
ýwjüK(z)fj(z)

�
ý gÒ

where fj(z) 2 L2(Tz) and g 2 üEL2(T2). Using the above representation of f , we set

(24) Sj =
n
üK(z)fj(z) ; f 2 M

o
² üK(z)L2(Tz)Ò j 2 Z+

Then Sj is a linear subspace of L2(Tz). Since M̃ 6= wM̃, we have

Sj 6= f0g for every j 2 Z+

We note that Sj may not be closed. Since zM ² M,

(25) zSj ² SjÒ j 2 Z+
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We have also that

(26) M ²
�1X

j=0
ýwjSj

�
ý üEL2(T2)

By (2.1), (2.3), (2.4), and (2.6)

(27) N ²
p�1X
j=0
ýwjSj ² üK(z)

p�1X
j=0
ýwjL2(Tz)

By (2.4) and (2.6),

(28) [AûÒnM] ²
�1X

j=n
ýwjSj

�
ý üEL2(T2) for n 2 Z+

Since 1 2 Aû, AûM = M, so that by (2.6) and the definition of Sn

(29) Sn =
nX

j=0
zû(n�j)Sj =

n[
j=0

zû(n�j)SjÒ n 2 Z+Ò

here by (2.5),
zû(n�j)Sj =

[
i½û(n�j)

ziSj

By (2.7) and (2.9),

(210) AûN ²
1X
j=0
ýwjSj

Here we have the following lemma for a cyclic Aû.

LEMMA 2.3. Suppose that Aû is cyclic and zû( p)w pAû = AûÒp. Let M be a cyclic
Aû-invariant subspace such that N = M 	 [AûÒpM] is nonzero and z-invariant. Then we
have wp�1zû( p�1)S̄0 ² N and zû(1)+û( p�1)�û( p)S̄0 ² N \ S0, where S̄0 is the closure of S0

in L2(Tz).

PROOF. Since N = M 	 [AûÒpM], by (2.4), (2.6), (2.7) and (2.8) we obtain

(211) Sj = füK(z)fj(z) ; f 2 NgÒ 0 � j � p� 1

Let ê = zû( p)w p. By our assumption, êM = ê[AûM] = [AûÒpM] and N = M 	 êM. Hence
we can write M as

(212) M =
�1X

j=0
ýê jN

�
ý
�1\

j=0
ê jM

�


By (2.4) and (2.6), ê jM ²
�P1

i=jp ýwiüK(z)L2(Tz)
�
ý üEL2(T2), so that

(213)
1\
j=0
ê jM ² üEL2(T2)
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Since M is Aû-invariant, by (2.10), (2.12), and (2.13),

(214) AûN ²
1X
j=0
ýê jN

To prove our assertion, let f 2 N. By (2.7) we can write f as

(215) f =
p�1X
j=0
ýwjüK(z)fj(z)Ò fj(z) 2 L2(Tz)Ò

where üK(z)fj(z) 2 Sj. By (2.14), zû( p�1)w p�1f 2
P1

j=0 ýê
jN. Moreover by (2.7) and

(2.15),

zû( p�1)w p�1üK(z)f0(z) ý
� p�1X

j=1
ýzû( p�1)w p�1+jüK(z)fj(z)

�
2 N ý êN

Therefore by (2.11), zû( p�1)w p�1S0 ² N. Since N is a closed subspace,

(216) zû( p�1)w p�1S̄0 ² N

Next we prove that

(217) zû(1)+û( p�1)�û( p)S̄0 ² N \ S0

In the same way as in the first paragraph, we have wzû(1)N ² N ý êN. Then by (2.16),
w pzû(1)+û( p�1)S̄0 ² zû(1)wN ² N ý êN. Since Aû is a semigroup, by (2.5) and (2.7) it is
easy to see that w pzû(1)+û( p�1)S̄0 ² ê(N \ S0). Consequently we get (2.17).

Now we continue the basic procedure. We consider the following two cases separately;
zN = N and zN 6= N.

CASE 1. Suppose that zN = N. Then we have the following lemma.

LEMMA 2.4. If p = 1 and zN = N, then M is an invariant subspace with zM = M and
wM 6= M.

PROOF. Suppose that zN = N. By (2.7) for p = 1, N ² üK(z)L2(Tz). Hence by the
Beurling theorem,

(218) N = üK0 (z)L2(Tz)Ò

where K0 ² K and díÛ2ô(K0) Ù 0. Since AûÒn n AûÒn+1 = fziwn ; i ½ û(n)g, wnN =
[(AûÒn n AûÒn+1)N]. Since N ² M and AûM ² M,

(219)
1X

n=0
ýwnN = [AûN] ² M

Let M1 = M 	 [AûN]. Then

(220) M = [AûN]ý M1
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Since M1 ² M̃, w jM1 ² wM̃ for j ½ 1. By (2.1) for p = 1, w�jN ? M1 for j ½ 1. Hence
by (2.18), (2.19), and (2.20), we haveüK0 (z)L2(T2) =

P1
n=�1ýwnN ? M1. Thus we get

(221) üKc
0
(z)M1 = M1

Since zM ² M, zM1 ² M. Since zN = N and M1 ? [AûN], zM1 ? [AûN]. Hence by the
definition of M1, zM1 ² M1. We note that f f 2 L1(Tz) ; f M1 ² M1g is a weak*-closed
z-invariant subalgebra of L1(Tz). Since díÛ2ô(K0) Ù 0, the Beurling theorem says that
the weak*-closed invariant subspace

h
fznüKc

0
(z) ; n 2 Z+g

i
1

of L1(Tz) generated by
fznüKc

0
(z) ; n 2 Z+g coincides with üKc

0
L1(Tz). Since zM1 ² M1, by (2.21) we have

zM1 = M1. Therefore by (2.18), (2.19), and (2.20), zM = M. Hence by Lemma 2.2, M is
an invariant subspace. By (2.18), (2.19), (2.20), and (2.21), wM 6= M.

CASE 2. Suppose that zN 6= N. To prove

(222) K = TzÒ

suppose that K 6= Tz. By (2.7), üK(z)N = N. Then in the same way as in the last paragraph
of Lemma 2.4, we have zN = N. This is a contradiction. Hence we get (2.22).

By (2.2) and (2.22), E = ;. As a consequence, by (2.3), (2.4) and (2.6)

(223) M ²
1X
j=0
ýwjSj ² M̃ =

1X
j=0
ýwjL2(Tz)

By (2.7),

(224) N ²
p�1X
j=0
ýwjSj ²

p�1X
j=0
ýwjL2(Tz)

By (2.8),

(225) [AûÒnM] ²
1X
j=n
ýwjSj ²

1X
j=n
ýwjL2(Tz)Ò n 2 Z+

This is the end of the basic procedure. In the rest of this paper, we use the same
notations in the basic procedure.

3. Simple Aû-Invariant Subspaces. An Aû-invariant subspaceM of L2(T2) is called
simple if z(M 	 [AûÒ1M]) ² M 	 [AûÒ1M]. The following theorem is a generalization of
Nakazi’s theorem [10].

THEOREM 3.1. Let M be an Aû-invariant subspace of L2(T2) such that M 	 [AûÒ1M]
is a nonzero z-invariant subspace. Then

(i) z(M 	 [AûÒ1M]) = M 	 [AûÒ1M] if and only if M is an invariant subspace with
M = zM and M 6= wM.

(ii) z(M	 [AûÒ1M]) 6= M	 [AûÒ1M] if and only if there exists a unimodular function †
on T2 such that M = †[Aû].
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PROOF. Suppose that M 	 [AûÒ1M] is a nonzero z-invariant subspace. Then we can
use the basic procedure in Section 2 for p = 1 and N = M 	 [AûÒ1M]. Now we have

(31) M = N ý [AûÒ1M]

By (2.7), N ² S0 ² üK(z)L2(Tz). Since N = M 	 [AûÒ1M], (2.11) holds for p = 1, hence

(32) N = S0 ² üK(z)L2(Tz)

(i) Suppose that zN = N. Then by Lemma 2.4, M is an invariant subspace with
M = zM and M 6= wM.

To prove the converse assertion, suppose that M is an invariant subspace with M = zM
and M 6= wM. Then we can use Lemma 2.1 to describe M, and it is not difficult to see
that z(M 	 [AûÒ1M]) = M 	 [AûÒ1M].

(ii) Suppose that N 6= zN. Then Case 2 in the basic procedure in Section 2 occurs.
By (2.22) and (3.2), S0 = N ² L2(Tz). Since N is z-invariant and N 6= zN, by the Beurling
theorem S0 = N = q(z)H2(Tz), where q(z) is a unimodular function on Tz. By induction,
we shall prove

(33) Sj = q(z)zû( j)H2(Tz) for j 2 Z+Ò

where Sj is defined in (2.4). Suppose that n ½ 1 and

(34) Sj = q(z)zû( j)H2(Tz) for 0 � j � n� 1

By (3.1) and (3.2), [AûÒ1M] = M 	 N = M 	 S0. By (2.9),
Pn�1

j=0 zû(n�j)Sj ² Sn ²
[
Pn�1

j=0 zû(n�j)Sj] for n ½ 1. Hence by (3.4),

(35) q(z)
n�1X
j=0

zû(n�j)zû( j)H2(Tz) ² Sn ² q(z)
�n�1X

j=0
zû(n�j)zû( j)H2(Tz)

½


Since Aû is a semigroup, û(n) � û(n � j) + û( j), so that
Pn�1

j=0 zû(n�j)zû( j)H2(Tz) =
zû(n)H2(Tz). Hence by (3.5), Sn = q(z)zû(n)H2(Tz). Therefore we obtain (3.3).

