
European Journal of Applied Mathematics (2024), 1–22
doi:10.1017/S0956792524000020

PAPER

Network-based kinetic models: Emergence of a statistical
description of the graph topology
Marco Nurisso1,3 , Matteo Raviola2 and Andrea Tosin1

1Department of Mathematical Sciences “G. L. Lagrange”, Politecnico di Torino, Turin, Italy, 2École Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland and 3CENTAI Institute, Turin, Italy
Corresponding author: A. Tosin; Email: andrea.tosin@polito.it

Received: 13 June 2023; Revised: 07 December 2023; Accepted: 04 January 2024

Keywords: Multi-agent systems; networked interactions; degree distribution; graph-based kinetic equations; Boltzmann-type
equations

2020 Mathematics Subject Classification: 35Q20 (Primary); 82C22, 05C07 (Secondary)

Abstract
In this paper, we propose a novel approach that employs kinetic equations to describe the collective dynamics emerg-
ing from graph-mediated pairwise interactions in multi-agent systems. We formally show that for large graphs and
specific classes of interactions a statistical description of the graph topology, given in terms of the degree distri-
bution embedded in a Boltzmann-type kinetic equation, is sufficient to capture the collective trends of networked
interacting systems. This proves the validity of a commonly accepted heuristic assumption in statistically structured
graph models, namely that the so-called connectivity of the agents is the only relevant parameter to be retained in a
statistical description of the graph topology. Then, we validate our results by testing them numerically against real
social network data.

1. Introduction

In recent years, kinetic models have gained great popularity as convenient tools to study interacting
multi-agent systems [14], which constitute the modelling paradigm for various socio-economic applica-
tions. Since such systems feature interconnected agents, a notion of graph is often naturally required in
the models. A prominent prototype is opinion dynamics in social networks, where agents interact only
with their own contacts, i.e. their first neighbours in the graph modelling the social network. The vertices
of such a graph are the agents while the edges describe the connections among them. The problem is
that network-based models become quickly complex as the number of vertices grows, thereby posing
challenges from the point of view of both mathematical analysis and computation. It is therefore natural
to look for statistical limit descriptions of the graph connections emerging when the size of the graph
tends to infinity.

To this purpose, the notion of graphon has been introduced in graph theory [9]. A graphon is a
suitable limit of a sequence of graphs of growing size conceived so as to represent large networks by
a continuous model. Informally, given a graph GN with, say, N ∈N vertices one first associates with
the adjacency matrix MN ∈ RN×N of GN a piecewise constant function WN , which reproduces the entries
of MN on a N ×N discretisation of [0, 1]× [0, 1]⊂ R2 in sub-squares of side length 1/N. Next, one
takes the limit N→∞ of the sequence {WN}N∈N, under a suitable notion of convergence, to possibly
get a limit function W : [0, 1]2→ [0, 1], the so-called graphon, which describes the connections of the
infinite-size limit graph.

In this paper, we take inspiration loosely from these ideas to incorporate a statistical continuous
description of graph connections in Boltzmann-type kinetic equations used to represent statistically the
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(a) (b) (c)

Figure 1. (a) Graphical representation of the interaction framework considered in this work. Each
agent is identified with a vertex in a directed graph and is characterised by a probability distribution of
their state which evolves in time. (b In an action-reaction interaction between agents i, j ∈ I connected
by the edge (i, j) ∈ E , the states v, v∗ of both agents are updated. c. In an action-action interaction, the
state v∗ of agent j is updated only if (j, i) ∈ E .

collective dynamics of multi-agent systems. Our main contribution is that, under the classical molecu-
lar chaos hypothesis, we obtain kinetic equations able to account for the heterogeneous structure of the
connections among the agents. We show that, for particular classes of binary interactions, these equa-
tions rely only on a statistical description of the graph topology. In particular, we formally prove that all
information about the adjacency matrix of the graph may be lumped in the notion of degree distribu-
tion of the graph, i.e. the statistical distribution of the numbers of incoming and outgoing edges of the
vertices.

In more detail, our approach develops along the following line. The main idea is to augment the state
of each agent by including in it, besides the variable, say v, characterising the interaction dynamics, two
additional variables representing the incoming and outgoing degrees of the agent. Hence, the kinetic
distribution function on the augmented state space describes the distribution of agents possessing a
certain characteristic variable v plus a certain number of incoming and outgoing connections. Passing
formally to the limit of an infinite number of agents, i.e. of vertices of the graph, we show that this kinetic
description converges, at least for certain classes of binary interactions, to a classical Boltzmann-type
equation defined on the augmented state space and whose interaction kernel carries the information
about the graph degrees. These therefore affect the rate of binary interactions among the agents, which
turns out to be all the relevant information about agent connections from a statistical point of view.

It is worth recalling that previous works in this and related contexts approach the problem of upscal-
ing particle descriptions to aggregate descriptions of networked interactions in different ways. Without
claiming to be exhaustive, and confining ourselves to particularly recent contributions, we mention [1],
where networks are specified by linking structural variables to the agents and introducing interaction
rates depending on them; [2], in which the joint evolution of the agents’ states and the network itself is
considered; [3, 4], in which particular classes of random graphs are studied.

