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MONOGENESIS OF THE RINGS OF INTEGERS
IN CERTAIN IMAGINARY ABELIAN FIELDS

SYED INAYAT ALI SHAH anD TORU NAKAHARA*

Abstract. In this paper we consider a subfield K in a cyclotomic field &y,
of conductor m such that [kn : K] = 2 in the cases of m = ¢p" with a prime
p, where £ = 4 or p > ¢ = 3. Then the theme is to know whether the ring of
integers in K has a power basis or does not.

81. Introduction

Let F' be an algebraic number field over the rationals . We denote
the ring of integers in F' by Zp. If we have Zp = Z[a] for an element «
of Zp, then it is said that o generates a power basis of the ring Zp or
simply Zr has a power basis. The ring Zr is called monogenic if Zp has
a power basis, otherwise Zp is said to be non-monogenic. To determine
whether the ring of integers in a field is monogenic or not is proposed as an
unsolved problem in [Nar]. This problem is treated by many authors [DK],
[Ga]v [Gr]v [HSW]7 [Nl]v [SNL [T]

Set kp = Q((m), where (,, is a primitive m-th root of unity. Let G
be the galois group Gal(k,,/Q) of ky, over Q. If k;\ is the maximal real
subfield of kp,, then the ring Z, + of integers has always a power basis [Li],

In this article we treat certain imaginary abelian subfields K with [k, :
K] =2.

In the next section we consider the case that the conductor m =
4p™(n > 1) with a prime p and will show that the ring Zx of any sub-
field K in k, such that [k, : K| = 2 has a power basis and it is generated
by the Gauf period ng = ZpeH ¢h,, where H is the subgroup of G corre-
sponding to the field K. On the other hand, in the third section we prove
that in the case that m = 3p™(n > 1) with a prime p > 3 and the subfield
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K which is distinct from k,, /3 and k., the ring Zx of integers in K does
not have a power basis.
Finally we will give another characterization of fields whose rings of

integers do not have any power basis using the decomposition theory of
ideals [Ny].

§2. Monogenic case

We start with the following theorems in which the rings of integers have
power bases.

THEOREM 1. Suppose m = 2" > 8 and let K be the imaginary subfield
of km distinct from ko such that [k, : K| = 2. Then the ring Z of
integers in K coincides with Z[n)], where n is the Gauf$ period Cm, — C,b and
the absolute value of the field discriminant of K 1is equal to 9(n=1)$(2"~)~1

Proof. Let G = Gal(kn/Q) = (1) x (o) with ™ =e=20°%5=
¢(m)/2 =2""2 and (7, = (i, €7 = ¢, where & means the complex conju-
gate of a number a and ¢(-) denotes the Euler function. Then &, /2, Q((m+
;') and K are subfields fixed by the subgroups (0*/2), () and H = (¢°/?7)
respectively. Then K is generated by the Gauss period n= )" peH ¢h =
CWL_'Q;y

We see that Zj,, = Z[Cm] = Zi[Cm]. Then, since 52" % —1 (mod 4),
the relative different 0,/ is given by

(Cm - C&S/QT> Zy,, = (1 -2y, = £

where £ is the ramified prime ideal (1 — (,,) of k,, over 2. From this, it
follows that

|A(K)| = \/]d(km)]/22 = 220D
On the other hand, by G/H = {¢/H;0 < j < s}, the different dx(n) of n
is given by
s—1 , s—1 ,
[o-7")=]] {Cm (1 — ¢ 1) (1 + Cn_f]_l)} :
j=1 j=1

Since we observe that
{C 7_CU 0<j<8} {C?J’n70<j<m ], _1}

(G~ 0 <sh={Gi 0= <m, (Gom) A1},

https://doi.org/10.1017/50027763000008369 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000008369

MONOGENESIS OF THE RINGS OF INTEGERS IN ABELIAN FIELDS 87

we can put

XM —1=0p(X)(X - 1) (X +,.7) f(X),
where ®,,(X) denotes the m-th cyclotomic polynomial and

s—1

o0 T ().

j=1

hence m = ®,,(1) (1 — ¢%72) f(1). Then we obtain

() = f(1) =271/,

namely

jdic ()] = 20"~ D 7,

Here the symbol o = 3 or a = 2 onwards means (a) = () or (a) = A as
ideals for numbers «, 6 and an ideal 2, respectively.

