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ABSTRACT 
We developed a wearable experimental sensor setup featuring multimodal EEG+fNIRS neuroimaging 
applicable for in situ experiments of human behavior in interaction with technology. A low-cost 
electroencephalography (EEG) was integrated with a wearable functional Near-Infrared Spectroscopy 
(fNIRS) system, which we present in two parts. Paper A provide an exhaustive description of setup 
infrastructure, data synchronization process, a procedure for usage, including sensor application, and 
ensuring high signal quality. This paper (Paper B) demonstrate the setup's usability in three distinct 
use cases: a conventional human-computer interaction experiment, an in situ driving experiment where 
participants drive a car in the city and on the highway, and an ashtanga vinyasa yoga practice in situ. 
Data on cognitive load from highly ecologically valid experimental setups are presented, and we 
discuss lessons learned. These include acceptable and unacceptable artefacts, data quality, and 
constructs possible to investigate with the setup. 
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1 INTRODUCTION 

Engineering design research is trending towards increasing experiments that integrate physiology and 

neuroimaging measurements (Balters & Steinert, 2017; Goucher-Lambert et al., 2019; Hay et al., 

2020; Steinert & Jablokow, 2013). Such experiments often exist with a trade-off between experimental 

control and ecological validity (Hay et al., 2020), which is problematic since laboratory settings 

simply cannot provide results replicable in the real word (Cairns & Cox, 2008; Okamoto et al., 2004). 

Highly ecologically valid (aka in situ) studies demonstrate how humans appropriate technological 

solutions in their intended context, accommodating the often unpredictable, real-world environments 

in which technology is used (Consolvo et al., 2007). Thus, they are suited for design research (Balters 

& Steinert, 2017; Hay et al., 2020; Mayseless et al., 2019). Electroencephalography (EEG) and 

functional near-infrared spectroscopy (fNIRS) are two portable and complementing neuroimaging 

modalities serving as a substitute for neuroscience gold standard fMRI, by measuring electrical brain 

activity and cerebral hemodynamic response respectively (Herold et al., 2018; Jacko, 2012; Pinti et al., 

2018). However, portable neuroimaging systems are expensive, often come at the cost of low 

resolution and limited options (Ahn & Jun, 2017; Cisler et al., 2019; Piper et al., 2014). Moreover, 

most neuroimaging studies are often confined to the comfort of a laboratory or an educational setting, 

and not in situ (Gero & Milovanovic, 2020; Goucher-Lambert et al., 2019; Hay et al., 2020; Steinert & 

Jablokow, 2013). Thus, there is a need for a portable experimental sensor-setup featuring multimodal 

neuroimaging data capture at a lower financial threshold, and there is a need to demonstrate its 

feasibility in situ. 

1.1 The study goal 

This work contributes by demonstrating the feasibility of concurrent EEG and fNIRS measurements in 

situ. We increase ecological validity within these demonstrations by testing real-world experimental 

use cases of increasing complexity. This paper demonstrates three use cases: a conventional human-

computer interaction experiment, a driving experiment in situ involving city and highway driving, and 

a moving yoga practice in situ. Together with concreate design experiment examples this 

exemplification expands the range of what is possible within a design research experiment.  

The paper briefly describes sensor placement, pre-processing and analysis of EEG and fNIRS, before 

demonstrating the cases in section 3. Here we provide a description of experimental procedure, results 

and lessons learned for each case. Section 4 provide examples of potential design experiments. 

Concluding remarks follow.  

2 SENSOR PLACEMENT, DATA PROCESSING AND ANALYSIS 

Sensor placement. We used a wearable EEG+fNIRS (Dybvik et al., Under Review). FNIRS optodes 

were placed over the prefrontal cortex (montage by NIRx Medical Technologies, LLC) using 8 

sources and 7 detectors. The sources (denoted Sx) were placed as follows: S1: F3, S2: AF7, S3: AF3, 

S4: Fz, S5: Fpz, S6: AF4, S7: F4, and S8: AF8. The detectors (denoted Dx) were placed as follows 

D1: F5, D2: F1, D3: Fp1, D4: AFz, D5: F2, D6: Fp2, and D7: F6. This configuration gives 40 

channels. EEG electrodes were placed as follows: AFp1, AFp2, C3, C4, P7, P8, O1 and O2, and one 

reference electrode placed on each earlobe. Optodes and electrodes were positioned according to the 

five percent system (Oostenveld & Praamstra, 2001). 