After this introduction, the paper is organised as follows. In Section 2, we derive kinetic equations on
graphs starting from graph-mediated particle interactions. Here, the approach is technically reminiscent
of that proposed in [11, 12], in particular for the fact that the graph is still a finite-size one and the con-
nections among the vertices are described in detail by the adjacency matrix. A distribution function of
the characteristic variable v is associated with every vertex, viz. agent, and a system of coupled kinetic
equations is derived, the coupling being dictated by the adjacency matrix of the graph (cf. Figure 1(a)).
In Section 3, we show that from this setting a single kinetic equation, defined on the aforementioned
augmented state space and which incorporates a degree-based continuous description of the graph con-
nections, naturally emerges in the limit of an infinite number of vertices/agents if one considers a very
special class of binary interactions among the agents, that we call polarised memory interactions. In
Section 4, we prove that the limiting kinetic equation so obtained can be recast in the form of a classical
Boltzmann-type equation, whose interaction kernel features a precise dependence on the incoming and
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outgoing degrees of a generic representative vertex/agent of the system. In Section 5, we investigate to
what extent this result can be extended to a more general class of binary interactions, namely that of
separable interactions which includes, as a special case, linear interactions. In Section 6, we prove that
a quite natural rank-one approximation of the adjacency matrix of any graph allows for the extension of
the results of the previous sections to arbitrary interaction rules. In Section 7, we validate our theoreti-
cal findings by comparing numerically the dynamics produced by the original graph-mediated particle
interactions and the solution to our Boltzmann-type equation, using data of user connections coming
from a real social network. Finally, in Section 8 we draw some conclusions and we briefly sketch further
possible research directions.

2. Kinetic description of graph-mediated interactions
2.1. Preliminaries

Since social networks are among the most prominent examples of graphs encountered in social contexts,
and various types of dynamics, often involving user opinions, take place on them, in the following we
will keep as reference an application in the realm of opinion formation. We will call opinion a variable
v ∈O⊆ R, which is part of the microscopic state of a generic agent. However, it should be noted that
the developments that follow are completely general and can be applied to other contexts as well.

The opinions of the agents evolve because of interactions with other connected agents. The funda-
mental assumption we make, as usual in collisional kinetic theory, is that only binary interactions are
relevant. In other words, we postulate that interactions among three or more agents are much rarer than
those between two agents, so that their effect can be neglected.

Let us consider a generic representative agent, whose microscopic state is described by a stochastic
process (X, Vt)t≥0. In more detail, X ∈ I is the location of the agent on a graph G = (I, E), I being the
set of vertices and E the set of edges of G. In practice, every agent is a vertex of G. We assume that the
graph is static, i.e. that connections among the agents do not change in time. Conversely, Vt : �→O is a
random variable from an abstract sample space � to the space of the opinions O denoting the opinion of
the agent at time t≥ 0. This random variable evolves in time due to binary interactions with other agents
mediated by the connections encoded in E , thereby producing a stochastic process {Vt, t ∈ [0, +∞)}.
Overall, we describe statistically the microscopic state (X, Vt) of the agent by means of a probability
measure f = f (x, v, t), which we understand as discrete in x ∈ I and generically continuous in v ∈O.
Hence f can be given the form

f (x, v, t)= 1

N

∑
i∈I

fi(v, t)⊗ δ(x− i) (2.1)

where N = |I| is the total number of agents, viz. vertices, of the graph while δ(·) denotes the Dirac delta
distribution centred at the origin. Moreover, fi = fi(v, t) : O× [0, +∞)→ R+ is the probability density
of the opinion Vt of the agent X = i. See Figure 1(a). We require∫

O
fi(v, t) dv= 1, ∀ t≥ 0, ∀ i ∈ I,

which implies consistently
∫
I
∫
O f (x, v, t) dv dx= 1 at all times. Notice that then

Prob(X = i)= 1

N
, ∀ i ∈ I,

meaning that every agent has the same probability to be sampled for an interaction. This corresponds to
an a priori uniform importance of each agent within the graph. Of course, one may reasonably expect
that more connected agents – the so-called influencers – contribute more to the formation of opinions
on the social network. However, we believe that this should be an emergent feature of the model rather
than an ad hoc assumption.
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2.2. Interaction algorithms

An interaction algorithm is a rule describing how agents interact in pairs and modify consequently
their opinions over time. In particular, in a given time step �t > 0 we assume that an agent (X, Vt) ∈
I ×O changes their opinion to Vt+�t ∈O because of an interaction with another agent (X∗, V∗t ) ∈ I ×O
according to the following scheme:

Vt+�t = (1−�)Vt +�V ′t, (2.2)

where � ∈ {0, 1} is a random variable taking into account whether the interaction between the two
agents actually produces (�= 1) or not (�= 0) an opinion change. Furthermore, Vt

′ ∈O is the new
opinion acquired by agent (X, Vt) in consequence of a successful interaction.

In more detail, we let

�∼Bernoulli(B(X, X∗)�t) ,

meaning that the probability of a successful interaction is proportional to the interaction time step �t
through an interaction kernel B= B(X, X∗), which encodes the information about the edges of the graph,
viz. the connections among the agents. Specifically, we assume:

B(X, X∗)= 1 if (X, X∗) ∈ E , B(X, X∗)= 0 if (X, X∗) �∈ E , (2.3)

where the ordered pair (X, X∗) denotes the edge from vertex X to vertex X∗. For consistency, we require
�t≤ 1, which imposes a limitation on the maximum admissible time step. However, we anticipate that
this limitation will be unimportant when considering the continuous time limit �t→ 0+.