THEOREM 2. Suppose that m = 4p™, where p is an odd prime and let

K be the imaginary subfield of kn, distinct from k4 with [ky, @ K] = 2

Then the ring Zk of integers in K coincides with Z[n|, where n is the

Gauf$ period ¢, — ¢} and the absolute value of the field discriminant of K
is equal to 2¢(pn)pn¢(pn)fpn_lfl.

Proof. Let G = (1) x (o) with (] = Ca, C;M = (mya and (f =
Ca, (7‘7’1/4 = (;/4, where r is a primitive root modulo p™. We have three
subfields k,, /4, kf, and K of degree ¢(p™) whose galois groups are (7), (0°7)
and H = (0°) with s = ¢(m/4)/2 respectively. Denote (4 by ¢ and (p,/4
by ¢. For (= 1, let n =37 c gy = 1+ 17t = ¢ — ¢, be the GauB
period.

As in the proof of Theorem 1, since Zy,, = Z i |[(m], the relative differ-
ent 0y, /k 18 given by

(Cn —C%) Zy,, = (C— ¢ N2y, =P,

where P is the ramified prime ideal (1 — () of &, 4 over p. Then

| _ \/|d ‘/Nkm akm/K) _ 223 2ns—(m/4p)—
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On the other hand, by G/H = {O‘jH, cITH;0< j < s} , the different v ()
of n is given by

s—1 , ,
m-n)]] {(77 — ") (n - 77“”)}
j=1
s—1 , ,
= /0 2u(¢ + ¢ T {(¢* = ¢*)¢2 = ¢}
j=1

Since we observe that

{7 ¢ 0si<s} = (¢ 0<i<m/a, Goma) =1},

we can put
®pa(X) = (X =) (X = ¢72) f(X),
where
S_l . .
Fx) =TI (x = ¢) (x - ¢),
j=1

hence f(¢?) = @

m/4(C2) (¢2 - C_Z)_l . Then we obtain

n—l_l

0re(n) =20, ,(C%)/ (¢ —¢7h) = 2pmpP" T,

namely

dic(n)] = Nicdre(n) = 22p2ns . pP"" =1 = g2sp2na=m/(in)-1,

Therefore we obtain |d(K)| = |dx(n)|. This completes the proof of
Theorem 2.

Remark 1. Using the same way as in [W. Proposition 2.16.], we can
give a simple proof of monogenesis of imaginary subfields once we know that
they are generated by the Gauf period (,, — ¢,,!. Our methods of proofs
for Theorem 1 and Theorem 2 which give a criterion to Zx = Z[Cn — (.}
can be applied to investigate non-monogenic phenomena in Theorem 3.
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§3. Non-Monogenic case

We claim that the ring Z ko of integers in an imaginary field k,, with
[km k]
section, the Gaufl period does not generate a power basis.

= 2 is non-monogenic. Contrary to the theorems in the previous

THEOREM 3. Suppose m = 3p™, where p is a prime > 3, and K be the
imaginary subfield of ky, distinct from ky,/3 with [ky, : K] = 2. Then the
ring Z i of integers in K does not have a power basis.

Proof. Let w = (3, ¢ = (3. Then ¢, = w - (. For a cyclotomic field
km = Q(Cm): let

G = Gal(kn/Q) = (1) x (o)

be the galois group with 72 = e = g?m/3) and W™ = @, W = w, (T =
¢, ¢ = (", where r is a primitive root modulo p” = m/3. Then (], =
3¢, CG=w .