Data processing and analysis. For EEG, an initial power spectral density analysis within the 

frequency bands delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 

Hz) was performed, a common approach for cognitive load investigations (Borghini et al., 2014). Pre-

processing included bandpass filtering (1 - 50 Hz), and a notch filter (48 - 52 Hz) to attenuate line 

noise, using a Hamming windowed sinc FIR filter. Bad channels and artifacts were removed by visual 

inspection. Power frequency density was calculated at 1 Hz using Welch’s power spectral density 

estimate. Results were converted to 𝜇𝑉2/Hz, calculating total band power and relative band power. For 

fNIRS, pre-processing included conversion from raw data to optical density, then conversion to 

hemoglobin concentration using the modified Beer-Lambert Law. Then a general linear model 

regression, using an autoregressive pre-whitening method with iteratively reweighted least-squares 

(AR-IRLS) (Barker et al., 2013; Santosa et al., 2018), was performed for first-level statistics. This 

procedure is more robust to effects of physiology and motion compared to prior recommendations 
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(e.g. bandpass filtering, motion artifact correction, cardiac response removal etc.), and is therefore now 

recommended (Santosa et al., 2018). EEGLAB (Delorme & Makeig, 2004) and NIRS toolbox 

(Santosa et al., 2018) in MATLAB was used.  

3 DEMONSTRATION CASES 

This section presents concrete test cases selected to demonstrate flexibility in our multimodal 

EEG+fNIRS sensor setup, through a variety of experimental scenarios. These include a conventional 

human-computer interaction setup, in situ city and highway driving, and in situ ashtanga vinyasa yoga 

practice. We describe each respective case, show resulting data, and detail lessons learned. Procedure 

for sensor application is described in-depth elsewhere (Dybvik et al., Under Review). Collected data 

was processed according to the pipeline described in section 2.  

3.1 Case 1: Conventional laptop setup 

3.1.1 Description of conventional human-computer interaction setup 

A conventional computer setup was used as a pilot experiment to test signal quality and analyze data. 

Participants were tasked with playing a computer game at different difficulties and responding to 

random auditory alarms using an Arduino device. Computer game difficulty was set to easy in the first 

condition, and hard in the second condition. The participant was first exposed to a baseline condition, 

sitting and relaxing in front of a static screen with instructions to relax for two minutes. An 

assimilation period followed, before exposure to each condition for four minutes, with a two-minute 

resting period between conditions. This experiment was set up in a standard office cleared for 

everything except desks, chairs, and a wall separating participant and experimenter, see Fig. 1a.  

 

Figure 1. Full sensor setup in A) a conventional laptop configuration, and B) in situ driving. 

3.1.2 Results from preliminary data analysis 

Result of preliminary analysis EEG. The power spectral density (PSD) plots indicated decent signal 

quality during baseline, and easy condition (Fig. 2a. and 2b). The PSD plot for condition hard indicated 

a moderate amount of inference from the fNIRS, expressed by regular peaks at harmonics of the fNIRS 

sampling rate (7.8 Hz) (Fig. 2c). Thus, this data was not included in further analysis. According to 

literature, increasing cognitive workload correlates with decreased power in the alpha band at central, 

and posterior locations (Antonenko et al., 2010; Klimesch, 1999; Sterman et al., 1993), and an increase 

in the theta band at frontal locations (Borghini et al., 2014). The results obtained during this pilot 

experiment indicate the same trends, showing increased theta power at location AFp2, and alpha-

suppression in central, and posterior locations C3, C4, P7, P8, O1, and O2 (see Fig. 3). This indicates 

that playing the computer game induce higher cognitive load than a baseline condition, as expected. 

Result of preliminary analysis fNIRS. Three representative data slices for each condition were 

selected for illustration in Fig. 4, which plots concentration changes in oxygenated hemoglobin, 

ΔHbO2, from all channels. Differing mental demands can be seen in the graph as changes along the y-

axis, which allows for visual observation of changes in cognitive load. The scale of the y-axis depends 

on participant, context and fNIRS calibration, and is not absolute. Fig. 4 clearly shows the cardiac 

response as periodic peaks at ~ 1 Hz throughout the data, and we observe an overall trending line over 
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time and condition. Apart from a couple of spikes from slight motion artifacts (at 13 and 15s) this 

selection is an example of data of good quality. The general trend for this participant is an increased 

cognitive load during condition hard and a lower demand during condition easy, although not as low 

as the baseline. We clearly see a difference in neural activation in the three conditions. The participant 

is working harder mentally during the game with high difficulty. 