We model the post-interaction opinion as a random variable V ′t : �→O depending in general on the
pre-interaction opinions Vt, V∗t of the interacting agents:

V ′t(ω)=�(Vt(ω), V∗t (ω), ω), ω ∈�,

� : O2 ×�→O being a possibly stochastic given function.
Also, the agent (X∗, V∗t ) may simultaneously change opinion within the same binary interaction. The

way in which this happens may vary depending on the characteristics of the interactions allowed by the
social network.

2.2.1. ‘Action-reaction’ interactions
Assume the social network is such that an interaction of the agent in vertex X with the agent in vertex X∗

necessarily implies also the interaction of the agent in vertex X∗ with the agent in vertex X. Technically,
the ‘forward’ interaction of X with X∗ takes place only if the edge (X, X∗) exists in G, i.e. if (X, X∗) ∈ E ,
whereas the ‘backwards’ interaction of X∗ with X may take place regardless of the existence of the edge
(X∗, X) in G. In other words, while the agent in vertex X needs to decide actively to interact with the
agent in vertex X∗ the latter simply reacts passively to the action of the former. See Figure 1(b).

Therefore, agent (X∗, V∗t ) updates their opinion through a rule analogous to that of agent (X, Vt):

V∗t+�t = (1−�)V∗t +�V∗′t ,

in particular with the same random variable � whose law depends on B(X, X∗) but not on B(X∗, X).
Furthermore, the interaction kernel B need not be symmetric. The post-interaction opinion

V∗′t (ω)=�∗(V
∗
t (ω), Vt(ω), ω), ω ∈�

is defined through a function �∗ : O2 ×�→O possibly different from �.
Summarising, for ‘action-reaction’ interactions we consider the following general algorithm:

Vt+�t = (1−�)Vt +��(Vt, V∗t , ω)

V∗t+�t = (1−�)V∗t +��∗(V
∗
t , Vt, ω).

(2.4)

The interacting agents (X, Vt), (X∗, V∗t ) are sampled randomly and uniformly at each time step.
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2.2.2. ‘Action-action’ interactions
Assume instead that the social network allows for an interaction of vertex X with vertex X∗, and simul-
taneously of vertex X∗ with vertex X, only if each vertex is explicitly linked to the other, i.e. only if
(X, X∗), (X∗, X) ∈ E . In other words, agents in either vertex need to take an action actively to interact
with each other; none of them simply reacts to the action of the other. See Figure 1(c).

Then, the random variable discriminating whether agent (X∗, V∗t ) updates their opinion in the time
step �t is in general different from �:

�∗ ∼Bernoulli(B(X∗, X)�t)

and

V∗t+�t = (1−�∗)V
∗
t +�∗V

∗′
t

with

V∗′t (ω)=�∗(V
∗
t (ω), Vt(ω), ω), ω ∈�.

Again, the interaction kernel B need not be symmetric.
Overall, for ‘action-action’ interactions we consider the following general algorithm:

Vt+�t = (1−�)Vt +��(Vt, V∗t , ω)

V∗t+�t = (1−�∗)V
∗
t +�∗�∗(V

∗
t , Vt, ω),

(2.5)

the interacting agents (X, Vt), (X∗, V∗t ) being sampled again randomly and uniformly at each time step.

Remark 2.1. If the interaction kernel B is symmetric, i.e.

B(X, X∗)= B(X∗, X), ∀ X, X∗ ∈ I,

then ‘action-reaction’ interactions may be interpreted as ‘action-action’ interactions over an undirected
graph. Indeed, the symmetry of B together with the presence of � in both interaction rules of algo-
rithm (2.4) implies that vertex X∗ is linked to vertex X whenever the converse is true and that the edge
connecting them is the same in both directions.

On the other hand, for a general non-symmetric interaction kernel B ‘action-action’ interactions may
be regarded as binary interactions on a directed graph.

2.3. Derivation of kinetic equations

A kinetic description of algorithms (2.4), (2.5) amounts to evolution equations for the probability dis-
tributions fi of the opinion of the agents. To derive them, we adopt a classical procedure of the kinetic
theory of multi-agent systems, see e.g. [5, Appendix A] or [14].

In the following, we develop explicit calculations for the case of ‘action-reaction’ interactions, i.e.
for the interaction algorithm (2.4). Afterwards, we will indicate the necessary modifications to treat also
the case of ‘action-action’ interactions with algorithm (2.5).

Let �=�(x, v) : I ×O→ R be an arbitrary observable (test function), i.e. any quantity that can be
computed out of the knowledge of the microscopic state of a generic representative agent of the system.
From the first equation in (2.4), taking the expectation of the post-interaction observable, we have:

E[�(X, Vt+�t)]= E
[
E
[
�
(
X, (1−�)Vt +��(Vt, V∗t , ω)

)|X, X∗
]]

= E
[
�(X, Vt) (1− B(X, X∗)�t)+�

(
X, �(Vt, V∗t , ω)

)
B(X, X∗)�t

]
.

