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ON THE/?-THIN PROBLEM FOR HYPERSURFACES 
OF Rn WITH ZERO GAUSSIAN CURVATURE 

KANGHUI GUO 

ABSTRACT. A subset M of Rn is said to be /?-thin if T e FLP(Rn ) and supp(7) C M 
imply 7 = 0. For a class of smooth (n — 1 )-dimensional submanifolds of Rn, we obtain 
the optimal result for the /?-thin problem, which is applied to give the complete solution 
to a uniqueness problem of wave equations. 

1. Introduction. Let S(Rn) be the space of Schwartz class functions and S\Rn) be 
the dual space of S(Rn). For 1 < p < oo, let FLP(Rn) = {T e S\Rn),T e If(B?)}. 
A subset M of Rn is said to bep-thin if T e FLp(Rn) and supp(7) C M imply T = 0. 
F. Lust first studied this property ([9]) and showed that, for example, the unit sphere of 
Rn (n > 2) has the /7-thin property if and only if/? < -~^. Domar's method in [1] implies 
that Lust's result holds true for every smooth (n — 1 )-dimensional submanifold of Rn with 
nonzero Gaussian curvature. For a general smooth (n — l)-dimensional submanifold of 
Rn, without any curvature assumption, Hormander showed ([5], Corollary 3.3), in our 
context, that M is p-thin if p < ^ . A natural question is: Can we improve the index 
-^r if M has zero Gaussian curvature? 
n—1 

The purpose of this article is to answer the above question for a class of submanifolds 
of Rn with the so called constant relative nullity. 

DEFINITION. Let U be open in Rn] and let F = {(*, P(x)) ; x G u) be a smooth 
hypersurface of Rn. If the Hessian matrix of P, (57^), has constant rank n — 1 — v on 
U, 0 < j/ < n — 1, then we say that F has constant relative nullity v. A smooth (n — 1)-
dimensional submanifold M of Rn is said to have constant relative nullity v, if every 
localization F of M has constant relative nullity v. 

Since v — n — 1 implies that M is a hyperplane of Rn, which is not interesting for our 
problem, we restrict ourselves on 0 < v < n — 2. Our main result is 

THEOREM 1. Let M be a smooth (n — \)-dimensional submanifold of Rn (n > 2) 
with constant relative nullity v such that 0 < v < n — 2, then M is p-thin if and only if 

REMARK 1.1. A manifold with constant relative nullity 0 is just a manifold with 
nonzero Gaussian curvature. So from the inequality ^ < ^ ~ , we see that Theorem 1 
is a natural generalization of the known result for the manifold with nonzero Gaussian 
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/7-THIN PROBLEM WITH ZERO CURVATURE 65 

curvature. A typical manifold with nonzero nullity is the cone surface x^ = jcf •+-- - - +^_i 
in Rn (except the vertex, where the cone is not smooth), whose constant relative nullity 
i s l . 

Noticing that the geometric property of the manifold M plays no role in the proof 
given in [5], we need a different approach to prove Theorem 1. 

It turns out the the methods developed in the study of the so called spectral synthesis 
are the desired tools. The interested reader should consult [1], [2], [3] and [11] for infor­
mation about the subject. Also in differential geometry there is a nice characterization of 
the manifold with constant relative nullity, which makes our approach possible. 

We organize this article as follows. In Section 2, we state and prove Theorem 2, which 
tells that some FLP information of a general distribution supported on a manifold can be 
transferred to a nicer distribution supported on the manifold. Theorem 3 will be stated 
and proved in Section 3. This theorem says that if /z is a smooth mass density on a 
manifold, then some FLP information of \i will force \i = 0. We prove Theorem 1 in 
Section 4 by combining Theorem 2 and Theorem 3. Then we give an example to show 
that the constant relative nullity hypothesis in Theorem 2 cannot be removed. At the 
end of this section, we apply Theorem 1 to obtain the complete solution to a uniqueness 
problem of wave equations (see Theorem 4). In [7], page 331, there is a discussion of 
the global unique continuation theorems, to which our uniqueness result is related. If 
the potential function V(x) is identically zero, our result is better than the one described 
at the bottom of page 331 there. It would be very interesting if one can combine the 
spectral synthesis approach here with the approach in [7] to improve the global unique 
continuation theorems for a potential V(x), being not identically zero. 