Since q(z)H2(Tz) = S0 = N ² M, by (3.3) and AûM ² M we have

w jSj = w jq(z)zû( j)H2(Tz) ² M for j 2 Z+

Hence by (2.23), M ²
P1

j=0 ýwjSj ² M. As a consequence,

M =
1X
j=0
ýwjSj = q(z)

1X
j=0
ýwizû( j)H2(Tz) = q(z)[Aû]

To prove the converse assertion, let M = †[Aû] for a unimodular function † on T2.
Since AûÒ1Aû = AûÒ1, [AûÒ1M] = †[AûÒ1]. Since [Aû]	 [AûÒ1] = [fzn ; n 2 Z+g] = H2(Tz),
M 	 [AûÒ1M] = †H2(Tz). Of course, †H2(Tz) is z-invariant and z†H2(Tz) 6= †H2(Tz).
This completes the proof.

The following is a characterization of the invariant subspaces studied in [1].
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THEOREM 3.2. Let M be an Aû-invariant subspace of L2(T2) with M 6= zM. For each
n 2 Z+, let Nn be the largest z-invariant subspace which is contained in M 	 [AûÒn+1M].
Then N0 6= f0g and for each n 2 Z+

(a) M 	
�
[AûÒn+1M] ý Nn

�
? ziNn for every i 2 Z

if and only if M is represented as follows

(b) M = †
�1X

j=0
ýqj(z)w jH2(Tz)

�

or there exists a positive integer l such that

(c) M = †
 �X

l � 1j=0 ý qj(z)w jH2(Tz)
�
ý
�1X

j=l
ýwjL2(Tz)

�!
Ò

where † and qj(z)Ò j 2 Z+, are unimodular functions on T2 and Tz, respectively, and

zû(i)qj(z)H2(Tz) ² qi+j(z)H2(Tz) for (iÒ j) 2 Z2
+

PROOF. First, suppose that M is represented by the form in (b). Since M is Aû-
invariant, by the form in (b) we have û(i) Ù �1 for i 2 Z+ and

zû(i)wiqj(z)w jH2(Tz) ² qi+j(z)wi+jH2(Tz) for iÒ j 2 Z+

Then for each t 2 Z+, we have
Pt

i=0 ýzû(t�i)qi(z)H2(Tz) ² qt(z)H2(Tz). Hence M 	
[AûÒn+1M] equals

†
(� nX

j=0
ýqj(z)w jH2(Tz)

�
ý
� 1X

j=n+1
ýwj

�
qj(z)H2(Tz) 	

h j�n�1X
i=0

ýzû( j�i)qi(z)H2(Tz)
i��)



Now it is easy to see that Nn = †
�Pn

i=0 ýqi(z)wiH2(Tz)
�
, N0 6= f0g and condition (a) is

satisfied. In the same way, we can prove the same conclusion for M in (c).

Next, suppose that N0 6= f0g and M satisfies condition (a). Then we can use the basic
procedure in Section 2. For the space N0, we can apply the case p = 1. If zN0 = N0, then
by Lemma 2.4 we have zM = M. Hence by our assumption, zN0 6= N0. By (2.22), K = Tz.
Then by (2.24) for p = 1 and the Beurling theorem,

(36) N0 = q(z)H2(Tz)

for a unimodular function q(z) on Tz. By (2.23),

(37) M ²
1X
j=0
ýwjSjÒ Sj ² L2(Tz)Ò
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By (2.25),

(38) [AûÒn+1M] ²
1X

j=n+1
ýwjL2(Tz)

Also for the space Nn, we can apply the basic procedure for the case p = n + 1. Since
zN0 6= N0, by (3.8) we have zNn 6= Nn. Then by (2.24),

(39) Nn ²
nX

j=0
ýwjSj ²

nX
j=0
ýwjL2(Tz)

Since N0 ² M, wjzû( j)N0 ² M for j 2 Z+. By (3.9), N0 ² S0, so that by (2.9) we havePn
j=0 ýwjzû( j)N0 ² M \ (

Pn
j=0 ýwjSj). Then by (3.6), (3.8) and the definition of Nn, we

obtain

(310) q(z)
nX

j=0
ýwjzû( j)H2(Tz) ² Nn

Here we shall use condition (a). Then by (a) and (3.10),

M 	
�
[AûÒn+1M] ý Nn

�
?

nX
j=0
ýwjL2(Tz)

Then by (3.7), (3.8) and (3.9), we have M ² Nn ý
�P1

j=n+1 ýwjL2(Tz)
�

for n 2 Z+. By
this fact and the definition of Sj,

(311)
nX

j=0
ýwjSj = Nn ² M

Hence
P1

j=0 ýwjSj ² M. Therefore by (3.7),

(312) M =
1X
j=0
ýwjSj

By (3.11), w jSj = Nj 	 Nj�1 for j ½ 1 and S0 = N0, so that Sj is a closed z-invariant
subspace of L2(Tz) for every j 2 Z+. By the Beurling theorem,

(313) Sj = qj(z)H2(Tz)

or

(314) Sj = üEjL
2(Tz)Ò

where qj(z) is a unimodular function on Tz and Ej ² Tz. If (3.13) happens for every
j 2 Z+, by (3.12) M has the form of (b). Suppose that (3.14) happens for some j 2 Z+.
Let l be the smallest integer in Z+ such that Sl = üElL

2(Tz). Then Sj = qj(z)H2(Tz) for
0 � j Ú l. Since S0 = N0, by (3.6) we have l ½ 1. By (2.9),

q(z)zû(l+j)H2(Tz) + zû( j)üEl L
2(Tz) = zû(l+j)S0 + zû( j)Sl ² Sl+jÒ j 2 Z+

Hence Sl+j = L2(Tz) for j 2 Z+. Therefore, in this case, M has the form (c). This completes
the proof.

https://doi.org/10.4153/CJM-1998-006-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-006-0


Aû-INVARIANT SUBSPACES ON THE TORUS 109

4. A Semi-Double Type of Aû-Invariant Subspace. In this section, we study an
Aû-invariant subspace M with M = [AûÒ1M] which is called of semi-double type. A
closed subspace M of L2(T2) is called doubly invariant if zM = wM = M. In this case
M = üEL2(T2) for some E ² T2. First we prove the following.

PROPOSITION 4.1. Suppose that there exists a sequence of positive integers fkng1n=1

such that kn !1 and z�kn(AûÒ1)n[w�kn (AûÒ1)n ² AûÒ1. If M is an Aû-invariant subspace
with M = [AûÒ1M], then M is doubly invariant.

PROOF. Suppose that M = [AûÒ1M]. Then M = [(AûÒ1) jM] for every j 2 Z+. Hence by
our condition, for n ½ 1 we have

z�kn AûÒ1M = z�kn AûÒ1

h
(AûÒ1)n�1M

i
²
h
z�kn(AûÒ1)nM

i
² [AûÒ1M] = M

In the same way, w�knAûÒ1M ² M. We note that f f 2 L1(T2) ; f M ² Mg is a
semigroup. Since the semigroup generated by fz�knAûÒ1 [ w�knAûÒ1 ; n ½ 1g coincides
with fziw j ; iÒ j 2 Zg, by the above two inclusions M becomes doubly invariant.

EXAMPLE 4.1. Let û(0) = 0 and û( j) = 1 for j ½ 1. Then û satisfies the condition of
Proposition 4.1.

EXAMPLE 4.2. Let n ½ 1. Let ûn( j) = 0 for 0 � j � n � 1 and ûn( j) = �1 for
j ½ n. Then ûn satisfies the condition of Proposition 4.1.

As mentioned in Section 1, in the rest of this paper we consider the following special
û. Let p 2 Z+ n f0g, k 2 Z, and assume that pÒ jkj are mutually prime if k 6= 0, and p = 1
if k = 0. For each n 2 Z+, let û(n) be the smallest integer such that pû(n)� kn ½ 0. Then

Aû =
n

ziw j ; pi� kj ½ 0Ò (iÒ j) 2 Z ð Z+

o


It is trivial that Aû is a semigroup. In this section, we solve the following problem.

PROBLEM 1. Describe every Aû-invariant subspace M such that M = [AûÒ1M] and
zM 6= M.

By our definition of û, û( p) = kÒ û( p) + û( j) = û( p + j) for j 2 Z+, and hence Aû is
cyclic, that is,

(41) AûÒp = zû( p)w pAû = zkw pAû

Since p and jkj are mutually prime (when k 6= 0),

pû( j) � kj 6= pû(i) � ki for 0 � iÒ j � p� 1Ò i 6= jÒ

and pû( j) � kj Ù 0 for 1 � j � p � 1. Rearranging the order, let f j0Ò j1Ò    Ò jp�1g =
f0Ò 1Ò    Ò p � 1g such that

pû( ji) � kji Ú pû( ji+1) � kji+1Ò 0 � i � p� 2

We note that j0 = 0 and

(42) pû( ji)� kji = iÒ 0 � i � p� 1

When p = 1 and k = 0, we do not need the above argument. Also we have the following
lemma.
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LEMMA 4.1.
(i) û( p) = k.

(ii) û( j) + û( p � j) = k + 1 for 1 � j � p� 1.
(iii) j1 + jp�1 = p.
(iv) If j1 + ji Ú pÒ 0 � i � p� 1, then j1 + ji = ji+1 and û( j1) + û( ji) = û( ji+1).
(v) If j1 + ji Ù p, 0 � i � p� 1, then j1 + ji = p + ji+1 and û( j1) + û( ji) = k + û( ji+1).