Rearranging the terms and dividing both sides by �t gives
E[�(X, Vt+�t)]− E[�(X, Vt)]

�t
= E

[
B(X, X∗)

(
�(X, �(Vt, V∗t , ω))−�(X, Vt)

)]
,
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whence taking the limit �t→ 0+ yields formally

dE[�(X, Vt)]

dt
= E

[
B(X, X∗)

(
�(X, �(Vt, V∗t , ω))−�(X, Vt)

)]
. (2.6)

Similar calculations based on the second equation in (2.4) produce

dE[�(X∗, V∗t )]

dt
= E

[
B(X, X∗)

(
�(X∗, �∗(V

∗
t , Vt, ω))−�(X∗, V∗t )

)]
. (2.7)

We now observe that both pairs (X, Vt) and (X∗, V∗t ) refer to a generic representative agent of the
system, hence they have the same probability law. In particular, E[�(X, Vt)]= E[�(X∗, V∗t )] so that,
summing (2.6) and (2.7), we deduce

dE[�(X, Vt)]

dt
= 1

2
E
[
B(X, X∗)

(
�(X, �(Vt, V∗t , ω))+�(X∗, �∗(V

∗
t , Vt, ω))

−�(X, Vt)−�(X∗, V∗t )
)]

and finally, making use of the probability measure f to compute the remaining expectations,

d

dt

∫
I

∫
O

�(x, v)f (x, v, t) dv dx=

=
∫
I2

∫
O

∫
O

B(x, x∗)
〈�(x, v′)+�(x∗, v′∗)−�(x, v)−�(x∗, v∗)〉

2
f (x, v, t)f (x∗, v∗, t) dv dv∗ dx dx∗,

(2.8)

where we have denoted

v′ =�(v, v∗, ω), v′∗ =�∗(v∗, v, ω) (2.9)

for brevity and where 〈·〉 denotes expectation with respect to the possible stochasticity of the functions
�, �∗.

Notice that (2.8) is required to hold for all test functions �. As such, it is a weak equation for the
distribution function f . The corresponding strong form might be given but it is irrelevant for the sequel,
therefore we neglect it.

Remark 2.2. Equation (2.8) is written under the assumption of propagation of chaos, meaning that any
two potentially interacting agents are sampled independently of each other. This assumption is classi-
cally used, e.g. in the Boltzmann-type kinetic theory to obtain a closed equation for the one-particle
distribution function f , as it allows one to factorise the joint probability measure f2 = f2(x, x∗, v, v∗, t) of
the interacting agents in the product f (x, v, t)f (x∗, v∗, t).

From (2.8), with a convenient choice of the test function �, it is possible to recover a system of (weak)
equations for the fi’s. Let �(x, v)= φi(x)ϕ(v), where φi : I→ R is such that φi(i)= 1 while φi(x)= 0 for
all x ∈ I \ {i} and ϕ : O→ R is arbitrary. Then, plugging (2.1) into (2.8) yields:

d

dt

∫
O

ϕ(v)fi(v, t) dv= 1

2N

∑
j∈I

B(i, j)
∫
O

∫
O
〈ϕ(v′)− ϕ(v)〉 fi(v, t)fj(v∗, t) dv dv∗

+ 1

2N

∑
j∈I

B(j, i)
∫
O

∫
O
〈ϕ(v′∗)− ϕ(v∗)〉 fj(v, t)fi(v∗, t) dv dv∗, i ∈ I. (2.10)

This equation can also be obtained, still under the assumption of propagation of chaos, from the kinetic
equation derived in [1], which stems from a BBGKY-type hierarchy. Moreover, (2.10) can be conve-
niently recast in matrix form by introducing the vector-valued distribution function f(v, t) := (fi(v, t))i∈I
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and the matrix M := (B(i, j))i,j∈I ∈ RN×N :

d

dt

∫
O

ϕ(v)f(v, t) dv= 1

2N

∫
O

∫
O
〈ϕ(v′)− ϕ(v)〉 f(v, t)�Mf(v∗, t) dv dv∗

+ 1

2N

∫
O

∫
O
〈ϕ(v′∗)− ϕ(v∗)〉MTf(v, t)� f(v∗, t) dv dv∗, (2.11)

where� denotes the Hadamard product and MT the transpose matrix of M. Note that M is the adjacency
matrix of G.

In the case of ‘action-action’ interactions, owing to the second equation in (2.5), equation (2.7) is
replaced by

dE[�(X∗, V∗t )]

dt
= E

[
B(X∗, X)

(
�(X∗, �∗(V

∗
t , Vt, ω))−�(X∗, V∗t )

)]
, (2.12)

which, added to (2.6), produces now
d

dt

∫
I

∫
O
�(x, v)f (x, v, t) dv dx=

= 1

2

∫
I2

∫
O

∫
O

B(x, x∗) 〈�(x, v′)−�(x, v)〉 f (x, v, t)f (x∗, v∗, t) dv dv∗ dx dx∗

+ 1

2

∫
I2

∫
O

∫
O

B(x∗, x) 〈�(x∗, v′∗)−�(x∗, v∗)〉 f (x, v, t)f (x∗, v∗, t) dv dv∗ dx dx∗

in place of (2.8) and finally
d

dt

∫
O

ϕ(v)f(v, t) dv= 1

2N

∫
O

∫
O
〈ϕ(v′)− ϕ(v)〉 f(v, t)�Mf(v∗, t) dv dv∗

+ 1

2N

∫
O

∫
O
〈ϕ(v′∗)− ϕ(v∗)〉Mf(v, t)� f(v∗, t) dv dv∗, (2.13)

in place of (2.11). Notice that if B is symmetric, then so is M, and hence, (2.11) and (2.13) coincide.