Finally we point out that all the results of this article remains true if we only assume 
the manifold M to have differentiability up to a certain order. 

ACKNOWLEDGEMENT. The present work was initiated when the author was a Ph.D. 
student at McGill University, under the supervision of Prof. S. Drury, whose help and 
insightful suggestions are appreciated. Also the author is very grateful to Prof. Y. Domar 
for his encouragement and criticism of the present work, which led to essential improve­
ment of the main result in this article. 

2. Proof of Theorem 2. Let E = {(x, ^(JC)) ; x G U], where U is a bounded open 
set in Rnl, \p(x) is a real-valued function defined on U such that \j) is smooth and the 
rank of ( ^ r ) — n— 1— z/on £/, 0 <i/ < n — 2. Define the smooth mapping S on UxR 

byS(x,v) = (x9y + \i>(xj). 
Given T G S'(Rn) with supp T C £, we can find l(x) G C^(U) such that T = 12T. 

Also it is easy to see that supp(r o S~x) C U x 0. So from a result of Schwartz (cf. [1], 
page 34), we have for some q a representation 

To!Tl=ilTj®^')
9 
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where 7} are distributions on Rn 1 such that supp 7} C (7, and where 6® are the deriva­
tives of order j of the Dirac measure onR. We can find 7 (x) G CQ°(L0 such that 7) = 727) 
for 0 < 7 < 0. Let F1"1 be the open unit ball of Rn~l and let </>(*) G Cg0^""1). For 
/i > 0, denote </>/,(*) = j£=\<t>(\) and <SW*) — ^/iC-*)• Then following Domar [1], we 
define Th G S'(Rn) by 

(r„,/) = ((ror1)*fe/or1), for/G s(^) 

We choose /i so small that for each x G supp(7), as a function of a, </>/,(* — a) is 
supported in £/. It follows that ((7} o 5_1) * </>/,) o 5 for 0 < j < q are smooth mass 
densities on E, vanishing near the boundary of E. This implies that supp(Th) C E. We fix 
such a small ho. 

THEOREM 2. Let E, T and Tho be as above. Then we have 

\\tJp<C(p)\\f\\p, l<p<™. 

To prove Theorem 2, we need several lemmas. In the rest of this article, different 
uniform constants may appear and will be denoted by the same letter C. 

LEMMA 2.1 ([11], COROLLARY 3.2). Iff G C™(Rn-1), then 

li/ll^qsupp/i^n^^), 

where | supp/| denotes the Lebesgue measure of the support off. 

LEMMA 2.2 ([8]). Let U, ip(x) be as in Theorem 2 and let a(x) G C^(U). For (77, Ç) G 
Rnl x R, set 

/ ^ = | M I e-
i(ll-x+^(x))a(x)dx. 

Then 

l / ^ l ^ c a + iT/i + i c i r 3 ^ , 
for all (r/, £) G Rn, where C is independent 0/(77, £). 

LEMMA 2.3 ([11], THEOREM 4.1). Let U, ip(x) be as in Theorem 2 and let b(x) G 
Çg°(f/). Then 

\\be-*%LHRn^<C(l + \ 0 ^ , 

for all real £, where C is independent oft;. 

LEMMA 2.4. Let U, ift(x) be in Theorem 2 and let 7(x) and <t>h0(x) be the functions 
used in the construction ofT^. Set 

gu(x) = 72(x)e- ' '^w j e-^°+W°\hf){x - a) da. 
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Then we have 

(2) j^%Â{w)\dn<C 

where C is independent oft], £ in (1) and independent ofw, £ in (2). 

PROOF. Lemma 2.1 and Lemma 2.2 yield 

(3) <c(i + i£ i r^ . 7(.}/ e-'<^+^)va--*)<HI , , 
jRn-i \\FLl(Rn-1) 

So (1) follows from (3) and Lemma 2.3. To verify (2), let 

HitW(&) = e-tW*) J e-i{w-x+mx))l2(x)<i)ho(x - a)dx. 