  

Figure 2. Power spectral density plots for the baseline (A), easy (B), and hard condition (C). 

 

Figure 3. Comparison of spectral band power during baseline and easy condition. One 
channel was discarded in pre-processing. 

3.1.3 Lessons learned - Identifying bad data 

Equally important as identifying high quality data is the ability to determine what poor data looks. 

Identifying bad EEG data. Crosstalk with fNIRS will exhibit peaks in the FFT-plot at harmonics of 

the fNIRS sampling rate, which can be seen in Fig. 2c, but also in OpenBCI GUI during visual 

inspection prior to recording. Furthermore, high signal amplitudes (>50 μV) might indicate presence 

of excessive noise in the signal. Very poor electrical contact between electrodes and scalp is indicated 

by "Near railed" or "Railed" in the time-series plot. 

Identifying bad fNIRS data. Bad channels are indicated as red in NIRStar 15.2's Quality Scale tool. 

If such data is recorded, large, inconsistent signal fluctuations (spikes) in some channels dominate the 

data as seen in Fig 4b, and they will be discarded in an analysis. Close investigation of Fig. 4b reveal 

good channels fluctuating around zero, with a visible cardiac response. 
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Figure 4. A) ΔHbO2 over time show increased neural activating during high difficulty.  
B) fNIRS data with insufficient quality. 

3.2 Case 2: In situ city and highway driving 

3.2.1 Description of an in situ driving experiment 

A pilot experiment was conducted to investigate brain activity while driving a car to test the setup's 

feasibility in in situ environments, and test the ability to differentiate between various levels of 

cognitive load. This pilot experiment was performed on two separate days, with two participants (one 

male, one female). Fig. 1b depicts one participant wearing the sensors. Additionally, a video was 

recorded simultaneously using a web camera. A two-minute baseline was recorded while the 

participant relaxed inside the parked car. Afterwards, participants were instructed to drive around the 

city center following vocal directions from the experimenter in the front passenger seat. After 20 

minutes, participants were instructed to take an exit to the highway. A 20-minute recording of 

highway driving was made after crossing city border. We continued data collection afterwards to test 

the setup's battery life, to benchmark for in situ experiments without access to external power sources. 

We managed a total of 66 minutes of recorded data, with the laptop battery being the limiting factor. 

Prior to the experiment we hypothesized higher cognitive load associated with city driving than 

highway driving due to a more complex environment, and increased handling of the car.  

3.2.2 Results from preliminary data analysis 

Result of preliminary analysis EEG. For visual artifact removal, a five-minute data slice starting at 

the tenth minute of city and highway, was extracted. The full two minutes of baseline was processed. 

During visual inspection, 54% of city, 44% of highway, and 25% of baseline data were rejected. Thus, 

analysis is based on 106 s. of baseline data, 137 s. of city data, and 169 s. of highway data. Increased 

cognitive load has been associated with increased relative theta-power at frontal regions (Borghini et 

al., 2014) and decreased alpha-power at parietal and occipital regions (Borghini et al., 2014). The 

results (Fig. 5) show a relative increase in theta-power in the frontal regions (AFp1, AFp2), in 

accordance with hypothesized cognitive load: baseline < highway < city.  Additionally, we observe an 

inverse trend within the alpha band at central and posterior locations (C3, C4, P8, O1, O2), i.e. 

decreasing alpha-power with increasing cognitive load. There is a substantial difference in relative 

alpha power between baseline and the two driving conditions. The difference between the two driving 

conditions is smaller, but the general trend of lower alpha power with hypothesized increased 

cognitive load holds true for all central and posterior locations, except for C4. Here, relative alpha-

power is marginally higher during city driving compared to highway driving. Still, overall results 

indicate highest cognitive load imposed by city, followed by highway driving, and baseline condition. 
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Figure 5. Relative spectral band power. Electrode P7 discarded due to signal quality.   