PROOF. (i) is already mentioned.
(ii) Let 1 � j � p � 1. Then 1 � p � j, so that by the definition of û we have

p
�
û( j)�1

�
�kj Ú 0 Ú pû( j)�kj and p

�
û( p�j)�1

�
�k( p�j) Ú 0 Ú pû( p�j)�k( p�j).

Hence

p
�
û( j) + û( p� j) � 2

�
� kp Ú 0 = pk � kp Ú p

�
û( j) + û( p � j)

�
� kp

This means that û( j) + û( p � j) � 2 Ú k Ú û( j) + û( p � j). Therefore we get (ii).
(iii) Since p and jkj are mutually prime, (4.2) gives (iii).
(iv) Suppose that 0 � i � p � 1 and j1 + ji Ú p. By (4.2), pû( ji) � kji = i. Then

p
�
û( j1) + û( ji)

�
� k( j1 + ji) = i + 1. Since j1 + ji Ú p, (4.2) implies that j1 + ji = ji+1 and

û( j1) + û( ji) = û( ji+1).
(v) Suppose that j1 + ji Ù p. By (4.2), p

�
û( j1) + û( ji) � k

�
� k( j1 + ji � p) = i + 1.

Since j1 + ji�p Ú p, by (4.2) again we get j1 + ji�p = ji+1 and û( j1)+û( ji)�k = û( ji+1).
Thus we get (v).

The following lemma follows from the Beurling theorem (see the proof of [11, The-
orem 3]).

LEMMA 4.2. Let S be a closed subspace of L2(T2) such that zkw pS = S. Moreover
suppose that S ? ziw jS for (iÒ j) Û2 f(nkÒ np) ; n 2 Zg. Then there exist a unimodular
function † on T2 and E0 ² T2 such that S = †üE0 [f(zkw p)n ; n 2 Zg] and üE0 2
[f(zkw p)n ; n 2 Zg].

Let
HpÒk =

n
ziw j ; pi� kj ½ 0Ò (iÒ j) 2 Z2

o


Then Aû ² HpÒk and

(43) HpÒk =
[n

(zkw p)nAû ; n 2 Z
o

=
[n

(zû( p)w p)nAû ; n 2 Z
o


Now we solve Problem 1.

THEOREM 4.1. Let M be an Aû-invariant subspace such that M = [AûÒ1M] and
zM 6= M. Then

M = †üE0 [HpÒk] ý üEL2(T2)

for a unimodular function † on T2, üE0 2 [f(zkw p)n ; n 2 Zg]ÒE ² T2, and E0 \ E = ;.
Moreover
(i) if

T1
n=0 znM = f0g, then M = †üE0[HpÒk];

(ii) if
T1

n=0 znM = f0g and there exists h 2 M such that jhj Ù 0 a.e. on T2, then
M = †[HpÒk].

It is not difficult to prove our theorem for the case p = 1 and k = 0 (see Lemma 2.1).
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PROOF OF THEOREM 4.1. Let D = M 	 zM. Since zM 6= M, D 6= f0g. Since M is
z-invariant,

(44) M = Dý zM =
�1X

n=0
ýznD

�
ýD1 and D1 =

1\
n=0

znM

Then D1 is Aû-invariant and zD1 = D1. By Lemma 2.2, D1 is an invariant subspace.
Since M = [AûÒ1M], M = [(AûÒ1)pM]. Since (AûÒ1)p ² AûÒp, M = [AûÒpM]. Then by (4.1),

(45) M = [AûÒpM] = zkw p[AûM] = zkw pM

By (4.4) and (4.5),

w pD1 =
1\

n=0
znw pM =

1\
j=�k

z j(zkw pM) =
1\

j=�k
z jM = D1

Since D1 is an invariant subspace, wD1 = D1. Therefore D1 is a doubly invariant
subspace and

(46) D1 = üEL2(T2)Ò E ² T2

By (4.3), (4.5) and M = [AûM], we have M = [HpÒkM]. Hence by (4.4),

(47) M = Dý z[HpÒkM]

Let f j0Ò j1Ò    Ò jp�1g = f0Ò 1Ò    Ò p � 1g such that (see above Lemma 4.1) pû( ji) �
kji Ú pû( ji+1)� kji+1, 0 � i � p� 2. Let

(48) Lp = zHpÒk and Li = zû( ji)w ji HpÒk for 0 � i � p� 1

Since j0 = 0, L0 = HpÒk. Then HpÒk = L0 ¦ Li ¦ Li+1 ¦ Lp = zHpÒk for 0 � i � p� 1. By
the definition of HpÒk,

(49) zkw pHpÒk = HpÒk

Hence by Lemma 4.1, zû( j1)w j1 Li = Li+1, and then

(410) Li+1 = zû( ji)w ji L1

Let Di = [LiM] 	 [Li+1M]. Then by (4.7),

(411) D =
p�1X
i=0
ýDi

Here we have

Di = zû( ji)w ji
�
z�û( ji)w�ji [LiM] 	 [L1M]

�
by (410)

= zû( ji)w ji
�
[HpÒkM] 	 [L1M]

�
by (48)

= zû( ji)w ji D0
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Thus we get

(412) Di = zû( ji)w ji D0Ò 0 � i � p� 1

By (4.8) and (4.9), zkw pLi = Li. Hence zkw pDi = Di, so that by (4.11) and (4.12),
zkw pD0 = D0, and D0 ? ztwsD0 for (tÒ s) 2 Z2 and pt � ks 6= 0. Then by Lemma 4.2,
there exists a unimodular function † on T2 and E0 ² T2 such that

(413) D0 = †üE0

hn
(zkw p)n ; n 2 Z

oi
and üE0 2

hn
(zkw p)n ; n 2 Z

oi


Therefore by (4.3), (4.4), (4.6), (4.11), (4.12) and (4.13),

M =
 
1X

n=0
ýzn

� p�1X
i=0

ýDi

�!
ý üEL2(T2)

=
 
1X

n=0
ýzn

� p�1X
i=0

ýzû( ji)w ji D0

�!
ý üEL2(T2)

=
�
†üE0 [HpÒk]

�
ý üEL2(T2)

The rest is easy to prove. This completes the proof.

5. Commuting Operators and Aû-Invariant Subspaces. In this section, we dis-
cuss a special type of û which is studied in Section 4. Let p 2 Z+ n f0g and k 2 Z
such that p and jkj are mutually prime if k 6= 0, and p = 1 if k = 0. For each
n 2 Z+, let û(n) be the smallest integer which satisfies pû(n) � kn ½ 0. We note
that û( p) = k. Let Aû = fziw j ; pi � kj ½ 0Ò (iÒ j) 2 Z ð Z+g. Rearranging the order,
let f j0Ò j1Ò    Ò jp�1g = f0Ò 1Ò    Ò p � 1g such that pû( ji) � kji Ú pû( ji+1) � kji+1 for
0 � i � p � 2. We note that j0 = 0. When p = 1 and k = 0, we do not need the above
argument.

Let M be an Aû-invariant subspace. For h 2 Aû, let

Vh: M 3 f ! hf 2 M

Let P be the orthogonal projection of L2 onto M. Then the adjoint operator VŁ
h on M

satisfies
VŁ

hf = P(h̄f ) for f 2 M

Hence we have that

(51) Ker VŁ
zn = M 	 znM for n ½ 1 ;

(52) Ker VŁ
zkw p = M 	 zkw pM

We study the following problem (see [9, 12]).

PROBLEM 2. Describe Aû-invariant subspaces M such that VŁ
zkw pVz = VzVŁ

zkw p .
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PROPOSITION 5.1. Let M be an Aû-invariant subspace. Then the following three
conditions are equivalent.

(i) VŁ
zkw pVz = VzVŁ

zkw p .
(ii) VŁ

zkw pVzn = VznVŁ
zkw p for every n ½ 1.

(iii) VŁ
zkw pVzn = VznVŁ

zkw p for some n ½ 1.

PROOF. It is easy to prove that (i) () (ii) and (ii) ) (iii). So we only have to
prove that (iii) ) (i). Suppose that VŁ

zkw pVzn = Vzn VŁ
zkw p for n ½ 2. Then

(53) VŁ
zn Vzkw p = Vzkw pVŁ

zn 

By (5.1), Ker VŁ
zn = M 	 znM. Hence by (5.3),

(54) zkw p(M 	 znM) ² M 	 znM

To prove VŁ
zkw pVz = VzVŁ

zkw p, we need to prove that

(55) zkw p(M 	 zM) ² M 	 zM

We note that zM ² M. If zM = M, there is nothing to prove. Suppose that zM 6= M. Then

(56) M =
�n�1X

j=0
ýz j(M 	 zM)

�
ý znM

To prove (5.5), suppose not. Then there exists an f in M 	 zM such that

(57) zkw pf = f1 ý zf2 2 (M 	 zM)ý zMÒ f2 6= 0

Then

(58) zkw pzn�1f = zn�1f1 ý znf2 2
�n�1X

j=0
ýz j(M 	 zM)

�
ý znM

Since f 2 M 	 zM, zn�1f 2 M 	 znM, so that by (5.4) we have zkw pzn�1f 2 M 	 znM.
But by (5.6), (5.7) and (5.8), zkw pzn�1f Û2 M 	 znM. This is a contradiction. Hence we
get (5.5).

