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A note on the diffusion approximation for the variance of the
number of generations until fixation of a neutral mutant gene
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SUMMARY

A general expression is derived for the variance of time to fixation of a
neutral gene in a finite population using a diffusion approximation. The
results are compared with exact values derived by matrix methods for a
population size of 8.

The average number of generations until fixation of a mutant gene in a finite population
has recently been given by Kimura & Ohta (1969) with the help of the diffusion model,
whereas Narain (1969) has studied the mean and the variance of the number of generations
until fixation using transition matrices.

Kimura & Ohta (1969), however, did not derive an expression for the variance of the
length of time until fixation, though they did mention that their method could be adapted
to obtain the nth moment of the length of time until fixation in terms of the (n — l)th
moment. The object of this note is, therefore, to derive the variance of the time until
fixation using the diffusion approximation.

Let us consider a mutant allele A% with frequency p (the normal allele A1 being at
frequency 1 — p) in a diploid population of N individuals with variance effective number
Ne, which may differ from N if the mating is not random or if the distribution of the
number of offspring does not follow a Poisson distribution. Ne is defined as the size of an
idealized population that would have the same variance of change in gene frequency as
the population under consideration (Kimura & Crow, 1963). Let u(p, t) be the probability
that allele A2 gets fixed by the fth generation starting with frequency p at t = 0. Let

2*i(p) = f °Jo (1)

*!(?)= nv^^d*. (2)
Jo ot

Then MJp) = T^p)^), (3)

represent respectively the average and the second moment about the origin of the length
of time until the mutant A2 becomes fixed in the population, excluding the cases in which
it is lost from it. Here u(p) is the probability of ultimate fixation such that

t-wo
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If Mgj, and VSv represent the mean and the variance of the rate of change in the frequency
of A2 per generation, then following Kimura (1962), u(p, t) satisfies the Kolmogorov back-
ward equation

Following the technique of Kimura & Ohta (1969), the set of differential equations for
Tx(p) and S^) are respectively given by

^ 0. CD

o. (8,

The former differential equation has been derived and solved by Kimura & Ohta (1969)
with boundary conditions

l i n i T ^ ) ^ finite, (9)
p-*0

2\(1) = 0. (10)

The boundary condition (9) means that in a finite population a single mutant gene which
appeared in the population reaches fixation within a finite time, whereas (10) is obvious.
If we transform (7) into a differential equation for Mt(p) by differentiating

T1(p)=M1(p).u(p)

twice and substituting in (7), we get

d'Jf.fr) I" VivG{p)}&Mx{p)

^ (12)

Since Um u(p) is finite and M(1) = 1, the boundary conditions for the differential equation

in Mx(p) are
lim J f ^ ) = Kx, (13)

p—>-oo

where Kt is a finite quantity -^i(l) = 0. (14)

In the case of random drift alone, we have

MSl = 0, (15)

VSp = p(l-p)l2Ne, (16)

u(P) = P> (17)

G(p) = 1. (18)

The differential equation (11) then reduces to

| 2 dM.lp) t ±Ne Q

dp2 p dp J>(1— p)

https://doi.org/10.1017/S0016672300001579 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300001579


Short paper 253

The solution of this differential equation gives the same result as given by Kimura & Ohta
(1969) for a selectively neutral gene. In particular

#1 = 4iVe, (20)

g.(l-.p). (21)

For the second moment about the origin of the length of time until fixation of A2, we
transform (8) into a differential equation for V^p) by differentiating St(p) = Vx(p). u{p)
twice and substituting in (8). This gives

It may be noted here that (11) and (22) are similar to the set of differential equations
respectively for the mean and the second moment (about the origin) of the length of time
until homozygosity (Watterson, 1961,1962) with the difference that MSv has been replaced
here by [MSv+ (F4j)G(p))lu(p)~\ as for (7) and (11). The boundary conditions to be imposed
are, following the same arguments,

lim V.ip) = K2, (23)
p-s-0

where K2 is a finite quantity ^i(l) = 0. (24)

In the case of random drift, we apply (15) to (18). The differential equation (22), then,
reduces to

dW.jp) 2dV1(p) SN.M^p)
dp2 p dp p(l—p)