Result of preliminary analysis fNIRS. Three representative data slices were selected for illustrating 

concentration changes in oxygenated (ΔHbO2) and deoxygenated (ΔHbR) hemoglobin from three 

periods during the drive: resting state (baseline), city driving and highway. In Fig. 6a we see ΔHbO2, 

which increase with increased brain activation. Fig. 6b depicts ΔHbR, which decrease with brain 

activation. The optodes' placement over the prefrontal cortex is indicative of cognitive load. As such, 

we observe an increase in the driver's cognitive demand during city driving compared to baseline and 

highway. Interestingly highway driving seems to impose less cognitive demand than a resting state 

(baseline), contradictory to EEG results. In part, this discrepancy may result from different data slices 

being analyzed, but also from difference in technical principle of EEG and fNIRS. Mental fatigue may 

be a reason for lower cognitive load during highway compared to baseline (as measured by fNIRS), in 

which case it supports literature that highlights drivers' mental fatigue as major risk and cause factor 

for road accidents (Ahn et al., 2016; Ingre et al., 2006; Lal & Craig, 2001). 

  

Figure 6. Changes in ΔHbO2 (A) and ΔHbR (B). ΔHbR channels are centered around zero, 
whereas ΔHbO2 channels fluctuate more. 
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3.2.3 Lessons learned - The setup enable in situ studies of important research topics 

Changing experimental setup from a stationary classical experiment room to a mobile in situ car 

driving experiment did not produce major challenges or any corrupt data. In fact, the 50Hz 

interference in EEG from building power lines disappeared. The level of noise did increase (notably 

motion artifacts from muscle movement, and ocular artifacts). This could be mitigated by marking 

movements captured by video and removing this data. Furthermore, there exists several methods for 

artifact removal in EEG-signals that preserve more raw data (Jung et al., 2000; Kim & Im, 2018; Zeng 

et al., 2013). Of course, cabling and physical setup in the car do generate some extra, though 

negligible, work. As mentioned, our data analysis supports research on drivers' mental state, most 

notably cognitive load, fatigue, and drowsiness (Ahn et al., 2016; Borghini et al., 2014; Ingre et al., 

2006; Lal & Craig, 2001). Our setup is able to record potentially crucial changes in mental state, such 

as cognitive workload, and can thus be used to study such important research topics in situ.  

3.3 Case 3: Ashtanga Vinyasa Yoga practice in situ 

3.3.1 Description of an Ashtanga Vinyasa Yoga practice 

A pilot experiment of an Ashtanga Vinyasa Yoga practice (ashtanga for short) was conducted to 

further test robustness and flexibility of the setup in studies with movement. Ashtanga is a moving 

yoga practice consisting of a standardized sequence of physical postures, connected by flowing 

movements and synchronized breathing patters, performed the same way every time (Mikkonen et al., 

2008). Two participants practiced the half primary series by following instructions from a free online 

class (Ashtanga Yoga Full Primary Series with Ty Landrum, 2020) in their own living room. They 

were instructed to perform the practice as normal as possible. The sensors were attached to one 

participant, and fNIRS wires were secured to the participant's body by means of a tight-fitting top. The 

participant wearing the sensor cap did not perform postures that would affect electrode and optode 

scalp connection (e.g. headstand), and had two years of experience practicing other yoga types. 

Several sessions have been recorded. The illustrated session (Fig. 7) collected data from EEG, fNIRS, 

electrocardiography and two webcams simultaneously. However, only fNIRS data has been analyzed 

thus far and will discussed in the following section. 

  

Figure 7. Screenshots from webcam recording during the ashtanga practice. 

3.3.2 Results from preliminary data analysis 

Result of preliminary analysis fNIRS. Fig. 8 depicts hemoglobin data, and Fig. 9 data after 

additional filtering. In Fig 8 ΔHbO2 and ΔHbR are dominated by periodic large spikes across all 

channels. These are motion artifacts caused by the transition between postures. By investigating data 

from approx. 500 - 1000 s, we see several "equal" periods where high quality data is collected. 