Then it is easy to check that H^{&) G C^{U) and for 77, w G Rn~\ £ G #, #£,w(rç) = 
^ ( w ) . Now (2) follows from the proof of (1). The proof of Lemma 2.4 is complete. 

PROOF OF THEOREM 2. Let (77,0 G Rn~l x /? and (jc,y) G fl"1 x R. Let AX*, v) = 
gifa-jr+O^ Then from the construction of 7^, we have 

= (Yl(i
2Tj*$ho)®6>,XoS-1 

V=o 

= £(TJ,I2(X) f, ^ - ^ X ( * - < ^ W ' 
7 = 0 \ JR- I 

= £(TJ^2(x)e~imx)emx) f e^-W^^ix-o)do)(iQl 
j = 0 \ JR" ' I 

= i(Tj,e-i^gu(x))aa 
j=0 

= c£,(Tj,e-'W JRn_t gu(w)e™dw)(ia 

= CJRn](T,e^+^)gu(w)dW 

= CJRni t(w,Ogu(w)dw 

Thus (1) implies ||fAo||oo < C||f1|oo. 
For 1 < p < 00, from (1) and Jensen's convex inequality, we have 

\tho(r],0\p < Op) JRn_t \t(w,0\p %A{yv)\ dw 
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and hence (2) gives 

/ * / * - iKtoOfdridZ < C{p)jJRn_x fRn_{ \ftw9Q\nêrtM\dwdr,dÇ 

- C{p)LL^ | f ( w ' 0 | / 7 * - \SriJiM\dridwdt 

<C(p)JJRni\T(w,0\Pdwd(i 

The proof of Theorem 2 is complete. 

3. Proof of Theorem 3. 

THEOREM 3. Let E be as in Theorem 2. Let a be a smooth mass density on E, vanish­
ing near the boundary ofE. Assume that a is not identically zero on E. Then a G ELp(Rn) 
ifand only if p >%*=£. 

The proof of this theorem depends on the following Hartman's result ([41). 

LEMMA 3.1. (cf [11], LEMMA 5.2). Let M be a smooth (n — \)-dimensional subman-

ifoldofRn with constant relative nullity v. Then for each mo G M, there exists a bijective 
affine-linear transform rmo ofRn such that at rmo(mo) the manifoldMT — Tmo(M) has a 
chart (X, £1) with the following properties. 

(i) Q = Bn^l~v X Bv
b, where 6 is a small positive number, Bk

b is the open ball in Rk 

with radius è and the center at the origin. 
(ii) For v = (v', v") G ft, X(v) G Rn = Rnll/ X Rv x R such that 

X(v\ v") = (fl(v') • v" + b(y\ v", civ1) • v" + d(y'j)9 

where a is a smooth matrix-valued function, b, c are smooth vector-valued functions and 
d is a smooth scalar function. 

(Hi) For each vf
0 G B^x~v, the space of vectors normal to MT at a point m' G M' = 

{X(VQ, V") : v" G Bb} is independent of m'. 

(iv) Let T(vf,v") = (a{v') • v" + b(v'),v"^. Then T is a C°° diffeomorphism from 
ÇI = Bn^x-v x Bv

b onto r(Q) with r(0,v") = (0,v"). Let x = {x',x") G T(Q). Then 
x" = v". 

(v) If we define ̂ {x) G C°°(r(«)) by^oT(y\v") = c(v')-v"+d(v'\ thenVi)(0,x") = 
0 for all x" G Bv

h, and D2îp(0,0) is a diagonal matrix with real entries such that 
D2^(0,0)i, = kt ̂  Ofor i = 1, . . . , n - 1 - v, D2^(0,0)/,/ = Ofori = n - v,... ,n - 1. 
And there exists 8 x > 0 such that éei[(^)}\\ %\'{~v] >6{ > Ofor all (x1 ,x") G ft. 

