J. Austral. Math. Soc. (Series A) 28 (1979), 257-268

TWO NOTES ON FRAMES

D. WIGNER

(Received 6 July; revised 24 October 1978)

Communicated by R. Lidl

Abstract

The coproduct of two frames A4, B (equivalently the product of two locales, see Isbell (1972a))
will be shown to be given by the lattice of Galois connections between 4 and B (the connection
product in the sense of Isbell (1972b)). We show the inverse limit of a direct system of locales to
be given by the set inverse limit of the underlying lattices under the bonding antimaps (see Dowker
and Strauss (1975)). This implies the existence of infinite locale products.

We also realize the locale of frame congruences as a pullback in the category of locales.

Subject classification (Amer. Math. Soc. (MOS) 1970): 06 A 35, 06 A 23.

0

Let D be a distributive lattice and let a,b be elements of D. A relative pseudo-
complement of a with respect to b is an element of x of D such that yra<b
if and only if y < x. Such an element is necessarily unique. A lattice is called
Brouwerian if a relative pseudocomplement of a with respect to b, denoted ax* b,
exists for any pair of elements of D. For complete lattices this is equivalent to the
join infinite distributivity condition x A VeYe=\/a (x Ay,- A frame is a complete
Brouwerian lattice, and a frame map is a lattice homomorphism of frames which
preserves the maximum element and arbitrary unions. The open sets of any
topological space form a frame and there is a contravariant functor from the
category of topological spaces to the category of frames which takes any con-
tinuous map to the associated inverse image map on the associated frames. If the
frame L is isomorphic to the lattice of open sets of the space X, we will sometimes
abuse language and say that L ‘is’ the space X.
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Frames have been studied in Dowker and Papert (1966), Isbell (1972a), Dowker
and Strauss (1975) and Dowker and Strauss (1976). Following Isbell (1972a), we
call the dual category to the category of frames the category of locales. Dowker
and Strauss (1975) have exhibited a concrete realization of the category of locales
as follows: the objects are the same as those of the category of frames, and to every
frame map f: L — M is associated a locale map g: M — L defined by the formula
gw)=\/ {xeL|f(x) < u}. Then f can be recovered from g by the formula

) fl@=N\{ueM|a<gw)}.

We call f and g adjoint maps; they satisfy fg(w) < u, gf(a) > a, and f(a) < u if
and only if @ € g(u). A function g: M — L is a locale map if and only if it satisfies:
(D) g(Aattd) = N\a 9,
2) gw)=1 ifand onlyif u=1,
() axgw)=g(f(a)*w),
where fis defined by (1).
Dowker and Strauss only state < in (3); the opposite inequality follows from (1)
as follows:

ang(f(a)*u) < g(f(@) A g(f(a) *u) = g(f(a) A(fa) * u)) < g(w)

g(f(@)*u) < axg(u).
The equality (3) shows that the image of a locale map is a g-set in L (see Dowker
and Strauss (1966)), that is a subset S of L closed under arbitrary intersections and
such that if /eL and seS then /+seS. Since the g-sets in L can be naturally
identified with the sublocales of L this shows that a locale map admits a natural
decomposition into the composite of a surjection and an injection.

This note is divided into two parts. In the first part, we give a lattice theoretic
construction of the product of locales (coproduct of frames), different from that in
Dowker and Strauss (1976). We show that the product is given by a ‘tensor product’
construction, the lattice of Galois connections, which has also been considered by
Isbell (1972b) and Shmuely (1974). We also construct the inverse limit of a directed
system of locales, thereby proving the existence of infinite products.

In the second part we consider the topological representation of distributive
lattices (Stone (1937); Gratzer (1971)) in the case where the distributive lattice is a
frame. We also exhibit the dual lattice Q’(L) to the lattice of frame congruence
relations of a frame L (Dowker and Papert (1966); Isbell (1972a)) as the pullback
of a diagram

gw —— IBL)

.