3. Statistical description of the connections

System (2.10), or equivalently (2.11), describes the evolution of the probability density of the opinion of
each user of the social network. Therefore, it is in general not easily amenable to analytical or numerical
investigations, because one may reasonably expect that the total number N of agents, hence of kinetic
equations, is quite large in all realistic applications.

To get rid of the necessity to track, also at the kinetic level, individual agents, viz. vertices of G, one
may look for the global opinion distribution on the social network, i.e. the v-marginal distribution of f
in (2.1):

F(v, t) :=
∫
I

f (x, v, t) dx= 1

N

∑
i∈I

fi(v, t)= 1

N
1Tf(v, t),

where 1T = (1, . . . , 1) ∈ RN .
Let us focus preliminarily on ‘action-reaction’ interactions. Premultiplying (2.11) by 1

N
1T , we get

d

dt

∫
O

ϕ(v)F(v, t) dv= 1

2N2

∫
O

∫
O
〈ϕ(v′)+ ϕ(v′∗)− ϕ(v)− ϕ(v∗)〉 fT(v, t)Mf(v∗, t) dv dv∗ (3.1)

which however is not a closed equation for F, because the right-hand side still requires the detailed
knowledge of the connections of the graph and of the opinion distribution of each agent.
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In order to draw self-consistent information from (3.1), we restrict at first to classes of sufficiently
simple interaction dynamics, yet capable of giving rise to non-trivial collective trends. To this purpose,
we introduce the following

Definition 3.1. We say that an interaction rule
v′ =�(v, v∗, ω)

has perfect memory if � is constant w.r.t. v∗, so that the post-interaction opinion v′ of the agent with
pre-interaction opinion v is independent of the opinion v∗ of the other interacting agent.

Conversely, we say that the above interaction rule is memoryless if � is constant w.r.t. v, so that the
post-interaction opinion v′ of the agent with pre-interaction opinion v depends only on the opinion v∗ of
the other interacting agent (plus possibly independent stochastic effects).

We call polarised memory interactions the class of perfect memory and memoryless interactions.

Remark 3.2. In the context of opinion formation, the term memory introduced in Definition 3.1 may
be understood as a synonym of conviction. Specifically, a perfect memory interaction is one in which
an agent has a so strong conviction that they disregard completely the opinion of the other agent when
forming their own post-interaction opinion. This is, for instance, the case of opinion leaders. Conversely,
a memoryless interaction is one in which an agent has a so weak conviction that their post-interaction
opinion is influenced completely by the opinion of the other agent and is independent of their own
pre-interaction opinion. This may happen, e.g. among opinion followers.

In the following, however, we keep the term ‘memory’ as it is somehow more general and, as such,
more easily adaptable, in the abstract, also to applications different from opinion formation.

Example 3.3. In the Ochrombel simplification [13] of the Sznajd model [16] of opinion dynamics, the
interaction rules are

v′ = v, v′∗ = v.

They are both polarised memory interactions, and, in particular, the first rule is a perfect memory one
while the second rule is memoryless.

Motivated by Example 3.3, let us focus on interaction rules (2.9) with � =�(v, ω) (perfect memory)
and �∗ =�∗(v, ω) (memoryless). If this is the case, the right-hand side of (3.1) may be rewritten as

1

2N2

∫
O

∫
O
〈ϕ(v′)+ ϕ(v′∗)− ϕ(v)− ϕ(v∗)〉 fT(v, t)Mf(v∗, t) dv dv∗ =

= 1

2N2

∫
O
〈ϕ(v′)+ ϕ(v′∗)− ϕ(v)〉 fT(v, t) dv M1− 1TM

1

2N2

∫
O

ϕ(v∗)f(v∗, t) dv∗.

Let
w− := MT1, w+ := M1, (3.2)

be the vectors of the incoming (−) and outgoing (+) degrees, viz. the numbers of incoming and out-
going edges of each of the vertices of the graph G. Using them and taking advantage of the previous
calculations, we rewrite (3.1) as

d

dt

∫
O

ϕ(v)F(v, t) dv= 1

N2

∫
O

〈
(w+)T ϕ(v′)+ ϕ(v′∗)

2
− (w−)T + (w+)T

2
ϕ(v)

〉
f(v, t) dv. (3.3)

Now, the crucial point to obtain a kinetic formulation free from references to single vertices, viz.
individual agents, is to augment the space of microscopic states to include also information on the
connections of a generic representative vertex of the graph G. This way, such an information will be
amenable to a statistical description. This may be difficult to do in general in (3.1), while it is doable in
(3.3) because here the adjacency matrix M of G is, in a sense, lumped in w−, w+.

For i ∈ I, let indeg(i), outdeg(i) ∈ {0, . . . , N} be the incoming and outgoing, respectively, degrees of
vertex i. In other words, they are the i-th components of the vectors w−, w+, respectively. We introduce
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the function

gN = gN(v, w−, w+, t) : O× {0, . . . , N} × {0, . . . , N} × R+ → R+

meant as the probability mass function of the event that at time t an agent with incoming degree w− and
outgoing degree w+ has opinion v. Owing to this definition, gN is linked to the fi’s by the relationship

gN(v, w−, w+, t)= 1

N

∑
i∈I

indeg (i)=w− ,
outdeg (i)=w+

fi(v, t) (3.4)

whence we deduce

F(v, t)=
N∑

w+=0

N∑
w−=0

gN(v, w−, w+, t),

(w−)Tf(v, t)=N
N∑

w+=0

N∑
w−=0

w−gN(v, w−, w+, t),

(w+)Tf(v, t)=N
N∑

w+=0

N∑
w−=0

w+gN(v, w−, w+, t).