PROOF OF THEOREM 3. By a smooth partition of unity and by a bijective affine-linear 
transform of Rn, we may assume that E has the form (X, Q) with the properties stated in 
Lemma 3.1. Here we used the fact that FU spaces are invariant under a bijective affine-
linear transform. Also we may assume that the density function A(v', v") of a has the 
property that A(v', v") G C g 0 ^ - 1 - " x Bv

b) and A(v', v") is not identically zero on £1. For 
(771,772,0 € Bnlj/ xRxRv =Rn, we have 

(4) a(//i,772,0 = f f_x_v e - ^ W W ' ^ ^ ^ ^ ^ 
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For 77 = (rium) € Rnll/ xR = Rn~u and 77 ^ 0, let r/° - ^77 so that r?° - (77?, 7$) € 

Sw-1-,/ and 77 = I77I770. For each 770 G Sn~l~\ denote 

gvo,Av) = rf • (a(v') • v" + *(v'),c(v') • v" + rf(v')). 

Then (iii) of Lemma 3.1 implies that the set {vf G B^l~l', Vg^oy/O') = 0} is indepen­
dent of v". Also from (v) of Lemma 3.1, we see that for each v" G Bv

è, the (n — 1 — 1/)-
dimensional submanifold Fv» = {(a(v') • v" + fc(vV(v') • v" + d(v')),v' G B^1"^} 
is smooth and the Gaussian curvature kv»(v') of Fv» is away from zero, uniformly for 
(V, v") G £2. It follows that for 6 small, we may assume that there exists e > 0 such that 
for each 770 G S"-1'", either 

(5) I Vs„oy,(v')| > e, uniformly for (v', v7') G ̂ " 1 " I / x 2Ç. 

or there exists one and only one v'0 G Bn^x~v such that 

(6) V ^ ( v J ) - 0, 

where v'Q is independent of v" G #£. 
For the case (5), integration by parts first for v', then for v" yields 

(7) |d(77,01 < C(A0(1 + HTN[l + (ICI - V ) M ) T ? 

where N is any positive integer and s(rf) is some measurable function of 770. 
For the case (6), we apply the stationary phase method {cf. [8], [10], [12]). Let 

/(f?i.*fe,v")= /„ , ^ - / [ ^ ( " ( v ' ) V W ^^^ 

Then as \rj\ —> 00, /(771,772, v") = P(r\\, 772, v") + £(771,772, v"), where P is the principal 
term of / and E is the error term. Let 

^ . 0 = [Pifiumy^-^dv", 
JB8 

E(r],0= [E(r1umy)e-i^"dv,f. 
JB6 

The formula for P(r)\,r)2,v") is well known (cf. [10], page 331). As I77I —» 00, 
P(r]u m >v") is 

C(v&y'M(voV')M 

where C(VQ, V") is a constant, uniformly bounded for all vf
0 G Bn^x~v and v" G #£. Thus 

(8) P(77,0 = C\j]\~n-^ [ e - ^ " ^ " ^ ^ ^ ^ ^ 

where VQ is a smooth function of 770, B(v'0, v") is a smooth function of (VQ, V") and is not 
identically zero. 
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For small |r/|, from the definition of P(f]\, 772, v") and P(ry, 0> it is easy to see 

(9) |P(r/, 01 < C(A0(1 + \£\TN for any integer N > 0. 

Hence from (8) and (9), we have 

(10) |P(77,01 <C(A0(1 + H r ^ [ l + (\ï\ -t{rf)H)2YK\ 

where t{rf) is some measurable function of 770. Also there is a solid cone S in Rnv with 
the vertex at the origin such that for 77 G 5, £ G /?" 

(ID ip^oi^a^i + ir/ir^ti + lki-^0)^!)2]"^ 
Moreover a detail calculation in the stationary phase method yields 

(12) |£(r/,0| < C(A0(1 + H r ( ^ " + 1 ) [ l + [\i\ - uirfM)2)'f, 

where w(r/°) is some measurable function of 770. 
From (7), (10) and (12), we have 

(13) |d(r/,Ol < C(A0(1 + HT*** [1 + (ICI - v(77°)|r7|)2]_f, 

where (77,0 £ ^" ^ d v(77°) is some measurable function of rf. 
And (7), (11) and (12) yield for (77, ( ) E 5 x fl", 

(14) |<S(iy, 01 » C(A0(1 + HT*** [l + (ICI - v(r/°)|77|)2pf. 

It follows from (13) and (14) that d G L^/T) if and only if/? > ^ ^ . 
This gives the proof of Theorem 3. 