Combined with domain knowledge and video recording we infer that these "good" periods are 

collected during the posture downwards-facing dog. In between each good period there are similar 

motion artifacts, stemming from the transition between postures. Towards the end of the session the 

number of seated positions increase, and from 3500 s and out the participant performed less postures 

which resulted in less transitions and thus less artifacts as is visible in Fig. 8. By applying a TDDR 
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filter (corrects motion artifacts by down-weighting outlier fluctuations) (Fishburn et al., 2019) we can 

view trend lines in the data over time. As we can see most channels follow the same trend with and 

same artifacts, being more dispersed at the beginning and end of the practice.  

 

Figure 8. ΔHbO2 and ΔHbR. 

 

Figure 9. ΔHbO2 and ΔHbR data with TDDR filter (Fishburn et al., 2019). Continuous fNIRS 
data stream throughout moving sequence of ~ 1 h and 18 min. 

3.3.3 Lessons learned - motion artifacts are present; However, we can still acquire acceptable 
data 

In this yoga practice we experience movement artifacts in fNIRS data that are systemic and occur 

across all channels. Since the newer statistical models (AR-IRLS mentioned in section 2) account for 

this the systemic artifacts will not be particularly problematic in further statistical inference testing. 

This differs from signal artifacts discussed in section 3.1.3 and Fig. 4b since the latter affects only one 

channel. Although not needed for statistical testing, the TDDR motion artifact filter enable visual 

investigation of overall trends in the data - to the extent that we can separate channels from each other. 

One channel (S1-D2, purple in Fig. 9) behaves differently from the others, making it subject for 

additional scrutiny. It's located toward the montage's back left. The EEG battery pack was head 

mounted, and its weight might alleviate pressure from optode tips, or cause loss of contact with the 

scalp. This contributes to the large spikes in the data. Furthermore, battery position was slightly to the 

left on the top of the head, making S1-D2 one of the closest channels. This may contribute to the 

deviating behavior of the channel. The battery pack should have been placed on the body instead of 

the head. To summarize, despite motion artifacts, the setup can be used to acquire reasonable data by 

using motion artifact correction algorithms.  

4 EXAMPLES OF POTENTIAL EXPERIMENTS IN DESIGN RESEARCH 

The increasingly complex experiment demonstrations showcase feasibility of acquiring neuroimaging 

data from participants who are 1) seated at a desk conducting tasks within desk range, 2) driving a 

vehicle (conducting a multifaceted task outside a laboratory), and 3) moving dynamically in space by 

exercising intentional motor control. We interchange these tasks for typical tasks in design research to 

gain understanding of potential experiments. Studies on sketching conventionally have participants 

seated at a desk while they use sketches as means to complete a design task. Therefore, it is possible to 

use the EEG+fNIRS setup to measure the cognitive processes that take place while sketching. This 

may even be coupled with the think aloud protocol for triangulation purposes, and to see if participant 

introspection concurs with neuroimaging data. The setup may also be used in product evaluation in 
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which users wears EEG+fNIRS while interacting with the product to investigate whether the product is 

fulfilling its intended purpose, e.g. is a proposed interface as intuitive as intended? This can be 

particularly helpful when comparing several design alternatives. There are many opportunities to 

investigate the cognition of designers while engaged in the design process, as highlighted by Hay et al. 

(2020). Given that design is a collaborative activity often conducted by groups of individuals, it is 

interesting to investigate how they work together to reach mutual understanding and a design problem 

solution. The neurological synchrony of designers in ecologically valid situations may indeed be 

investigated with the proposed EEG+fNIRS setup, building upon prior research (Mayseless et al., 2019). 

5 CONCLUDING REMARKS 

This paper demonstrates a wearable experimental sensor setup collecting multimodal EEG+fNIRS 

neuroimaging data capture in situ. We demonstrate to which variety of experimental scenarios the 

setup can be appropriated to. Three distinct use cases were tested: a conventional human-computer 

interaction experiment, a driving experiment in situ involving city and highway driving, and a moving 

yoga practice in situ. Resulting data on cognitive load from highly ecologically valid experimental 

setups are presented. We also discuss lessons learned including signal quality, motion artifacts, and 

illustrate acceptable and unacceptable data artifacts. We propose to use this setup to measure construct 

such as cognitive load and suggest a variety of potential experiments pertinent to design research. 

Taken together, this demonstrate that an EEG+fNIRS sensor setup is both feasible and valuable for 

design research, and expands the range of what is possible within a design research experiment. We 

encourage the community to use the setup and adapt it to your in situ experiments.  
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