Then by (5.1) and (5.5), Vzkw pVŁ
z = VŁ

z Vzkw p = 0 on M 	 zM. Also we have Vzkw pVŁ
z =

VŁ
z Vzkw p on zM. Hence Vzkw pVŁ

z = VŁ
z Vzkw p on M = (M 	 zM) ý zM. Therefore VŁ

zkw pVz =
VzVŁ

zkw p .

In the same way as in the proof of Proposition 5.1, we can prove the following.

LEMMA 5.1. Let M be an Aû-invariant subspace. Then VŁ
zkw pVz = VzVŁ

zkw p if and only
if z(M 	 zkw pM) ² M 	 zkw pM.
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THEOREM 5.1. Let M be an Aû-invariant subspace with [AûÒ1M] 6= M. Then VŁ
zkw pVz =

VzVŁ
zkw p if and only if one of the following happens.

(i) There exists a unimodular function † on T2 and a positive integer n such that
1 � n � p and

M = †
1X
j=0
ý(zkw p) j

²�n�1X
i=0
ýzû( ji)w ji H2(Tz)

�
ý
� p�1X

i=n
ýzû( ji)�1w ji H2(Tz)

�¦


(ii) M is an invariant subspace with zM = M and wM 6= M.

The case p = 1 and k = 0 of this theorem is proved in [9, 12].

PROOF OF THEOREM 5.1. Let

(59) ê = zkw p

Suppose that

(510) VŁ
ê Vz = VzV

Ł
ê 

Let N = M	 êM. By (4.1) and (5.9), êAû = AûÒp. Since [AûM] = M, êM = [AûÒpM]. Then
N = M	 [AûÒpM]. Since AûÒp ² AûÒ1, êM ² [AûÒ1M]. Hence by our assumption, N 6= f0g.
Then we have the following decomposition

(511) M =
�1X

j=0
ýê jN

�
ý

1\
j=0
ê jM

By (5.10) and Lemma 5.1, zN ² N. Therefore we can use the basic procedure in
Section 2. Using it, we shall study the structures of N and M. As in Section 2, let
M̃ = [

S
fzlM ; l 2 Zg]. Then by (5.9), êM̃ = zkw pM̃ = w pM̃, and by (2.1), N ? wpM̃.

By (2.4) and (2.7),

(512) N ²
p�1X
j=0
ýwjSj ² üK(z)

� p�1X
j=0

ýwjL2(Tz)
�

and Sj ² üK(z)L2(Tz)

By (2.3),

(513) M ² M̃ = üK(z)
�1X

j=0
ýwjL2(Tz)

�
ý üEL2(T2)

Then we have

(514)
1\
j=0
ê jM ²

1\
j=0

w jpM̃ = üEL2(T2)

By Lemma 4.1 (ii), û(1) + û( p� 1)� k = 1. Since û( p) = k, by Lemma 2.3 we have

(515) zû( p�1)w p�1S̄0 ² N ;

(516) zS̄0 ² N \ S0

Now we separate the proof into two cases; zS̄0 6= S̄0 and zS̄0 = S̄0.
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CASE 1. Suppose that zS̄0 6= S̄0. Then by (2.5) and the Beurling theorem,

(517) S̄0 = q(z)H2(Tz)

for a unimodular function q(z) on Tz. By (5.12), S̄0 ² üK(z)L2(Tz). Hence in this case,
we have K = Tz, and by (2.2), E = ;. Hence by (5.11)–(5.14),

(518) M =
1X
j=0
ýê jN ²

1X
j=0
ý
� p�1X

i=0
ýz jkw jp+iSi

�
² M̃ =

1X
t=0
ýwtL2(Tz)

We note that for each pair of i and j there corresponds a unique t such that z jkw jp+iSi ²
wtL2(Tz) and t = jp + i. By (5.16), zS̄0 ² S0 ² S̄0, hence by (5.17) we have q(z)zH2(Tz) ²
S0 ² qH2(Tz). Since dim

�
H2(Tz)	 zH2(Tz)

�
= 1, S0 becomes a closed subspace, and

(519) S0 = S̄0 = q(z)H2(Tz)

Since S0 is a closed subspace, by (5.16) we have

(520) zS0 ² N \ S0 ² S0

Here we want to prove

(521) S0 ² N

To prove this, suppose not. Then by (5.19) and (5.20),

(522) N \ S0 = zS0

For f 2 N, by (5.12) we can write f as f =
P p�1

j=0 ýwjfj(z), fj 2 Sj. By (5.18), using the
above representation of f 2 N we have

(523) Si = f fi ; f 2 Ng for 0 � i � p� 1

Then zû(1)wf =
P p�1

j=0 ýzû(1)ww jfj(z) 2 M. Since M = NýêNýê2M, by (5.12) and (5.22)

we have zû(1)ww p�1Sp�1 ² ê(N \ S0) = êzS0. Therefore by (5.15) and Lemma 4.1 (ii),

(524) wp�1Sp�1 ² z�û(1)w�1êzS0 = zû( p�1)w p�1S0 ² N

Next we shall prove

(525) wp�2Sp�2 ² N

Since zû(2)w2N ² M and f =
P p�1

j=0 ýwjfj(z) 2 N, we have
P p�1

j=0 ýzû(2)w2w jfj(z) 2 M.

Then by (5.18), zû(2)w2w p�1fp�1(z) + zû(2)w2w p�2fp�2(z) 2 êN. By (5.18) and (5.24),
zû(2)w2w p�1fp�1(z) 2 êN, so that zû(2)w2w p�2fp�2(z) 2 ê(N \ S0). Therefore by (5.22),
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zû(2)w2w p�2Sp�2 ² ê(N \ S0) = êzS0. Since zû(2)w2zû( p�2)w p�2 = êz by Lemma 4.1 (ii),
we obtain

(526) wp�2Sp�2 ² zû( p�2)w p�2S0

Since zû( p�2)w p�2f =
P p�1

j=0 ýzû( p�2)w p�2w jfj(z) 2 M, we have

zû( p�2)w p�2f0(z)ý zû( p�2)w p�1f1(z) 2 N

Then zû( p�2)w p�1f1(z) 2 wp�1Sp�1, so that by (5.24) we have zû( p�2)w p�2S0 ² N.
Therefore by (5.26), we obtain (5.25). In the same way, we can prove by induction that
w p�iSp�i ² N for 1 � i � p � 1. Since f =

P p�1
j=0 ýwjfj(z) 2 N and fj(z) 2 Sj, by

the above we have f0(z) 2 N. By (5.23), S0 ² N and this contradicts (5.22). Thus we
get (5.21).

Now we shall prove that

(527) wjSj ² N for 0 � j � p� 1

The reader may think that (5.27) is already proved in the last paragraph. But these
arguments are done under the assumption N \ S0 = zS0. Here we want to prove (5.27)
under the assumption N \ S0 = S0. By (5.21), (5.27) is true for j = 0. By induction we
prove (5.27). Suppose that

(528) wjSj ² N for 0 � j � n� 1

for n with 1 � n � p� 1. We prove that wnSn ² N. When n = p� 1, by (5.12), (5.23)
and (5.28) we have wnSn = w p�1Sp�1 ² N easily. Hence we assume n Ú p � 1. For
f =

P p�1
j=0 ýwjfj(z) 2 N, zû( p�n�1)w p�n�1f 2 M. Then

� nX
j=0
ýzû( p�n�1)w p+j�n�1fj

�
ý
� p�1X

j=n+1
ýzû( p�n�1)w p+j�n�1fj

�
2 N ý êN

Hence by our assumption (5.28), zû( p�n�1)w p�1fn 2 N. By (5.23),

(529) zû( p�n�1)w p�1S̄n ² N

This implies that zû(n+1)wn+1zû( p�n�1)w p�1S̄n ² ê(N \ wnSn). Since û( p) = k, by
Lemma 4.1 we have

(530) zwnS̄n ² N \ wnSn ² wnS̄n

We note that (5.29) and (5.30) correspond to (5.15) and (5.16) respectively. By the same
argument used to prove (5.21), we can prove wnSn ² N. Here we only give an outline of
this proof. If zS̄n = S̄n, (5.30) immediately gives wnSn ² N. Next suppose that zS̄n 6= S̄n.
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Then Sn becomes a closed subspace of L2(Tz). To prove wnSn ² N, suppose not. Then
by (5.30),

(531) N \ wnSn = zwnSn

By the fact zû(n+1)wn+1N ² N ý êN and (5.31), we have wp�1Sp�1 ² N. By induction,
we can prove that wnSn ² N. As a consequence, we get (5.27).

Therefore by (5.12) and (5.27), we obtain

(532) N =
p�1X
j=0
ýwjSj

Here we note that zû( p�j)w p�jw jSj ² êS0 for 0 � j � p � 1. By Lemma 4.1 (ii),
û( p � j) + û( j) = û( p) + 1, so that by (5.19) we have

(533) Sj ² q(z)zû( j)�1H2(Tz)Ò 0 � j � p� 1

Now we shall prove that there exists an integer n such that 1 � n � p and

(534) N = q(z)
 �n�1X

i=0
ýzû( ji)w ji H2(Tz)

�
ý
� p�1X

i=n
ýzû( ji)�1w ji H2(Tz)

�!