COROLLARY OF THEOREM 3. Let E and Tho be as in Theorem 2. IfTho ^ 0, then 
ThoeFL?(Rn)onlyifp>^. 

PROOF. Suppose that Tho G FLp(Rn) for some /?, 1 < p < ^ ^ , we need to show 
that 7^ = 0. 

Since supp(r^0) C E, which is bounded in Rn, we can find f3(x) G CQ°(/?W) such that 
Th0 ~ 0ThO' Noticing that /3 is a nice function, we see that 7},0 G FL°° by Holder's 
inequality. This again implies that T^ G FLp(Rn) for/7 > jjzjp*. 

Let (771,772,0 £ Rn~lu x # x /T as in Theorem 3. From the construction of T̂ 0 and 
Theorem 3, we have 

Tho(rium>0 = Z ^ i ' ^ O O ' ^ y , 
7=0 

where F,- G FIf(Rn) if and only if p > f ^ . 
When g = 0, Theorem 3 can be applied directly. When q = 1, 7^(771,772,0 — 

F0(m,î/2,O + ^ i (m^2,O(^2) , soFi(T7i,f/2,O0>/2) € FZ/(#") for all/> > ^ ^ since 
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both fho(r]i,ri2,0 ^ d Foi'Hu'ni, 0 do. But from the proof of Theorem 3, we see that 
if Fi is not identically zero, then Fi(r/i, m> 0(irl2) & FLPo(Rn) for some p0 > j ^ z £ . 
Hence we must have F\ = 0. 

The induction argument deals with a general q. We have therefore finished the proof 
of this corollary. 

REMARK 3.1. For the measure a in Theorem 3, the well-known asymptotic estimate 
given in [8] is |d(77, £)| < C(l + \rj\ + l^l)-*"1"*1, which does not give the precise FIT 
information of a as our Theorem 3 does. 

4. Proof of Theorem 1. 

PROOF OF THEOREM 1. Theorem 3 implies the only if part of the theorem, so it 
remains for us to show that if T G FIT(Rn\ 1 < p < ^f^ and suppT C Af, then 
T = 0. For any f3 G C^(Rn), we have 

H ^ ^ H J ^ P < C7||iS||jFX.i||Z'||Jp^ < CTlI^ll^rap. 

so we may assume that supp r i s compact. Since supp Tis compact, by a smooth partition 
of unity, we may assume that M is of the form E as in Theorem 2. Thus we can find 7/,0 

such that 

as) \\tko\\p<c(p)\\nP, I < P < W
2 ^ ~ _ ^ -

From the construction of Tho, it is easy to see that for T ^ 0, we can always find such 
Tho ^ 0. On the other hand, (15) and corollary of Theorem 3 force Tho = 0 for any such 
Th0, so we must have T = 0. 

This finishes the proof of Theorem 1. 
The constant relative nullity hypothesis in Theorem 1 seems to be the right one, as we 

can see from the following example, which shows that in Theorem 2 this hypothesis is 
necessary. 

EXAMPLE. Let* = (xux2) G R2 andx0 G R2 with \x0\ = 3. Let U\ = {x ; |JC| < 1}, 
U2 — {x ; |JC — JCO| < 1}, U[ = {x ; |JC| < \) and U'2 = {x \ \x — xo\ < \}. Let 
U = {x ; \x\ < 5} and choose a(x) G Cf(U) such that a(x) = 1 on U[ U U'2 and 
a(x) = 0 on U\(Ui U U2). Define xl>(x) G C°°(U) by letting V>« = (2 - \x\2)2a(x) for 
xeUu V>W = (£ + *2> W ) for x G U2, V>W = 0 for x G U\(UX U U2). 

Let £ = [ (x, ^(x)) ,x G £/}, then E is a smooth 2-dimensional manifold of/?3, which 
contains a sphere-piece £i = {(*, (2—|JC|2)5) ;x G U[} and a cone-piece E2 = {(x,\x\) ; 
JC G L^}. Choose a nice measure T onE with the smooth density function contained in 
the piece of the sphere. Then from Theorem 3, T G FIT(R3) forp > 3. In particular, T G 
FL4(R3). If Theorem 2 would be true for E, then we could construct Th0 as in Theorem 2 
such that 

ll^„l|4<C||f||4. 
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We can apply Theorem 2 several times to make Tho to be such a distribution on E that 
it does not vanish on the piece of the cone. Choose (f)(x) G CQ°(/?3) such that <f)Tho is 
contained in the piece of the cone and is nonzero as a distribution. Since Tho G FL4(R3) 
implies <f)Tho G FL4(R3), and 4 = f z ^ , Theorem 3 forces (f)Tho = 0, which contradicts 
the fact that (j)TnQ is a nonzero distribution. We have therefore shown that for the above 
manifold E, Theorem 2 is false. 