(3.5)

Therefore, we may rewrite (3.3) in terms of gN as

d

dt

N∑
w+=0

N∑
w−=0

∫
O

ϕ(v)gN(v, w−, w+, t) dv

= 1

N

N∑
w+=0

N∑
w−=0

∫
O

〈
w+

ϕ(v′)+ ϕ(v′∗)

2
− w− +w+

2
ϕ(v)

〉
gN(v, w−, w+, t) dv. (3.6)

Let now

w̃− := w−

N
, w̃+ := w+

N

be the normalised incoming and outgoing degrees of a generic representative vertex of G and let us
define

g̃(v, w̃−, w̃+, t) := N2gN(v, Nw̃−, Nw̃+, t).

Notice that

w̃−, w̃+ ∈W :=
{

k

N
, k= 0, 1, . . . , N

}

and that the step between any two consecutive elements of W is constant and equal to 1
N
. Therefore,

introducing

�w̃− =�w̃+ := 1

N
,

it results
∑

w̃+∈W

∑
w̃−∈W

∫
O

g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+ =
N∑

w+=0

N∑
w−=0

∫
O

gN(v, w−, w+, t) dv= 1,

which allows us to understand g̃ as a w̃−, w̃+-piecewise constant probability density function for all N.
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Using g̃ to further elaborate (3.6), we may write
d

dt

∑
w̃+∈W

∑
w̃−∈W

∫
O

ϕ(v)g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+

=
∑

w̃+∈W

∑
w̃−∈W

∫
O

〈
w̃+

ϕ(v′)+ ϕ(v′∗)

2
− w̃− + w̃+

2
ϕ(v)

〉
g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+,

which is a self-consistent equation for g̃. Assuming now that the size N of the graph is large, i.e. letting
N→∞, we transform w̃−, w̃+ into continuous variables ranging in the interval [0, 1], and from the
previous equation, we get formally (dropping the tildes for ease of notation)

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+

=
∫ 1

0

∫ 1

0

∫
O

〈
w+

ϕ(v′)+ ϕ(v′∗)

2
− w− +w+

2
ϕ(v)

〉
g(v, w−, w+, t) dv dw− dw+. (3.7)

With (3.7) we have upscaled, in a formally rigorous way, a microscopic description based on sin-
gle agents and their individual connections in the graph to a simplified aggregate description in which
the graph appears only through the continuous statistical distribution of the normalised degrees of its
vertices, at least in the case of interactions with polarised memory.

The same procedure applied to (2.13) for the case of ‘action-action’ interactions yields

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+

=
∫ 1

0

∫ 1

0

∫
O

〈
w+ϕ(v′)+w−ϕ(v′∗)

2
−w+ϕ(v)

〉
g(v, w−, w+, t) dv dw− dw+ (3.8)

in place of (3.7).

Remark 3.4. If the interaction kernel B is symmetric, then so is the adjacency matrix M of G and
consequently w− =w+. In this case, we may describe the degree of a vertex of G by a single variable
w := w− =w+ and replace the distribution function g by

ḡ(v, w, t) :=
∫ 1

0

g(v, w, w+, t) dw+,

so that both (3.7) and (3.8) reduce to
d

dt

∫ 1

0

∫
O

ϕ(v)ḡ(v, w, t) dv dw=
∫ 1

0

∫
O

w

〈
ϕ(v′)+ ϕ(v′∗)

2
− ϕ(v)

〉
ḡ(v, w, t) dv dw. (3.9)

This equation describes binary interactions, one of which is perfect memory while the other is
memoryless (like in the Ochrombel model, cf. Example 3.3), on an undirected graph, cf. Remark 2.1.

4. Equivalent Boltzmann-type descriptions

In this section, we show that (3.7), (3.8) can be recovered as particular instances of general Boltzmann-
type equations for a generic system of interacting agents, independently of the construction which takes
into account explicitly the graph structure of the interactions. As we will see, for this purpose the key
point is twofold: on one hand, it is necessary to characterise the microscopic state of the agents conve-
niently, in particular not only by their opinion v but also by their (normalised) incoming and outgoing
degrees w−, w+. On the other hand, it is fundamental to identify an appropriate expression of the colli-
sion kernel of the Boltzmann-type equation in terms of the degrees w−, w+ of a generic representative
agent of the system.
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The equivalence of (3.7), (3.8) with classical Boltzmann-type equations corroborates rigorously a
commonly accepted heuristic assumption made in the literature, according to which networked interac-
tions may be described statistically by invoking the concept of connectivity of the agents, see e.g. [6, 10,
17]. In those contexts, the connectivity is understood as a measure of the number of connections of an
agent in a (large) graph of agents.