L  — I(L)
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in the category of locales. Here I(L) is the lattice of ideals of L or (by our abuse of
language) ‘is’ the Stone representation space of L, and I(B(L)) ‘is’ the Stone
representation space of the Boolean algebra generated by L (Gratzer (1971)),
which is homeomorphic to the Stone representation space of L with the strong
(Nerode (1959)) topology. We note in passing that the construction which assigns
to a bounded distributive lattice its lattice of ideals is a monad (Maclane (1971))
in the category of bounded distributive lattices, and that the category of algebras
over this monad is equivalent to the category of frames.

1

Let 4 and B be complete distributive lattices; following Shmuely (1974), we
denote by A®B the set of mappings ¢: A—B which satisfy ¢(\/a,) = A ¢(a,)
where {a,} is any subset of 4, with the pointwise order.

PROPOSITION 1. If A and B are frames, then AQB is a frame.

PROOF. (1) A®B is a complete lattice since (/\, 02) (x) = N2 (@u(x)) defines a
meet for the subset {¢,} of AQB.
(2) A® B is a Brouwerian lattice; for f, p e A® B define

g(x) = /Ef(u) * (U A X).
Then

a(Vx) = A @oo(unVx)

ued

=Af(u)*¢(yqua)

ueAd

= A\S@)* A\ ounrx,)

= /}/‘\f(u)ﬂp(u/\xa)
=/\/>f(u)*<p(u’\xa)
and

a(Vx) =\,
So ge A®B. But
@A ) =q(x) Af(x)
=f(x)A QAf(u) * (u A x),
@A) S FEAFE) * 9(x) < 9(x)

and sogA f< o.
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Now suppose rA f< ¢ in AQB so that for all xe 4, r(x) A f(x) < ¢(x). Then
forall ue A, r() A f@) <r(xnu) A f(xa u) < p(xAw) and so

r(x) < /\Af () * p(x A u) = q(x).

This shows that ¢ is the relative pseudocomplement in A® B of f with respect
to ¢, that is ¢ = f* ¢ and AQ B is Brouwerian.
We consider frame maps #,: 4 - A®B and ,: B— AQ B defined as follows:

Ipify<x,
x =
n1(x)(y) {OB otherwise,
z fy#0
(z :{ : ’
/D] )(,V) 1, 1fy=0,4,

for all x,ye A, zeB.

It is clear that #,(x) and #,(z) are in A®B, that 5,(x; A x,) =n,(x;) An,(x2),
for x;,x, in A, that n,(1,) =1,gp, and that 5, is a frame map. To show 5, is a
frame map, we must prove 1, (\/,X,) = \/anl(xa) where the union on the right is
taken in A® B. If {x,} = 4 we note that if x < x, for some « then

(V1::0) ) = 15.
So
V) (Vxe) =15 and  Vmy(xa) = 1 (V%)
a x a
Since the opposite inequality is clear, #, is a frame map. We note that the #, commute
with arbitrary intersections.

The locale mappings n;: AQB— A4 and =n,: AQB— B adjoint to n, and 2,
are defined by the formulae

7,(0) = \/{x|0(x) =14},
7y(@) = o(1,)

as is verified without difficulty.

THEOREM 1. A® B is the frame coproduct of A and B with inclusion maps n, and
N2, equivalently AQ B is the locale product of A and B with projection maps =,
and m,.

Proor. Let y: 4 > Z and A: B—Z be frame mapsand p: Z—>Adand g: Z—> B
the adjoint maps to Y respectively A. We define Yy®A1: AQB—>Z and
p®g: Z - AR B by the formulae:

Y®i(p) = \4 Y(x)ndp(x) and p®g(z)(a) =g()(a)*2).
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Then Yy ®A will turn out to be a frame map and p®g its adjoint locale map.
First we show that y®1 and p®g are adjoint. We have:

¢ < p®g(2) if and only if
o(x) € p®g(z)(x) forall xeA if and only if
o(x) < glY(x)xz) for all xeA if and only if
Ao(x) S Y(x)*z for all xe A if and only if
Y(x)Ado(x) < z for all xe A if and only if
YRMp) =\ Y(x) Ado(x) < z.

xed

YOl 08 = \/A Yx) A A1) 2 Y(L)AM1p) =1

Also

and
YNy A92) =\ Y(x) A M@y A @2)(x)

xeAd

= \/ Y(x) A M@ 1(X) A 2(x)

xeA

=V ¥(x) Adp(x) A Ap,(x)

XeA

=\ Y(xAW)ALp (X AW) A @y (x A W),

x,weAd

Y@ Up1Apy) = xe\/A W\E/A Y(x) AY(W) A A (x) A A, (W),
V@Up1 A0 = [ VI AIe ]| A [V ¥ A 200,
Y®Up1n ¢2) Z [Y @M@ )] A [Y®U@;)]
but the opposite inequality is clear and so
Y@My A ;) = (¥ ®MNp )] A [Y @Ae,)]

and y®A is a frame map whence p®g is a locale map.

Furthermore,
YA (a)) = xe\/A ¥(x) A Any(a) (x)
= x\s/a Y(x) A A1p)
and =Y(a)

Y®Ana (b)) = x\e{A Y(x) A An2(b) (x))
=V ¥x)ANb)

O0#xed
= A(b).

Now let ¢: AQB—Z be any frame map such that ¢y, =¥ and ¢, =21. Any
element of A® B is a union of elements of the form #,(x) An,(¥). So in order to
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check that ¢=y®2A we need only check that en,(x) =¢®Ai(n,(x)) and
cn,(¥) =Y ®A(n,(»)). But both of these follow immediately from the formulas
above.

To prove the existence of infinite products it will now suffice to show the
existence of inverse limits of directed systems of locales with all bonding maps
surjective. We note that any directed inverse system of locales has the same inverse
limit as one with all bonding maps surjective since we may replace each term L, of
the inverse system by the intersection of the images of the bonding maps into L,.

Now let [L,],.p be a directed inverse system of locales with surjective bonding
maps g,p: Ly — L, for a<p satisfying g,s095,=64: L,—>L,. Let L=lim L,
where the inverse limit is in the sense of sets. Since all the g,; commute with infinite
intersections, the set L has an order which admits infinite intersections and L is a
complete lattice. Then the set maps g,: L — L, commute with infinite intersections.
Let b,ueL and define:

3 4p = />\ﬂ 989(D) * g,(u)).
Note that if «>17> f then

9pL9o(b) * 9o(U)) = G5: 9 (D) * go(1)),

95(9e(D) * (1)) < Gpg 2 9u(D) * G0 W),

9p{9u(b) * 9. (W) < gp(9(b) * g(u))
so that the intersection in (}) may be taken over any cofinal subset of D all of whose
elements are greater than . Now if u> f§, then

9euld) = 9pu (/)\M 9ua(ga(b) * g,(u))
= />\ b 9u(Go(b) * g, (u))
= />\ gﬂa(ga(b) * gz(u))

aZp

— />\ﬂ 95L9.(b) * g, (W) = g

by the above remark. Thus the g, represent an element ge L. Now

gsla n b) = /T 20N gs(b),
gﬁ(q A b) = gﬂ(b) A />\ﬂ gﬂa(ga(b) * ga(u))’

95(q A b) < g5(b) A (g4(b) * g4(w)),

<
gs(bAq) < gglu)
and so

bag<u.
We will show that g =b+uin L. Let xAb < wuin L. Then
9u(¥) A go(b) < g, (u)
9(x) < gu(b) * g, (u)
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and if a> B, g5(x) = gp.9.(%) < 9pu(9.(b)*g, (). So
gp(x) < />\,, 959D) * 9o(u)) = g5(q)
and so x < g and g =b+u in L, Thus L is a locale.
Note that the frame maps fj, adjoint to the g, satisfy g,sf5, =1d, . Also we
may define f,: L, » L by the formula [ f,(x)]; =f3,(x) since if f>pu>a we have
gnﬂ([fa(x)Jﬂ) = guﬁfﬁa(x)