For s = ¢(m/3)/2, let H = (¢°) be the subgroup of G corresponding
to K and n = ZpeH ¢’ = w(¢ +¢Y) be the GauB period. Then K =

Q(n). Since Zx = Z,Z o = wZ[y] + wTZ[y], any £ € Z can be

written as ¢ = wR + w™S with R, S € Z[y], where v = ¢ + (1. Then by
G/H = {0?H, 0/7H;0 < j < s}, the different 05 (&) of £ is given by

ol {€-ee-¢m)}
j=1
— (w—w)(R— S)SH1 {(5 —50”)}51_[1 {w(R— R”) +w(S — S"j)}.
j=1 j=1

Here, we observe that T—T7 is always divisible by y—~° = (—(P+(1—¢ 77,
which is further divisible by 9B, if T € Z[y] and p € G, where P is the
ramified prime ideal (1 — () of k,,/3 over p. Therefore 0k (§) is a multiple
of

s—1 ,
1-w) =&ML (v-7") = 0 -w) (€~

3
=1 !

namely dg (§) is a multiple of

Nic (6= €7)8%d (K, ) = Nic (€ = €7) d(K).
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Moreover, by the observation above, we have:
(i) If R =S, then € — €77 = & (S _ 502) € P
(i) If S = R%, then € — €7 = w ( € P;
(iii) If R— S =8 —R?, then2(§ —&¢77) = —(R+S) + (R+ S)7 € PB;
(iv) I R—S =R° -5, then ((-¢7)=(w—w")(R-57) € (1 —-w);

(v) Otherwise, as R, S are totally real, we have

v

Nk (£ —€7)| = ‘Nk;/3 ((R —87)? = (R—8°)(S—R%) + (S — 30)2)

> ‘N,% (R—57)(S — R7))
> 1.

This implies that |Ng (£ —£77)| > 1 whenever £ — {77 # 0. Hence, we find
that |dx (§)] > |d(K)| if dx (€) # 0.

Remark 2. As in the previous section, since Zy, = Z g[(n], the rela-
tive different 0y, is given by

(Cm —C2) Zy,,, = BZy,,.
Then

| _ \/|d ‘/Nkm ak:m/K) _ 35 2ns—(m/3p)—

The following is slightly generalized from [N3] owing to a remark from
L. Washington.

PROPOSITION. Let K be a galois extension of degree n > 2 over Q
and £ be a prime number of ramification index e and relative degree f for
K/Q. If either et <n or f > 1, etf <n+e—1, then Zg does not have
a power basis.

Proof. Let a be a primitive element of K in Z . Let the prime ideal
decomposition of £ in the field K be

é%Hﬁ?

For any prime ideal £, we have
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aN5€ = amod £.

Then by
oNe® = (mod HS),
we see that
(aNx€ — a)e =0 (mod ?).
Thus if eNg & = etf < n, then certainly the number
B=0"(aNKE — ) = (1/0)a £ £ (1/0)a

is in Zx but outside of Z[a]. If (a,£) = 1, et/ <n+e—1,thena°f € Zg
but € Zla]. If (a,f) # 1 and Zg = Z[a], then o = 0 (mod £) for a certain
£, hence for any integer £ = by + bjae + -+ + bp_10" "' € Zk, we have
£ =by (mod £), namely f = 1, which contradicts the hypothesis. Thus
there exists an integer of K, but outside of Z]a].

ExXAMPLE. Consider for the case of conductor m = |5-(=3)| = 15 a
subfield K = Q(\/g, \/—_3) of k15 = Q(C15) with [k15 : K] = 2. Since the
prime number 2 splits in Q(v/—15) and £ is inert in K/Q(v/—15) for a
prime ideal £|2, the ring Z i of integers has no power basis by Proposition.
Using the Gauf3 period n = (3((5 + Cgl), we have K = Q(n). Then the non-
monogenesis of the ring Z g is confirmed by Theorem 3, too. The other
examples of prototype are shown in [SN].
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