4.1. The case of ‘action-reaction’ interactions

‘Action-reaction’ interactions, cf. (2.4), are binary interactions similar to those of the classical collisional
kinetic theory. Therefore, we may refer to a classical Boltzmann-type kinetic equation, which for agents
described by a generic microscopic state v ∈ V ⊆ Rd writes in weak form as (cf. [14])

d

dt

∫
V

�(v)g(v, t) dv

= 1

2

∫
V2

b(v, v∗) 〈�(v′)+�(v′∗)−�(v)−�(v∗)〉 g(v, t)g(v∗, t) dv dv∗ (4.1)

for every observable � : V→ R. The function b : V2→ R+ is the collision kernel.
Now, let us choose v= (v, w−, w+) with V =O× [0, 1]× [0, 1] and

b(v, v∗)=μw+w−∗ , (4.2)

where μ > 0 is a proportionality constant. Moreover, let us consider a v-dependent only observable, i.e.
�(v)= ϕ(v). With the further assumption of polarised memory interactions, (4.1) becomes

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+ =

= μ

2

∫
[0, 1]3

w+w−∗

(∫
O
〈ϕ(v′)+ ϕ(v′∗)− ϕ(v)〉 g(v, w−, w+, t) dv

)
h−(w−∗ ) dw− dw+ dw−∗

− μ

2

∫
[0, 1]3

w+w−∗

(∫
O

ϕ(v∗)g(v∗, w−∗ , w+∗ , t) dv∗

)
h+(w+) dw+ dw−∗ dw+∗ , (4.3)

where

h−(w−) :=
∫ 1

0

∫
O

g(v, w−, w+, t) dv dw+, h+(w+) :=
∫ 1

0

∫
O

g(v, w−, w+, t) dv dw−

are the marginal distributions of the (normalised) incoming and outgoing degrees, respectively, which
do not change in time due to the assumption of static graph. Upon introducing the mean (normalised)
incoming and outgoing degrees:

m− :=
∫ 1

0

w−h−(w−) dw−, m+ :=
∫ 1

0

w+h+(w+) dw+,

equation (4.3) can be written in the form

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+ =

=μ

∫ 1

0

∫ 1

0

∫
O

〈
m−w+

ϕ(v′)+ ϕ(v′∗)

2
− m+w− +m−w+

2
ϕ(v)

〉
g(v, w−, w+, t) dv dw− dw+. (4.4)

To proceed further, we need the following result, which establishes that the average normalised
incoming and outgoing degrees are the same, as it is the case for finite graphs.

Lemma 4.1. It holds that m− =m+.
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Proof. Let us consider at first a finite graph with N <∞ vertices. If w̃−, w̃+ ∈W = { k
N

, k=
0, 1, . . . , N} are the normalised incoming and outgoing degrees of a generic vertex and if m̃−N , m̃+N
denote the mean normalised incoming and outgoing degrees of the graph, then

m̃−N =
∑

w̃−∈W

∑
w̃+∈W

∫
O

w̃−g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+,

m̃+N =
∑

w̃+∈W

∑
w̃−∈W

∫
O

w̃+g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+.

On the other hand, we clearly also have

m̃−N =
1

N

∑
w̃−∈W

w̃− #{i ∈ I : indeg(i)=Nw̃−} = 1

N2

∑
i∈I

indeg(i),

m̃+N =
1

N

∑
w̃+∈W

w̃+ #{i ∈ I : outdeg(i)=Nw̃+} = 1

N2

∑
i∈I

outdeg(i),

where # denotes the cardinality of a set. Since, in any graph,
∑

i∈I indeg(i)=∑i∈I outdeg(i), we get
m̃−N = m̃+N , hence∑

w̃−∈W

∑
w̃+∈W

∫
O

w̃−g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+ =
∑

w̃+∈W

∑
w̃−∈W

∫
O

w̃+g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+.

Passing formally to the limit N→∞ yields then∫ 1

0

∫ 1

0

∫
O

w−g(v, w−, w+, t) dv dw− dw+ =
∫ 1

0

∫ 1

0

∫
O

w+g(v, w−, w+, t) dv dw− dw+,

whence, recalling the definitions of h−, h+,∫ 1

0

w−h−(w−) dw− =
∫ 1

0

w+h+(w+) dw+

and the thesis follows.

Owing to Lemma 4.1, equation (4.4) becomes

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+ =

=mμ

∫ 1

0

∫ 1

0

∫
O

〈
w+

ϕ(v′)+ ϕ(v′∗)

2
− w− +w+

2
ϕ(v)

〉
g(v, w−, w+, t) dv dw− dw+,

where m := m− =m+, which coincides with (3.7) upon letting μ= 1/m.
This shows that, in the case of ‘action-reaction’ rules, the collective dynamics emerging from net-

worked interactions may be equivalently described by all-to-all interactions within a Boltzmann-type
framework, cf. Figure 2, where the interaction rate (viz. collision kernel) is proportional to the product
of the incoming and outgoing degrees of the interacting agents, cf. (4.2). Hence, those dynamics may
be faithfully reproduced even if the detailed graph of the agent connections is unknown, provided the
statistical distribution of the incoming and outgoing degrees is known.

