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IRRATIONAL NUMBERS ARISING FROM CERTAIN 
DIFFERENTIAL EQUATIONS 

BY 

M. RAM MURTY AND V. KUMAR MURTY 

Niven [3] gave a simple proof that IT is irrational. Koksma [2] modified 
Niven's proof to show that er is irrational for every non-zero rational r. Dixon 
[1] made a similar modification to show that IT is not algebraic of degree 2. In 
this note, we prove a general theorem which gives Niven's and Koksma's 
results as easy corollaries. A suitable modification in our proof also gives 
Dixon's result. 

THEOREM 1. Let G be non-trivial solution of the equation 

L(u) = p0u
in) + p1u

in-1) + • • • + pnw = 0 

where pt are rational numbers and pn^ 0. If b >0 is such that G(x)>0on [0, b] 
and G(l)(0), G(l\b) are rational for 0 < ! < n - l , then b is irrational 

Proof. Without any loss of generality, we may suppose that the p, are 
integers. Suppose b is rational and set b = plq, (p, q) = 1, p, q e 7L. Set /m(jc) = 
llm\(qx)m(p-qx)m, where m is a natural number. It is easy to see that /^}(0) 
are integers for fe>0 and since fm(x) = fm(b~x), the same is true of f£\b). 
Now define the sequence {tk} recursively as follows: 

*o=l, 

Pn'l-Pn-lA)=0, 

Pnt2-Pn-lh + Pn-2̂ 0 = 0, 

Pntn-l-Pn-ltn-2+ ' ' ' + (" l)""'?! *0 = 0, 

Pntn+r-Pn-ltn + r-l+ ' ' * + (~ 1 ) " ^ = 0 f o r r ^ 0 ' 

Clearly, pk
ntk is an integer for fc>0. Let 

2m 

Fm(x)=£t/*?(x). 
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If L* is the adjoint of L, we have 

L*(Fn(x))=%a(-l)
kpn-kF«\x) 

k = 0 

n 2m 

= I (-Dkp-.-t£ WW 
k=0 r=0 

[March 

Letting 

P(u, v)= u Vn-\V--—{pn-2v)+ • • -H-(-l) 
ax 

n - l d " 

dx" 
rï(Pou) " 

Pn-2V~-r(Pn-3V) + 

a w 

- > d " " 2 ' - - ) } + ( - i r 2 ^ = 5 ( P b » ) | + 

we have by Lagrange's identity, 

so that 

Fm(x)L(G)-G(x)L*(Fm(x)) = — P(G,Fm), 
ax 

- \ Pnfm(x)G(x)dx = [P(G,Fm)t 

since L(G) = 0. As pkJk is an integer, it follows that PnmF^}(x) is an integer for 
x = 0 and ft, w > 0 . Thus, if A denotes the products of the denominators of 
G(O(0) and G(i)(b), 0 < / < n - l (when expressed in lowest terms), 
Aplm[P(G, Fm)]o is an integer for every m. Now 

Ap*m[P(G, Fm)]g = -ApSm+1J^ /m(x)G(*) dx. 

If B and C are such that |G(x) |<B, |qx(p-qx) |< C on [0, b] we have 

0<Ap2
n" fm(x)G(x)dx 

2m + l / n 2 m 

< 
bBApT C 

ml 

If m is sufficiently large, the right hand side is < 1 , giving a contradiction. 
Hence b is irrational. 

COROLLARY. (1) IT2 is irrational, (hence so also is TT). (2) log r is irrational for 
every rational r > 0 , r^ 1. (3) er, sin r, cos r, cosh r sinh r are irrational for 
every non-zero rational r. 
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Proof. If 7T2 is rational, consider y" 4- ir2y = 0 which has as a solution (1/TT) sin 
irx. For b = 1, we get a contradiction. This proves (1). (2) and (3) are proved 
similarly, using the equation y ' -y = 0 or y"±y = 0. 

The following theorem is more arithmetical in nature. 