By (5.19) and (5.21),

(535) q(z)
� p�1X

j=0
ýzû( j)w jH2(Tz)

�
² N

If q(z)
�P p�1

j=0 ýzû( j)w jH2(Tz)
�

= N, then N has the desired form and in this case we have

n = p. Suppose that q(z)
�P p�1

j=0 ýzû( j)w jH2(Tz)
�
6= N. Then there is a positive integer n

such that

(536) wjnSjn 6= q(z)zû( jn)w jn H2(Tz)Ò 1 � n � p� 1

Here we may assume that n is the smallest integer which satisfies (5.36). Then

(537) wji Sji = q(z)zû( ji)w ji H2(Tz)Ò 0 � i Ú n

By (5.32) and (5.35), w jn Sjn ¦ zû( jn)w jn S0 = q(z)zû( jn)w jn H2(Tz). Then by (5.33) and
(5.36),

(538) wjnSjn = q(z)zû( jn)�1w jnH2(Tz)

When n = p� 1, N has the desired form in (5.34), so that we may assume n Ú p� 1.
We shall prove that

(539) wji Sji = q(z)zû( ji)�1w ji H2(Tz) for n Ú i � p� 1
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By (5.32) and (5.38),

(540) zû( j1)w j1 w jnSjn = q(z)zû( j1)+û( jn)�1w j1+jnH2(Tz) ² M

We note that p 6= j1 + jn, because n Ú p� 1. Hence it happens j1 + jn Ú p or p Ú j1 + jn.
First, suppose that j1 + jn Ú p. Then by Lemma 4.1 (iv), û( j1) +û( jn ) = û( j1 + jn) and

j1 + jn = jn+1. Hence by (5.40), q(z)zû( jn+1)�1w jn+1H2(Tz) ² M. Since jn+1 Ú p, by (5.32)
we have q(z)zû( jn+1)�1w jn+1H2(Tz) ² wjn+1Sjn+1. Then by (5.33), Sjn+1 = q(z)zû( jn+1)�1H2(Tz).

Next, suppose that p Ú j1 + jn. Then by Lemma 4.1 (v), j1 + jn = p + jn+1 and
û( j1) + û( jn) = k + û( jn+1), so that by (5.40), q(z)êzû( jn+1)�1w jn+1H2(Tz) ² M. By (5.18),
q(z)êzû( jn+1)�1w jn+1H2(Tz) ² êN. Hence q(z)zû( jn+1)�1w jn+1H2(Tz) ² wjn+1Sjn+1. By (5.33),
we get Sjn+1 = q(z)zû( jn+1)�1w jn+1H2(Tz). Therefore by induction, we can prove (5.39).
By (5.32), (5.37) and (5.39), we get (5.34), so that by (5.18) M is of the form (i).

CASE 2. Suppose that zS̄0 = S̄0. By (5.16), zS̄0 ² N \ S0 ² S̄0. Hence S0 is a closed
subspace of L2(Tz) and zS0 = S0 ² N. By (5.8), S0 ² M 	 [AûÒ1M], so that S0 plays the
role of N in the basic procedure in Section 2 for p = 1. Since zS0 = S0, Case 1 happens in
the basic procedure. Then by Lemma 2.4, M is an invariant subspace with zM = M and
wM 6= M. Therefore M satisfies the condition (ii).

By Lemma 5.1, it is not difficult to prove the converse assertion.

6. Homogeneous-Type Aû-Invariant Subspaces. We discuss the same û which is
studied in Section 4. Let p 2 Z+ n f0g and k 2 Z such that p and jkj are mutually prime
if k 6= 0, and p = 1 if k = 0. For each n 2 Z+, let û(n) be the smallest integer such that
pû(n)� kn ½ 0.

Let M be an Aû-invariant subspace. For n 2 Z+, let

(61) Mn =
� nX

j=0
(zkw p) jzn�jM

½


Then Mn is Aû-invariant and M = M0 ¦ M1 ¦ M2 ¦ Ð Ð Ð. Let Xn = Mn	Mn+1 for n 2 Z+.
Then we have the following decomposition

(62) M =
�1X

n=0
ýXn

�
ýM1Ò

where M1 =
T1

n=0 Mn. Here we call M a homogeneous-type Aû-invariant subspace if

(63) zXn ² Xn+1 and zkw pXn ² Xn+1 for n 2 Z+

and

(64) M1 = f0g

In this section, we study the following problem (see [11, 13]).
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PROBLEM 3. Determine the homogeneous-type Aû-invariant subspaces M with
zkw pM ² zM and zkw pM 6= zM.

In [11], Nakazi gave an answer for the case p = 1 and k = 0.

LEMMA 6.1. Let M be Aû-invariant. Then M is of homogeneous-type if and only if
there is a closed subspace E of L2(T2) such that M =

P1
n=0 ý[

Pn
j=0(zkw p) jzn�jE].

PROOF. Suppose that M is of homogeneous-type. Then by (6.2) and (6.4),

(65) M =
1X

n=0
ýXn

We shall show that

(66) Xn =
� nX

j=0
(zkw p) jzn�jX0

½
for n 2 Z+

By (6.3), [zkw pXn + zXn] ² Xn+1. Then by (6.1) and (6.5), M1 =
P1

n=0 ý[zkw pXn + zXn],
so that X0 = M	M1 = X0ý

�P1
n=1 ý(Xn	 [zkw pXn�1 + zXn�1])

�
. Thus Xn = [zkw pXn�1 +

zXn�1] for n ½ 1. Hence we have (6.6). Set E = X0; then M has the desired form.
Next, suppose that there exists a closed subspace E of L2(T2) such that

M =
1X

n=0
ý
� nX

j=0
(zkw p) jzn�jE

½


Then we have

Mi =
1X
n=i
ý
� nX

j=0
(zkw p) jzn�jE

½


Hence

Xn =
� nX

j=0
(zkw p) jzn�jE

½
and M1 = f0g

Now it is easy to see that Xn satisfies (6.3), so that M is of homogeneous-type.

LEMMA 6.2. Let M be an Aû-invariant subspace with zkw pM ² zM and M 6= f0g.
Suppose that M is of homogeneous-type. Let E be the closed subspace of L2(T2) which
is given in Lemma 6.1. Then M =

P1
n=0 ýznE and zk�1w pE ² E.

PROOF. Let ê = zkw p. Suppose that M is of homogeneous-type. Then by Lemma 6.1,
there is a nonzero closed subspace E of L2(T2) such that

(67) M =
1X

n=0
ýXnÒ Xn =

� nX
j=0
ê jzn�jE

½


By our assumption, êM ² zM, so that êM =
P1

n=0 ýêXn ²
P1

n=0 ýzXn. Since êXn[ zXn ²
Xn+1, by the above inclusion we have êXn ² zXn. Hence

� nX
j=0
ê j+1zn�jE

½
²
� nX

j=0
ê jzn+1�jE

½
Ò n 2 Z+

When n = 0, êE ² zE. Hence Xn = [
Pn

j=0 ê
jzn�jE] ² znE ² Xn, so that we get Xn = znE.

Therefore by (6.7), M =
P1

n=0 ýznE.
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THEOREM 6.1. Let M be an Aû-invariant subspace with zkw pM ² zM and zkw pM 6=
zM. Suppose that M is of homogeneous-type. Then M has one of the following forms.

(i) M = †
1X
j=0
ý(zk�1w p) j

 
G ý

� p�1X
i=0

ýzû(i)wiH2(Tz)
�!
Ò

where † is a unimodular function on T2 and G is a closed subspace such that

G ²
h
fzû(i)�1wiÒ zû(i)�2wi ; 1 � i � p� 1g

i


(ii) M = †
1X
j=0
ý(zk�1w p) j

 
Gý

� p�1X
i=0

ýzû(i)+1wiH2(Tz)
�!
Ò

where † is a unimodular function on T2 and G is a closed subspace such that

G ²
h
f1Ò zû(i)wiÒ zû(i)�1wiÒ zû(i)�2wi ; 1 � i � p� 1g

i


The structure of G is in general too complicated to describe more explicitly. In
Section 7, we determine G for two special kinds of û.

PROOF OF THEOREM 6.1. Let

(68) ê = zkw p

Since M is of homogeneous-type, by Lemmas 6.1 and 6.2 there is a nonzero closed
subspace E of L2(T2) such that

(69) M =
1X

n=0
ý
� nX

j=0
ê jzn�jE

½
=

1X
n=0
ýznEÒ êz�1E ² E

If êz�1E = E, then by (6.9), êM = zM. This contradicts our assumption. Therefore
êz�1E 6= E. Let Y = E	 êz�1E 6= f0g. Then

(610) E = Y ý êz�1E

By (6.9), ziY ? z jY for iÒ j 2 Z+Ò i 6= j. Let

(611) N =
1X
i=0
ýziY

Then by (6.9), (6.10) and (6.11),

(612) M = N ý êz�1M

Here let B be the semigroup in fziw j ; iÒ j 2 Zg generated by êz�1 and Aû. For each
n 2 Z+, we put ñ(n) = minfi 2 Z ; ziwn 2 Bg. Then ñ(0) = 0 and Añ = B. By (6.8) and
the definition of û,

(613) ñ(ip + j) = û(ip + j) � i for i 2 Z+Ò 0 � j � p� 1 ;
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(614) ñ( p) = k � 1;

(615) êz�1Añ = AñÒp

Hence Añ is cyclic. By our assumption, êz�1M ² M, so that M is Añ-invariant. Then
by (6.15), [AñÒpM] = êz�1M. Hence (6.11) and (6.12) imply that N is a nonzero z-invariant
subspace, zN 6= N and

(616) N = M 	 [AñÒpM]

Now we can use Case 2 of the basic procedure in Section 2 for ñ(n) instead of û(n).
Then by (2.23), there is a nonzero subspace Sj of L2(Tz) (perhaps not closed) such that