=g uﬂf ﬂuf ua(x)

=f uu(x)

= [£:(x)],-
Then f, is the adjoint to g, (defined by (1)), since g,f.(x) =x and if B > «a,

[fa ga(Y)]ﬂ =fﬁaga(y) =fﬂ¢gaﬁ gﬁ(y) < gp()’)

and so
fa9.00) <y
Now
[fa(x A 2)]p =fpux A 2)
=fﬂa(x) Afﬂa(z)’
fxA2)]p =[] A Lf(2)]s
and

Jol(x A 2) = f(X) A fo2).
Thus the f, are frame maps and so the g, are locale maps.
Now if p,: P— L, are locale maps such that g,zp, = p, then the p, lift uniquely
to p: P — L which preserves arbitrary intersections. By uniqueness of adjoints the
adjoint r: L — P satisfies rf, =r, where the r, are adjoint to the p,. If xeL then

x =\/fu9%). So.
rxay)=r (\./faga(x A y))

= \/ rfagdx A y)

=V ragxny)

= V (T2 9u(X) AT, g (¥)

= \4 (r29%) AT595(¥))

since if Y < g, 7,9,(%) = 1, Sy 94 9.(%) =1y gy(x). So
reAy) = (V reg)) A (Y 72,0))
=r(Vfe9.09) Ar(\/ S 950))

rxAy)=r(x)Ar(y)

and r is a frame map. So p is a locale map.
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2

In this section we will discuss the representation spaces of frames, considered
as distributive lattices. References for representation spaces of distributive lattices
are Stone (1937) and Gratzer (1971). If L is a distributive lattice we denote by B(L)
the Boolean algebra generated by L (Gratzer (1971), Chapter 10) and R(L) will
denote the representation space of L. We note that in addition to its usual compact
T, topology o, R(L) has a stronger compact Hausdorff topology z, the strong
topology (see Nerode (1959)) such that (R(L),t) is naturally the representation
space for the Boolean algebra B(L) and the identity mapping (R(L), t) = (R(L), 5)
is induced by the lattice mapping L — B(L). A o-continuous map R(L,) — R(L,)
is induced by a lattice mapping L, — L, if and only if it is t-continuous. There is
a natural isomorphism p from the lattice /(L) of ideals of L to the lattice of open
sets of R(L).

PROPOSITION 2. The distributive lattice L is a frame if and only if, in R(L) the
t-closure of a o-open set is c-open. In this case p({ v i)) =1-closure p(i) for any
ideal i of L.

Proor. If in R(L) the z-closure of a o-open set is g-open, then L must be com-
plete, for to any ideal i of L corresponds the g-open set p(i) of R(L) and if /is an
upper bound for i then p({/)>) is 7-closed and thus contains the t-closure of p(i),
which t-closure must therefore correspond to a least upper bound for i. We must
show the identity yA\/,x,=\/,(yAx,) in L. Clearly the left side is greater
than or equal to the right. So we must show \/,(y A x,) > yA\/ x, or equiv-
alently,

r-closure[ U n p(x,))] > p(y) N t-closure [ U p(xa)].

But this follows immediately from the fact that p(y) is t-open in R(L).

Now suppose that L is a frame, let i be an ideal of L, and let / be the least upper
bound of i. Then p({/>) is 7-closed and thus contains the t-closure of p(i). Let p
be a point of R(L) and suppose that N is a 7-open set with pe N and N n p(i) = .
Then N contains a subset W = p({ad) n[R(L)— p({b>)] with pe W since such
sets form a base for the topology . Then p(i) N p({ad) N [R(L)— p({b>)] is empty
so p(i) N p(Kad) < p(b)) and if xei then xAa <b. Then since L is a frame
(vi)Aa<b and so p({DD)npad) = p({b>) whence p¢p({l>). It follows that
p(K1>) is the t-closure of p(i) which is therefore weakly open.