The solution of (25), after substituting for M^p), is given by

VM = 5-^-322^1 -I-log^log^l-p)-^)], (26)

where A and B are constants of integration and F(p) is given by

/P. (27)

Using the boundary conditions, we get

5 = ̂  + 32^^(1) , (28)

[jJ^] (29)
Thus Vx(p) is given by

(30)
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Since Vx(p) is finite as p -»• 0, the terms inside the second bracket with the factor [1 — (1/p)]
in (30) must vanish. This means

[fo^\ (31)
We then get

* [ ( ^ T^ J1 ^ j ( 3 2 )
Using the results on dilogarithms given in Abramowitz & Stegun (1965), (32) reduces to

V.ip) = 32J^[i^log.(1 -p) + £ - £ p*/k^ . (33)

The variance is then given by
V=Vl{p)-[M1(p)f

= 32iV2
e ̂  + ( ^ ) l o g . (1 -3»){l - ^ l o g . (1 -j>)} - j ^ p*jk^ (34)

and the coefficient of variation is found to be independent of the effective population size.
Also, in the limit, when p-*•(), it follows from Abramowitz & Stegun (1965) that

lim V-,(P) = K»

(35)

The variance, in this case, is
V = K2-K\

(36)

giving a coefficient of variation of about 54%.

DISCUSSION

It is apparent from the preceding derivations that an originally rare neutral mutant
gene in a population of effective size Ne takes about 42Ve generations on an average, with
a standard deviation of about 2^,, generations, until it spreads in the whole population.
According to Kimura & Ohta (1969) neutral mutation and random drift are of fundamental
importance in determining the genetic structure of Mendelian populations. The time that
is required for establishing the mutant may average four times the effective population
size but may also vary considerably.

Using computer results based on transition matrices it was shown in Narain (1969) that
the coefficient of variation of 54 % is obtained when p tends to zero and that it is the
minimum possible. It increases as the gene frequency increases. The standard deviation,
however, decreases as the gene frequency increases. The following table shows the values
of the mean and the standard deviation of time until fixation of A 2 as calculated from (21)
and (39) and expressed as multiples of the effective population size for various initial
frequencies of A2.

I t is apparent that a larger mean is associated with a larger standard deviation.
The diffusion approximations to the mean and the standard deviations given in Table 1

have been compared with the exact values obtained by the transition matrix approach as
developed in Narain (1969). The comparisons are shown in Table 2 for a population of size 8.
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Table 1. Mean and standard deviation of time until fixation of mutant A2in
terms of the effective population size

V
Tending to zero

0125
0-250
0-375
0-500
0-625
0-750
0-875
1-000

400
3-74
3-45
313
2-77
2-35
1-85
119
000

21536
2-1489
2-1302
20947
2-0342
1-9344
1-7678
1-4502
0-0000

Table 2. Exact values and diffusion approximation (D.A.) for mean and standard
deviation of the number of generations until fixation of A2 (Ne = 8)

Mean Standard deviation

P

0-125
0-250
0-375
0-500
0-625
0-750

Exact

28-30
26-06
23-57
20-76
17-50
13-60

D.A.

29-92
27-60
2504
22-16
18-80
14-80

Difference

1-62
1-54
1-47
1-40
1-30
1-20

Exact

16-58
16-46
1619
15-73
14-96
13-65

D.A.

1719
1704
16-76
16-27
15-48
1414

Difference

0-61
0-58
0-57
0-54
0-52
0-49

0-875 8-55 9-52 0-97 1114 11-60 0-46

It is quite clear from Table 2 that the diffusion approximations overestimate both the
mean and the standard deviation. However, while the overestimation for the mean is, on
an average, about one generation, it is only about half-generation for the standard devia-
tion. The former observation is consistent with that obtained by Ewens (1963) in regard to
the transition matrix results and diffusion approximation for the mean time until homo-
zygosity. He also observed that the mean error in diffusion approximations is approximately
unity.

The author is grateful to Drs M. Kimura and T. Ohta for permission to read the manuscript
of their paper before publication and to Professor A. Robertson, and Dr W. G. Hill for
valuable discussions.
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