(617) M ²
1X
j=0
ýwjSj ² M̃ =

1X
j=0
ýwjL2(Tz)Ò

and by (2.24),

(618) N ²
p�1X
j=0
ýwjSj ²

p�1X
j=0
ýwjL2(Tz)

By (6.12) and the definition of Sj (see (2.4)),

(619) êz�1Sj = w pSj+pÒ j 2 Z+

By (2.25),

(620) [AñÒnM] ²
1X
j=n
ýwjSj ²

1X
j=n
ýwjL2(Tz)Ò n 2 Z+

By (2.9),

(621)
nX

j=0
zñ(n�j)Sj ² Sn ²

� nX
j=0

zñ(n�j)Sj

½
Ò n 2 Z+

By (6.13), (6.14) and Lemma 4.1 (ii), ñ(1)+ñ( p�1)�ñ( p) = 2. Hence by Lemma 2.3,

(622) z2S̄0 ² N \ S0

By (2.5), S̄0 is a z-invariant subspace of L2(Tz), so that by the Beurling theorem S̄0 =
q(z)H2(Tz) or S̄0 = üF(z)L2(Tz), where q(z) is a unimodular function on Tz and F ² Tz.
By (6.22), z2S̄0 ² S0 ² S̄0. Then for both cases, S0 becomes a closed subspace and
S0 = q(z)H2(Tz) or S0 = üF(z)L2(Tz). Moreover by (6.22),

(623) z2S0 ² N
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Here we note that S0 6= üF(z)L2(Tz). For, suppose that S0 = üF(z)L2(Tz). By (6.20),
S0 ? [AñÒ1M]. Then by Lemma 2.4, M is an invariant subspace with zM = M and wM 6= M.
But by (6.9), M satisfies zM 6= M. This is a contradiction. Therefore S0 = q(z)H2(Tz).

For the sake of simplicity we assume that

(624) S0 = H2(Tz)

Now recall the proof of (5.21) in the proof of Theorem 5.1. In the same way, from (6.23)
we can prove zS0 ² N. Since z2S0 ² N \ S0 ² S0, by the above inclusion we have

(625) N \ S0 = S0 or N \ S0 = zS0

By (6.19) for j = 0, êz�1S0 = w pSp. Then by (6.21),

(626) zñ( p�j)w p�jw jSj ² êz�1S0Ò 0 � j � p� 1

By (6.13), (6.14) and Lemma 4.1 (ii),ñ( p)�ñ( p�j) = ñ( j)�2. Hence by (6.8) and (6.26),
Sj ² zñ( j)�2S0. On the other hand, by (6.21) we have zñ( j)S0 ² SjÒ 0 � j � p� 1. Hence
zñ( j)S0 ² Sj ² zñ( j)�2S0 for 0 � j � p � 1. Then by (6.24), Sj is a closed subspace of
L2(Tz) and

(627) Sj = zñ( j)�è( j)S0 = zñ( j)�è( j)H2(Tz) for some è( j) = 0Ò 1Ò 2

Since ñ(0) = 0,

(628) è(0) = 0

By (6.16), (6.18), (6.20), and the Añ-invariantness of M,

(629)
p�1X
j=0
ýzñ( j)w j(N \ S0) ² N

By (6.18) and (6.27),

(630) N ²
p�1X
j=0
ýwjSj =

p�1X
j=0
ýzñ( j)�è( j)w jH2(Tz)

By (6.29), we can define

(631) G = N 	
� p�1X

j=0
ýzñ( j)w j(N \ S0)

�


We consider the following two cases separately (see (6.25)); N\S0 = S0 and N\S0 = zS0.
When N \ S0 = S0, by (6.24) and (6.31) we have

N = G ý
p�1X
j=0
ýzñ( j)w jH2(Tz)

By (6.12) and (6.17), M =
P1

j=0 ý(êz�1) jN. Hence, in this case, M has the form given
by (i). By (6.28), (6.30), and (6.31), it is not difficult to see that G satisfies the desired
condition.

In the same way, when N \ S0 = zS0, M has the form given by (ii).
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7. Examples of Homogeneous-Type Aû-Invariant Subspaces. This section is a
continuation of Section 6. Let f j0Ò j1Ò    Ò jp�1g = f0Ò 1Ò    Ò p � 1g such that pû( ji) �
kji Ú pû( ji+1)�kji+1 for 0 � i � p�2. We note that j0 = 0 (see for detail Section 4), and
the structure of f jig

p�1
i=0 depends strongly on the given p and k. We study in Theorem 7.1

the case ji = i, 1 � i � p � 1, and in Theorem 7.2 the case ji = p � i, 1 � i � p � 1.
Comparing these theorems, we find that the structures of G are completely different. For
general cases, it is natural to expect that G has the mixed structures of G in Theorems 7.1
and 7.2.

THEOREM 7.1. Suppose that ji = i for 0 � i � p�1 for given p and k. Let M be an Aû-
invariant subspace with zkw pM ² zM and zkw pM 6= zM. Then M is of homogeneous-type
if and only if

M = †
1X
j=0
ý(zk�1w p) j

 
G ý

� p�1X
i=0

ýzû(i)wiH2(Tz)
�!
Ò

where † is a unimodular function on T2 and G has one of the following forms.

(i) G = f0g or G =
h
fzû(s)�1ws ; s1 � s � p� 1g

i
for some s1 with 1 � s1 � p� 1.

(ii) G =
h
fzû(i)�1wiÒ zû( j)�2w j ; s1 � i � p� 1Ò s2 � j � p� 1g

i
for some s1 and s2 with 1 � s1 � s2 � p� 1.

(iii) G = G1 ý
h
fzû(i)�1wiÒ zû( j)�2w j ; t1 � i � p� 1Ò t2 � j � p� 1g

i
where

G1 =
"²

(zû(1)w) j
�t1�s1�j�1X

i=0
(ãiz

û(s2+i)�2ws2+i + åiz
û(s1+i)�1ws1+i)

�
; 0 � j � t1 � s1 � 1

¦#

for some complex numbers fãiÒ åig
t1�s1�1
i=0 with ã0 6= 0 and å0 6= 0, and for some s1, s2,

t1, t2 with 0 � s1 Ú t1 � s2 Ú t2 � p and t2 � s2 = t1 � s1.

We note that for a given p 2 Z+ n f0g, a pair ( pÒ k) satisfies the assumption of
Theorem 7.1 if and only if k = lp � 1 and lp 6= 1 for some l 2 Z.

PROOF OF THEOREM 7.1. Suppose that M is of homogeneous-type. We use the same
notations as in the proof of Theorem 6.1 and we continue our proof from the end of the
proof of Theorem 6.1. Since ji = i for 0 � i � p� 1,

(71) zû( j)w j = (zû(1)w) jÒ 0 � j � p� 1

This is the key point of our assumption.
First suppose that

(72) N \ S0 = S0 = H2(Tz)
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Then by the end of the proof of Theorem 6.1, we may consider

(73) M =
1X
j=0
ý(zk�1w p) j

 
Gý

�p�1X
i=0
ýzû(i)wiH2(Tz)

�!
Ò

where G is a closed subspace with

(74) G ²
h
fzû( j)�1w jÒ zû( j)�2w j ; 1 � j � p� 1g

i


Using the property that AûM ² M, we will describe G.
For i = 1 or 2, we define positive integers ti and si. When zû(t)�iwt 2 G for some

1 � t � p � 1, let ti be the smallest integer t satisfying the above condition. For
convenience, let ti = p when zû(t)�iwt Û2 G for every 1 � t � p�1. When f̂

�
û(s)�iÒ s

�
6= 0

for some f 2 G and for some s with 1 � s � p � 1, let si be the smallest integer s
satisfying the above condition. Then f̂

�
û(s) � iÒ s

�
= 0 for every f 2 G and 1 � s Ú si

and ĝ
�
û(si)� iÒ si

�
6= 0 for some g 2 G. We note that s1 and s2 may not exist. If si exists,

by the definitons we have si � ti. In the following, we shall see that the structure of G
depends on the data of si and ti. To study the structure of G, we separate into several
cases. The following follows from (7.4).

(a) If both s1 and s2 do not exist, G = f0g.
(b) If s1 exists and s2 does not, then s1 = t1 and

G =
h
fzû(s)�1ws ; s1 � s � p� 1g

i
Ò 1 � s1 � p� 1

For, by our assumptions and the definitions of s1 and s2,

(75) G ²
h
fzû(s)�1ws ; s1 � s � p� 1g

i
Ò

and there exists f 2 G such that

(76) f =
p�1X
s=s1

aszû(s)�1wsÒ as1 6= 0

Since zû( p�s1�1)w p�s1�1G ² zû( p�s1�1)w p�s1�1M ² M,

p�1X
s=s1

aszû( p�s1�1)+û(s)�1w p+s�s1�1 2 M

Then by (6.16), (6.18) and (6.20), as1z
û( p�s1�1)+û(s1)�1w p�1 2 N. Since as1 6= 0, by (7.1)

we have zû( p�1)�1w p�1 2 N. By (6.13), (6.31), and (7.2), we have zû( p�1)�1w p�1 2 G, so
that by (7.6) we get

P p�2
s=s1

aszû(s)�1ws 2 G. In the same way, using zû( p�s1�2)w p�s1�2G ²
M, we have zû( p�2)�1w p�2 2 G. By induction, we can prove that zû(s)�1ws 2 GÒ s1 �
s � p� 1. By (7.5), we see that G has the desired form.

The above proof also shows the following two facts (c) and (d).