PROPOSITION 3. Let Ly and L, be frames and let ¢: L, — L, be a homomorphism
of bounded distributive lattices, and let R(p): R(L,) - R(L,) be the associated map
of representation spaces. Then ¢ is a frame map if and only if for any open set U of
R(L,) we have 1,-closure((Rp)~*(U)) = (Rp)~1(x,~closure U).
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Proor. Clear.

LEMMA 1. Let a and 8 be topologies on a set X. Then the following are equivalent:
(1) The a-closure of a B-open subset of X is f-open.
(2) The B-closure of an a-open subset of X is a-open.

PRrROOF. We prove only (1) implies (2). Let 7 be a-open and let W be its S-closure.
Then [a-closure(X — W)] N T is empty since T'is a-open. But X —[a-closure(X — )]
is a p-closed set containing T and contained in the S-closure W of T so

W = X —[a-closure(X — W)]
which is a-open.

COROLLARY 1. L is a frame if and only if in R(L) the o-closure of any t-open set
is T-open.

PROPOSITION 4. Let ¢: Ly — L, be a bounded distributive lattice homomorphism
between the frames L, and L,. Then ¢ is a frame map if and only if whenever W is
T,-open in R(L,), then the a,-closure of R(¢) (W) is t,-open.

PRrOOF. If ¢ is a frame map, then for any U which is o,-open in R(L,), we have
(Rp)~(-closure(U)) = 7,-closure((Rp)~(U)). Now let

U = R(L,)—[o,-closure(Rp(W))]

which is ¢,-open. Then:

R U)W =g,
7,-closure((Ro) " {(U) "W =,
(R@) ™ Y(z,~closure(U)) n W = & = 1,-closure(U) n Rp(W),

1,-closure(U) N ¢,-closure(Ro (W)) = &,
and so
U = 1,-closure(U)
and
o,-closure(Re(W)) is t,-open.
Now suppose that for all 1,-open subsets W of R(L,) the ¢;-closure of Rp(W)
is 7,-open. Let U be a g,-open subset of R(L,) and let

W = R(L,)— [1,~closure((Rp) ~*(U))],
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which is 7,-open, Then:

R (U)NW =g,

UnRe(W)=g,

U n o,~closure(Ro(W)) = O,

7,-closure(U) n a,-closure(Ro(W)) = J,

(R@) ™ Y(zy-closure(U)) n W = ¢,

(R@) ™ (z,-closure(U)) = t,-closure((Rep) ™ 1(U))
and so

(R@) ™ (z,-closure(U)) = 1,-closure((Rp) ™ 1(U))
since Rg is T-continuous.

We can now characterize the lattice of frame quotients Q(L) of a frame L. Let
¢:L—>L; be a surjective frame map. Then every o,-compact open subset of
R(L,) is the inverse image under Rg of a o-compact open subset of R(L). It follows
that the relative T and ¢ topologies of the image of Re are isomorphic by ¢ to
the 7, and g, topologies of R(L,). Now since (R(L,),7,) is Hausdorff, Re is
injective on points, and R(L,) can be identified with a 1-closed subset of R(L)
with the induced ¢ and 7 topologies. Proposition 4 shows that the o-closure in
R(L) of a relatively t-open subset of R(L,) is t-open. Suppose conversely that a
t-closed subset S of R(L) has the property that any relatively z-open subset of S
has t-open o-closure in R(L). Then since S is t-closed it is the representation space
of some distributive lattice quotient T of L, T is a frame by Corollary 1, and
quotient map L — T is a frame map since it satisfies the conditions of Proposition 4.
Therefore:

PROPOSITION 5. Q(L) is naturally isomorphic to the lattice of t-closed subsets S
of R(L) such that the o-closure in R(L) of a relatively t-open subset of S is t-open.

The following corollary is essentially proved in Dowker and Papert (1966).