THEOREM 2. Let G be a non-trivial solution of y(n)+fy = 0 where t = 
(ulv,)(u,v)=l, is a non-zero rational Suppose G(l)(0) is rational for 0=^1^ 
n -1 and for some r^ 0 with (r, n) = 1, we have G(r)(0) ^ 0. If j3 is a non-zero 
rational, then G(n_1)(/3) is irrational 

Proof. Let |8 = (a/6,)(a, 6) = 1. Define 

(0 " *)np[|3n - (0 - x)n]p-1&np+(n-1)(p-1) 

&(*) = - (P-D! 

where p is a prime soon to be specified. If we compute the tk in Theorem 1 for 
the equation y(n)+fy = 0, we find fk = 0 if fc^O (mod n) and in case fc = 
sn,tsn = (-l)sn-sf. If we set 

M 

Fp(x)= I H/P
k)(*) 

fc=0 

where M= n(2p-1), we have as in Theorem 1, L*(Fp(x)) = tfp(x), where L* is 
the adjoint of L(y) = y(n)+ fy. Since fp is a polynomial of degree M, /pk)(x) = 0 
for fc>M. If we set p-x = y and gp(y)= y n p (0 n -y n ) p~\ then 

p - i 

gP(y)=I(-Dip,,(p-1-i)(p-1)y',(p+i) 

i=o V ï / 

from which it follows at once that ff\p) = 0 for all kïn(p + i)9 0 < i < p - l 
and 

L M - p + 1 / -t \ 

/<fc)0) = (-ir (p+i>+i^ rT^|3" (p-1- i )(P . )[n(p + 0]! 

for fc = n(p + i). Hence u2p-1Fp(j3) is an integer divisible by p. Since fp has a 
zero of order p - 1 at x = 0, we have /pk)(0) = 0 for fe<p-l. Writing fp(x) = 
(xp-V(p-l)!)ftp(x) we see from (p-l)!/P

k)(x) = i:k
=o(s)Up-1](s)[/ip(x)](k-s) that 

/P
k)(0)=( ^ iyp

k"p + 1 )(0) for fc>p-l. Clearly /p
k)(0) is an integer as 

hpk-p+1)(0) is an integer. Also ( j is divisible by p if k >p, and fc^ - 1 (mod 

p). If fe>p and fc-p + 1^0 (mod p), then fi(p
fc-p+1)(0) is divisible by p. If 

k = p-l , /p
p-1 )(0) = np-1anp+(n-1)(p-1). Hence, /p

k)(0) is divisible by p unless 
fc = p - l . As (r, n) = 1, let p be a prime >na, congruent to —r (mod n). As 
G(r)(0)*0, a n d p - l = n - r - l (mod n), the term /p

p~1}(0) occurs once and 
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only once in ^zU-l)kGik\0)Fpn'k~l) and that is in the expression for 
Fpn~r~1}(0). Let N be the product of all the denominators of the rationals G(0), 
G ' (0 ) , . . . , G(n 1}(0), G(n 1 } 0) . (Here, we are supposing G ( n l )( j3) is rational 
and will arrive at a contradiction). Thus, if p>max (na, NG(r°(0), uv), all terms 
in 

n-i 

A T ^ - M G ^ ' ^ O J F p O ) - T (-l) fcG (ki(0)F^-k~1)(0)} 
fc=0 

are divisible by p except one term (the one involving G ( r )(0)^0). Now, as in 
the proof of Theorem 1, 

-uNv*p G(x)fp{x) dx - Nu2p_1{GCr i"uO) 

x 
fc-0 

F P O ) ~ X (-l^G^O)/*"-*;-1^)}. 

Thus, it follows uNv PioG(x)fp(x) dx^ o for an infinity of primes p, using 
Dirichlet's theorem. On the other hand, we know uNv2p$oG(x)fp(x) dx is an 
integer. This is a contradiction since 

lim 

This proves the theorem. 

uNir 
a 
G(x)fp(x) dx (1 

COROLLARY. Let p be an odd prime and G a non-trivial solution of y{p) -f ry = 
0, t a non-zero rational. If G ( 0 ) , . . . , G (p - I )(0) are rational and at least two of 
them are non-zero, then G O ) , G'( j3) , . . . , G ( p l ) 0 ) are irrational for any 
non-zero rational 0. 

REMARK. The case p = 2 has been covered by a corollary of Theorem 1. 

Proof. As at least two of G(0), G ' (0 ) , . . . , G(p_1)(0) are non-zero, there is an 
r such that G(r)(0) ^ 0 and (r, p) = 1. The conditions of the theorem are satisfied 
and so G(p-1)(j3) is irrational. As Gil\x) also satisfies the conditions of the 
theorem for 0 < / < p - l the result follows. 
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