(c) If ti � p� 1, then zû(t)�iwt 2 G for every ti � t � p� 1.
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(d) If
P p�1

s=l aszû(s)�iws 2 G and al 6= 0, then ti � l.
(e) If s2 exists, then s1 exists and s1 � t1 � s2.

For, suppose that s2 exists. Then by (7.4) there exists f 2 G such that

(77) f =
p�1X
s=s2

asz
û(s)�2ws +

p�1X
j=s1

bjz
û( j)�1w jÒ as2 6= 0

When s1 does not exist, we consider bj = 0 for s1 � j � p�1. Since zf 2 zG ² zN ² N,
by (6.31) and (7.2) we have

P p�1
s=s2

aszû(s)�1ws 2 GÒ as2 6= 0. Then by (d), t1 � s2. The
inequality s1 � t1 follows from the definitions of s1 and t1.

(f) If s2 exists and s1 = t1, then s2 = t2 and

(78)
G =

h
fzû(i)�1wiÒ zû( j)�2w j ; s1 � i � p� 1Ò s2 � j � p� 1g

i
Ò 1 � s1 � s2 � p� 1

For, suppose that s2 exists and s1 = t1. Then there exists f 2 G satisfying (7.7). Since
s1 = t1, by (c) we have

P p�1
s=s2

aszû(s)�2ws 2 GÒ ss2 6= 0. By (d), t2 � s2. The opposite
inequality follows from the definitions of s2 and t2, so that s1 � s2 = t2. Then (c)
gives (7.8).

Finally, suppose that s2 exists and s1 Ú t1. We first prove that

(79) t2 � s2 = t1 � s1

Let f 2 G such that

f =
p�1X
s=s2

aszû(s)�2ws +
p�1X
j=s1

bjzû( j)�1w jÒ bs1 6= 0

Since zû(t2�s2)wt2�s2 f 2 M, by (7.3) and (7.4)

p+s2�t2�1X
s=s2

asz
û(t2�s2)+û(s)�2wt2+s�s2 +

p+s2�t2�1X
j=s1

bjz
û(t2�s2)+û( j)�1wt2+j�s2 2 G

By (7.1),

p+s2�t2�1X
s=s2

asz
û(t2+s�s2)�2wt2+s�s2 +

p+s2�t2�1X
j=s1

bjz
û(t2+j�s2)�1wt2+j�s2 2 G

Since t2 + s � s2 ½ t2 for s ½ s2, by (c) we have
P p+s2�t2�1

j=s1
bjzû(t2+j�s2)�1wt2+j�s2 2 G.

Since bs1 6= 0, by (d) we have t1 � t2 + s1 � s2. Hence t1 � s1 � t2 � s2.
Let g 2 G such that

g =
p�1X
s=s2

csz
û(s)�2ws +

p�1X
j=s1

djz
û( j)�1w jÒ cs2 6= 0
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Since zû(t1�s1)wt1�s1 g 2 M, in the same way as above we have

p+s1�t1�1X
s=s2

csz
û(t1+s�s1)�2wt1+s�s1 2 G

Since cs2 6= 0, by (d) we get t2 � t1 + s2 � s1, so that t2 � s2 � t1 � s1. Therefore we
get (7.9).

Consequently there exist t1Ò t2Ò s1, and s2 such that s1 Ú t1 � s2 Ú t2, t2� t1 = s2� s1,
and

(710) G = G1 ý
h
fzû(i)�1wiÒ zû( j)�2w j ; t1 � i � p� 1Ò t2 � j � p� 1g

i
Ò

where

(711) G1 ²
h
fzû(i)�1wiÒ zû( j)�2w j ; s1 � i Ú t1Ò s2 � j Ú t2g

i

and

(712) ziw j Û2 G1 for every (iÒ j) 2 Z2

To describe G1, fix f0 2 G1 such that f̂0
�
û(s2) � 2Ò s2

�
6= 0. Then we have

f̂0
�
û(s1) � 1Ò s1

�
6= 0

For, write f0 as

f0 =
t2�1X
s=s2

aszû(s)�2ws +
t1�1X
j=s1

bjzû( j)�1w jÒ as2 6= 0

For the sake of simplicity, let as = 0 for t2 � s � p � 1, and bj = 0 for t1 � j � p � 1.
Then

f0 =
p�1X
s=s2

aszû(s)�2ws +
p�1X
j=s1

bjzû( j)�1w jÒ as2 6= 0

To show bs1 6= 0, suppose that bs1 = 0. By our assumption, t1 � s1 Ù 0, so that
zû(t1�s1�1)wt1�s1�1f0 2 M. Hence

p+s1�t1X
s=s2

asz
û(t1�s1�1)+û(s)�2wt1+s�s1�1 +

p+s1�t1X
j=s1+1

bjz
û(t1�s1�1)+û( j)�1wt1+j�s1�1 2 G

By (7.1),

p+s1�t1X
s=s2

aszû(t1+s�s1�1)�2wt1+s�s1�1 +
p+s1�t1X
j=s1+1

bjzû(t1+j�s1�1)�1wt1+j�s1�1 2 G

Since t1 + j � s1 � 1 ½ t1 for j ½ s1 + 1, by the definition of t1 and (c) we have

p+s1�t1X
s=s2

asz
û(t1+s�s1�1)�2wt1+s�s1�1 2 G
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Since as2 6= 0, by (d) we have t2 � t1 + s2 � s1 � 1. This contradicts (7.9), so that
f̂0
�
û(s1) � 1Ò s1

�
= bs1 6= 0.

By (7.9) and the above fact, we can rewrite f0 as

(713) f0 =
p�1X
i=0

(ãiz
û(s2+i)�2ws2+i + åiz

û(s1+i)�1ws1+i)Ò

ã0 6= 0Ò å0 6= 0 and ãi = åi = 0 for t1 � s1 � i � p� 1

Now we shall prove that

G1 =
�²

(zû(1)w) j
� t1�s1�j�1X

i=0
(ãizû(s2+i)�2ws2+i + åizû(s1+i)�1ws1+i)

�
; 0 � j � t1 � s1 � 1

¦½
Ò

where 1 � s1 Ú t1 � s2 Ú t2 � p.
Let 0 � j � t1 � s1 � 1. Since zû( j)w jf0 2 M,

p�s2�j�1X
i=0

ãiz
û( j)+û(s2+i)�2w j+s2+i +

p�s1�j�1X
i=0

åiz
û( j)+û(s1+i)�1w j+s1+i 2 G

By (7.1),

p�s2�j�1X
i=0

ãiz
û( j+s2+i)�2w j+s2+i +

p�s1�j�1X
i=0

åiz
û( j+s1+i)�1w j+s1+i 2 G

By (7.10) and (7.11),

t2�s2�j�1X
i=0

ãiz
û( j+s2+i)�2w j+s2+i +

t1�s1�j�1X
i=0

åiz
û( j+s1+i)�1w j+s1+i 2 G1

By (7.1) and (7.9),

(714) (zû(1)w) j
t1�s1�j�1X

i=0
(ãiz

û(s2+i)�2ws2+i + åiz
û(s1+i)�1ws1+i) 2 G1

For convenience, put

(715) fj = (zû(1)w) j
t1�s1�j�1X

i=0
(ãiz

û(s2+i)�2ws2+i + åiz
û(s1+i)�1ws1+i)

for 0 � j � t1 � s1 � 1. Therefore by (7.14),

(716)
h
f fj ; 0 � j � t1 � s1 � 1g

i
² G1

To show the converse inclusion, let take f 2 G1, f 6= 0Ò arbitrary. We can write f as

f =
t1�s1�1X

i=0
(aiz

û(s2+i)�2ws2+i + biz
û(s1+i)�1ws1+i)
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By the same reasoning as in the paragraph before (7.13), there exists an integer m,
0 � m � t1 � s1 � 1, such that

(717) f =
t1�s1�1X

i=m
(aiz

û(s2+i)�2ws2+i + biz
û(s1+i)�1ws1+i)Ò am 6= 0Ò bm 6= 0

Here we have

(718)
ã0

å0
=

am

bm


For, suppose not, that is, ã0Ûå0 6= amÛbm. By multiplying zû(t1�s1�1)wt1�s1�1 with f0,
by (7.9), (7.10), (7.11), and (7.13) we have

(719) ã0zû(t2�1)�2wt2�1 + å0zû(t1�1)�1wt1�1 2 G1

By multiplying zû(t1�s1�1�m)wt1�s1�1�m with f , by (7.17) we can also get

(720) amzû(t2�1)�2wt2�1 + bmzû(t1�1)�1wt1�1 2 G1

Sinceã0Ûå0 6= amÛbm, by (7.19) and (7.20) we have zû(t2�1)�2wt2�1, zû(t1�1)�1wt1�1 2 G1.
This contradicts (7.12). Hence we get (7.18).

By (7.1), (7.15), (7.16), (7.17), and (7.18),

G1 3 f �
am

ã0
fm =

t1�s1�1X
i=m+1

(cizû(s2+i)�2ws2+i + dizû(s1+i)�1ws1+i)Ò say

We note that the number of terms in the above sum is less than in (7.17). Repeating these
arguments, we can prove that there exist complex numbers fcmÒ cm+1Ò    Ò ct1�s1�1g such
that f =

Pt1�s1�1
i=m cifi. Hence G1 ² [f fj ; 0 � j � t1 � s1 � 1g]. By (7.16), we get the

desired equality. This completes the proof for the case N \ S0 = S0 = H2(Tz), and in this
case, one of (i), (ii) and (iii) with s1 ½ 1 happens.