Now we consider an application of Theorem 1. 

THEOREM 4. Let ube a solution in the distributional sense of the equation: 

d2u d2u d2u d2u _ 
dx2 dx2

a dx2
a+{ dx2

n " 

where n > 3 am/ a is an integer such that 1 < a < n — 1. 77ie/i 
(7) M G Z/(/?n), 1 < p < ^ E r imp/ùw u = 0. 

f/ij For eac/z /? > (
n"72 \ there exists a nonzero solution u of (16) such that u G 

LP(Rn). 

PROOF OF THEOREM 4. From (16) and by taking the Fourier transform of w, we see 
that supp(w) C M = {(Ci,..., in) ; £i + ' * ' + il = Éfl+i + • • • + £n}- T o s h o w t h e m a i n 

idea, we only prove the theorem for the cases of a — 1, rc > 3 and a = 2, n = 4. 
For a = 1, it is easy to check that except at origin, the cone surface M is smooth 

and has the constant relative nullity 1. Denote u by T. Then we know that supp T C M 
and T G FLp(Rnl 1 < p < ^ ^ . For any a G C^(Rn \ {0}), let Ta = aT. Since 
\\Ta\\p < C7(or)||Z'||jp, we can apply Theorem 1 with v — 1 and n > 3 to Ta to yield that 
7 a = 0. So it is only possible that supp T C {0}. It follows from an elementary result 
(cf [6], page 46, Theorem 2.3.4) that there exists an integer k > 0 such that 

T = Zla{<kaad
a(5). 

In this case, it is easy to see that the assumption that T G FLP(Rn), 1 < p < ^5p 
implies that aa = 0 for all a. Thus T — 0 and hence u — 0. This verifies (i) of the 
theorem. To verify (ii) of the theorem, we choose any smooth mass density / ionM such 
that its density function a G C^{M \ {0}). Then one sees that /2 is a C°° solution of ( 16) 
by differentiation and that /2 G Z/(/?n) for/? > ^ y - } from the if part of Theorem 3. 

Forn = 4, a = 2, we denote M+ = {(£i,. . . ,£4) ; £4 = ( t f + É l - ^ ) * ; C1+C2 > £3}-
Without loss of generality, we may assume that fi is supported on M+ and the boundary 
of M+: dM+ = {(£1,.. . , £4) ; £1 + £2 = 3̂» £* = 0}. A routine calculation shows that 
M+ is a smooth 3-dimensional submanifold of/?4 with the constant relative nullity 1, so 
an application of Theorem 3 gives (ii) of the theorem. Furthermore Theorem 1 and the 
argument used above for the case a — \ lead to that fl = 0 on M+. Hence the task of 
verifying (i) is reduced from a 3-dimensional submanifold of R4 to a 2-dimensional cone 
dM+ in R3. Noticing that ^jE^ — ^PT^> w e m a ^ aPPty Theorem 1 again to fi on dM+ to 
yield that ft = 0 since a — 1 for 3Af+. 
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For the general case, the geometric meaning of the constant relative nullity helps one 
to figure it out that except some lower dimensional submanifold(s) of M, M is a smooth 
(n — 1 )-dimensional submanifold of Rn with the constant relative nullity 1. Then one uses 
the inequality 2^J2

1} < 2(„"T3
2) for n > 4 and induction on the dimension n. 

This is the end of the proof of Theorem 4. 

REMARK 4.2. Hormander's general result in [5] implies that if « is a solution of (16) 
and u G LP{Rn) for 1 < p < ^ , then u = 0. Our Theorem 4 is not a general result, but 
it does give the complete solution of the LP uniqueness problem for the wave equations. 
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