COROLLARY 2. The dual Q'(L) of Q(L) is a g-set in I(B(L)) and I(B(L)) is naturally
isomorphic to the dual lattice to the lattice of distributive lattice congruence relations
on L.

ProoF. The isomorphism of /(B(L)) with the dual of the lattice of distributive
lattice congruence relations on L is proved in Gratzer (1971). The isomorphism
assigns to a congruence relation C the complement of the image of Ry where Y
is the quotient by the congruence relation.

Let {S,} be a collection of subsets of R(L) satisfying the condition of Proposition
5. The t-closure S of ), S, will be shown to satisfy the same condition. Let U
be relatively t-open in S. Then o-closure(U n S,) = U, is t-open in R(L) for all a.
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Since | J, S, is 7-dense in S, and U is t-open in S, we have
t-closure ( UUn Sa)) > U;

)
o-closure(U) = o-closure ( UWUn S,)) = g-closure (U Ua)

which is the g-closure of a 7-open set hence t-open. This shows that the subset
Q'(L) of I(B(L)) is closed under arbitrary intersections. To show it is a g-set we
must show that if T is a t-closed subset of R(L) and S satisfies the conditions of
Proposition 5, then z-closure((R(L)—T) n S) satisfies the conditions of Proposition
5. In other words, if S is a -closed set such that any relatively t-open subset of S
has t-open o-closure in R(L) then the 7-closure M of a relatively t-open subset
N of S has the same property.

For this let U be relatively t-open in M. Since N is t-dense in M we have
U < 1closure(Nn U) and so o-closure(U)=o-closure(Nn U). But NnU is
relatively z-open in S and so g-closure(U) = g-closure(N n U) is t-open in R(L).

We now consider the diagram of locales

I(B(L))

(#)

L——IL)

Our main result will be that the locale pullback of the diagram is naturally iso-
morphic to Q’(L), the dual of the lattice of quotients of L (see Dowker and Strauss
1975)). We will identify I(B(L)) with the lattice of t-closed subsets of R(L), ordered
by reverse inclusion, and I(L) with the sublattice of o-closed subsets of R(L).

The set pullback of the diagram (#) is the set S of 7-closed subsets s of R(L)
such that the g-closure of s is t-open. Let {s,},.; be a subset of S. Then the
t-closure s of [ J, s, is in S, since

g-closure(s) = g-closure ( U Sa) = g-closure ( U (a-closure(sa)))

is the o-closure of a 7-open set hence 7-open. For the diagram (#) considered as a
diagram of lattices this means that:

LEMMA 2. The set pullback of (#) is a subset S of I(B(L)) which is closed under
arbitrary intersections.

Next we show:

LeEMMA 3. Let T be a subset of a frame F which is closed under arbitrary intersections.
Then the set R={teT|ax*teT for all ac F} is the largest q-set of F contained in T.

PrROOF. R clearly contains any g-set of F which is contained in 7. Now if
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{u <R then if aeF we have a* A u, = \,a*u, which is an intersection of
elements of T hence in T and so A,u, is in R. If ueR, ae F and xeF then
x*(@*u)=(xAra)*ueT and so axueR and R is a g-set.

THEOREM 2. The locale pullback of the diagram (#) is naturally isomorphic to

o'(D).

ProoF. Lemma 3 implies that the largest g-set of I(B(L)) contained in the set
pullback S of (#) is the set Q< I(B(L)) where

Q={seS|a*seS for ail acI(B(L))},

in other words the set of se I(B(L)) (which we identify with the lattice of t-closed
subsets of R(L)), such that the a-closure of any relatively t-open subset of s is again
in S. But this is exactly the characterization of Q(L) given by Proposition 5. Now
L is just the image of Q'(L) in I(L).
We conclude that if 4 is an arbitrary locale, then any map of 4 into (#) factors
uniquely through
Q(L) —— IB(L))

]

L —— KL
so that Q’(L) is the pullback of (#).
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