Next we study the case

(721) N \ S0 = zS0 = zH2(Tz)

By Theorem 6.1 (and its proof), we may assume

M =
1X
j=0
ý(zk�1w p) j

 
Gý

� p�1X
i=0

ýzû(i)+1wiH2(Tz)
�!
Ò

and

(722) N = Gý
� p�1X

i=0
ýzû(i)+1wiH2(Tz)

�
Ò

where G is a closed subspace such that

G ²
h
f1Ò zû(i)wiÒ zû(i)�1wiÒ zû(i)�2wi ; 1 � i � p� 1g

i

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In this case,

(723) G ²
h
fzû(i)wiÒ zû( j)�1w j ; 0 � i � p� 1Ò 1 � j � p� 1g

i


To prove this, suppose that there exists h 2 G such that ĥ
�
û(i) � 2Ò i

�
6= 0 for some

1 � i � p� 1. Then we can write h as

h =
tX

i=1
aiz

û(i)�2wi +
p�1X
j=1

bjz
û( j)�1w j +

p�1X
m=0

cmzû(m)wmÒ at 6= 0

for some t with 1 � t � p� 1. Since zû( p�t)w p�th 2 M, by (6.9)–(6.20) we have

atzû( p�t)+û(t)�2w p +
p�1X
j=t
fbjzû( p�t)+û( j)�1w p+j�t + cjzû( p�t)+û( j)w p+j�tg 2 ê z̄N

Then

atz
û( p�t)+û(t)�k�1 +

p�1X
j=t
fbjz

û( p�t)+û( j)�kw j�t + cjz
û( p�t)+û( j)�k+1w j�tg 2 N

Hence by Lemma 4.1 and (7.1),

at +
p�1X
j=t
fbjz

û( j�t)+1w j�t + cjz
û( j�t)+2w j�tg 2 N

Therefore by (7.22), 1 2 G ² N. By the definition of S0 (see (2.4)), 1 2 S0, so that
1 2 N \ S0. This contradicts (7.21). Hence we get (7.23).

Since M can be written as

M = z
1X
j=0
ý(zk�1w p) j

 
z�1Gý

� p�1X
i=0

ýzû(i)wiH2(Tz)
�!
Ò

we can proceed in the same way as in the case N \ S0 = S0. By (6.24), S0 = H2(Tz).
By the definition of S0, we note that (5.23) holds. Then there exists h 2 N such that
ĥ(0Ò 0) 6= 0. By (7.22), there exists g in G such that ĝ(0Ò 0) 6= 0. By (7.21), 1 Û2 N. Hence
1 Û2 G, so that z�1 Û2 z�1G. Therefore in this case only (iii) happens and s1 = 0.

The converse assertion is not difficult to prove. This completes the proof.

THEOREM 7.2. Suppose that ji = p� i for 1 � i � p�1 for a givenû. Let M be an Aû-
invariant subspace with zkw pM ² zM and zkw pM 6= zM. Then M is of homogeneous-type
if and only if

M = †
1X
j=0
ý(zk�1w p) j

 
G ý

� p�1X
i=0

ýzû(i)wiH2(Tz)
�!
Ò

where † is a unimodular function on T2 and G has one of the following forms.

(i) G = G1 ý
h
fzû(i)�1wi ; 1 � i � p� 1g

i
Ò
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where G1 is a nonzero closed subspace of [fzû( j)�2w j ; 1 � j � p� 1g].
(ii) G is a closed subspace with G ² [fzû(i)�1wi ; 1 � i � p� 1g].

(iii) G = G1 ý
h
fzû(i)�1wi ; 1 � i � p� 1g

i
Ò

where G1 is a closed subspace of [fz�1Ò zû( j)�2w j ; 1 � j � p � 1g] and there exists a
function g in G1 such that ĝ(�1Ò 0) 6= 0.

We note that for a given p 2 Z+ n f0g, a pair ( pÒ k) satisfies the assumption of
Theorem 7.2 if and only if k = lp + 1 and lp 6= �1 for some l 2 Z.

PROOF. We use the same notations as in the proof of Theorem 6.1 and we continue
our proof from the end of the proof of Theorem 6.1. By our assumption, we have

(724) if 1 � sÒ t � p� 1 and s + t � pÒ then û(s) + û(t) = û(s + t) + 1Ò

(725) if 1 � sÒ t � p� 1 and s + t Ù pÒ then û(s) + û(t) = û(s + t � p) + k

We separate the proof into two cases; N \ S0 = S0 = H2(Tz) and N \ S0 = zH2(Tz).
First suppose that N \ S0 = H2(Tz). Then by Section 6,

(726) G = N 	
� p�1X

i=0
ýzû(i)wiH2(Tz)

�

and

G ²
h
fzû(i)�1wiÒ zû(i)�2wi ; 1 � i � p� 1g

i


Suppose that there exists f in G such that f̂
�
û(i) � 2Ò i

�
6= 0 for some 1 � i � p � 1.

Then f can be written as

f =
tX

j=m
ajz

û( j)�2w j +
p�1X
i=1

biz
û(i)�1wiÒ am 6= 0Ò at 6= 0

where 1 � m � t � p� 1. Since zû( p�m�1)w p�m�1f 2 M,

amzû( p�m�1)+û(m)�2w p�1 +
mX

i=1
biz

û( p�m�1)+û(i)�1w p+i�m�1 2 N

By (7.24),

amzû( p�1)�1w p�1 +
mX

i=1
bizû( p+i�m�1)w p+i�m�1 2 N

By (7.26) and am 6= 0,

(727) zû( p�1)�1w p�1 2 G
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Then using zû(p�m�2)w p�m�2f 2 M, we get zû(p�2)�1w p�2 2 G. For, zû( p�m�2)w p�m�2f 2
M implies that

m+1X
j=m

ajz
û( p�m�2)+û( j)�2w p+j�m�2 +

m+1X
i=1

biz
û( p�m�2)+û(i)�1w p+i�m�2 2 N

By (7.24), (7.25) and (7.26), we have amzû( p�2)�1w p�2 + am+1zû( p�1)�1w p�1 2 G.
By (7.27) and am 6= 0, zû( p�2)�1w p�2 2 G. Repeating this argument, we have

(728) zû(i)�1wi 2 GÒ m � i � p� 1

Next we show

(729) zû(i)�1wi 2 GÒ 1 � i � t � 1

Since zû( p+1�t)w p+1�tf 2 M,

tX
j=t�1

ajz
û( p+1�t)+û( j)�2w p+j+1�t +

p�1X
i=t�1

biz
û( p+1�t)+û(i)�1w p+i+1�t 2 ê z̄N

By (7.24) and (7.25),

atz
û(1)+k�2w p+1 + at�1zk�1w p + bt�1zkw p +

p�1X
i=t

biz
û(i+1�t)+k�1w p+i+1�t 2 ê z̄N

Then by (7.26) and at 6= 0, zû(1)�1w 2 G. Then using zû( p+2�t)w p+2�tf 2 M, we get
zû(2)�1w2 2 G. Repeating this argument, we obtain (7.29).

Since m � t, by (7.28) and (7.29) we have zû(i)�1wi 2 G for every i with 1 � i � p�1.
Hence in this case G has the form in (i).

When f̂
�
û(i) � 2Ò i

�
= 0 for every f 2 G and 1 � i � p� 1, G has the form in (ii).

Next suppose that

(730) N \ S0 = zH2(Tz)

Then by Section 6,

(731) G = N 	
� p�1X

i=0
ýzû(i)+1wiH2(Tz)

�

and

G ²
h
f1Ò zû(i)wiÒ zû(i)�1wiÒ zû(i)�2wi ; 1 � i � p� 1g

i


In this case, we prove

(732) G ²
h
f1Ò zû(i)wiÒ zû(i)�1wi ; 1 � i � p� 1g

i

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To prove (7.32), suppose not. Then there exists g in G such that ĝ
�
û(i) � 2Ò i

�
6= 0 for

some 1 � i � p� 1. Write g as

g =
sX

j=m
ajzû( j)�2w j +

p�1X
i=0

(bizû(i)�1wi + cizû(i)wi)Ò

where 1 � s � p� 1Ò as 6= 0 and b0 = 0. Since zû( p�s)w p�sg 2 M,

asz
û( p�s)+û(s)�2w p +

p�1X
i=s

zû( p�s)w p�s(biz
û(i)�1wi + ciz

û(i)wi) 2 êz̄N

Then by (7.24) and (7.25),

as + bsz + csz2 +
p�1X

i=s+1
(bizû(i�s)wi�s + cizû(i�s)+1wi�s) 2 N

By (7.31),

as +
p�1X

i=s+1
biz

û(i�s)wi�s 2 G

This fact gives us that zû(i)wi 2 G for 1 � i � p� 1, which is proved in the same way as
in the proof of (7.28). Since as 6= 0, we therefore have 1 2 G. This means that 1 2 N\S0

and N \ S0 = H2(Tz). This contradicts (7.30). Thus we get (7.32).
Since S0 = H2(Tz), there exists h in N such that ĥ(0Ò 0) 6= 0. By (7.31), we may assume

h 2 G. Then in the same way as in the proof of (7.28), we can prove that zû(i)wi 2 G for
1 � i � p � 1. Let G1 = G 	 [fzû(i)wi ; 1 � i � p� 1g], G0 = z�1G and G0

1 = z�1G1.
Then G0 and G0

1 have the desired forms (iii) in place of G and G1 respectively.
The converse assertion is not difficult to prove.
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