4.2. The case of ‘action-action’ interactions

‘Action-action’ interactions, cf. (2.5), are pairwise interactions which, unlike those of the classical
kinetic theory, need not produce a simultaneous change of microscopic state of the interacting agents.
Technically, the reason is that the two rules in (2.5) feature two different random variables �, �∗ with
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Figure 2. Visual representation of the equivalence between the network dynamics and the equivalent
Boltzmann one. A situation in which the interactions between the agents are regulated by a network
structure (left panel) is replaced, without approximation, by one in which every agent can interact with
any other agent (right panel).

a law differing essentially in the interaction rate B, which might not be symmetric. In order to seek a
parallelism with a graph-free Boltzmann-type kinetic description, it is therefore necessary to refer to a
generalisation of the Boltzmann-type equation (4.1), which takes into account a possibly non-symmetric
collision kernel. Such an equation is written in weak form as

d

dt

∫
V

�(v)g(v, t) dv= 1

2

∫
V2

b(v, v∗) 〈�(v′)−�(v)〉 g(v, t)g(v∗, t) dv dv∗

+ 1

2

∫
V2

b(v∗, v) 〈�(v′∗)−�(v∗)〉 g(v, t)g(v∗, t) dv dv∗ (4.5)

for every observable � : V→ R.
Letting again v= (v, w−, w+) ∈ V =O× [0, 1]× [0, 1] and choosing b like in (4.2) we obtain, with

�(v)= ϕ(v) and after some computations similar to those performed in (4.3), (4.4),

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+) dv dw− dw+ =

=μ

∫ 1

0

∫ 1

0

∫
O

〈
m−w+ϕ(v′)+m+w−ϕ(v′∗)

2
−m−w+ϕ(v)

〉
g(v, w−, w+, t) dv dw− dw+.

Finally, setting μ= 1/m with m := m− =m+ (cf. Lemma 4.1) we recover (3.8).

5. More general interactions

It is natural to inquire whether the equivalence between graph-mediated kinetic equations such as
(3.7), (3.8) and Boltzmann-type equations (4.1), (4.5) may be extended to non-polarised interactions. In
particular, we focus on linear interactions:

v′ = pv+ qv∗, v′∗ = p∗v∗ + q∗v, (5.1)

which provide a sufficiently simple, yet powerful, model for a variety of applications. In (5.1),
p, q, p∗, q∗ are either deterministic or random coefficients chosen so that v′, v′∗ ∈O for all v, v∗ ∈O.

Sticking to the classical spirit of kinetic theory, let us consider ‘action-reaction’ interactions, in which
to every interaction of the v-agent with the v∗-agent there corresponds a simultaneous interaction of the
v∗-agent with the v-agent. The case of ‘action-action’ interactions may be treated similarly.
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Starting from the graph-mediate kinetic equation (3.1), by means of a procedure analogous to that of
Section 3 we obtain the following equation:

d

dt

∑
w̃+∈W

∑
w̃−∈W

∫
O

ϕ(v)g̃(v, w̃−, w̃+, t) dv Δw̃− Δw̃+

︸ ︷︷ ︸
I

=
1

2N2

∫
O

∫
O
〈ϕ(v′) + ϕ(v′∗)〉 fT (v, t)Mf(v∗, t) dv dv∗︸ ︷︷ ︸

II

− 1
2

∑
w̃+∈W

∑
w̃−∈W

∫
O

w̃+ϕ(v)g̃(v, w̃−, w̃+, t) dv Δw̃− Δw̃+

︸ ︷︷ ︸
III

− 1
2

∑
w̃+

∗ ∈W

∑
w̃−

∗ ∈W

∫
O

w̃−
∗ ϕ(v∗)g̃(v∗, w̃−

∗ , w̃+
∗ , t) dv∗ Δw̃−

∗ Δw̃+
∗

︸ ︷︷ ︸
IV

.

(5.2)

While it is clear that, in the limit N→∞, the terms I , III , IV converge formally to

I →
∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+

III → 1
2

∫ 1

0

∫ 1

0

∫
O

w+ϕ(v)g(v, w−, w+, t) dv dw− dw+

IV → 1
2

∫ 1

0

∫ 1

0

∫
O

w−
∗ ϕ(v∗)g(v∗, w−

∗ , w+
∗ , t) dv∗ dw−

∗ dw+
∗ ,

where we dropped the tildes for ease of notation, it is much harder to identify the limit, if any, of II ,
because this term depends on the detailed microscopic couplings of the agents on the graph as encoded
in the adjacency matrix M. In general, one may expect that II cannot be rewritten straightforwardly
in terms of the lumped information on the graph connections brought by the incoming and outgoing
degrees of the vertices.

Nevertheless, it turns out that for particular choices of the observable ϕ some limit aggregate
information may be obtained from (5.2). Let ϕ be linear, then invoking (5.1) we discover:

II =
1

2N2

(
〈p + q∗〉

∫
O

ϕ(v)fT (v, t)M1 dv + 〈p∗ + q〉
∫
O

ϕ(v∗)1T Mf(v∗, t) dv∗

)

whence, recalling (3.2) and (3.5),

= 1

2N

(
〈p+ q∗〉

N∑
w+=0

N∑
w−=0

∫
O

w+ϕ(v)gN(v, w−, w+, t) dv

+ 〈p∗ + q〉
N∑

w+=0

N∑
w−=0

∫
O

w−ϕ(v)gN(v, w−, w+, t) dv

)

=
∑

w̃+∈W

∑
w̃−∈W

∫
O

〈p+ q∗〉 w̃+ + 〈p∗ + q〉 w̃−
2

ϕ(v)g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+

N→∞−−→
∫ 1

0

∫ 1

0

∫
O

〈p+ q∗〉w+ + 〈p∗ + q〉w−
2

ϕ(v)g(v, w−, w+, t) dv dw− dw+.
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Finally, we have obtained that (5.2) yields, in the limit N→∞,

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+

=
∫ 1

0

∫ 1

0

∫
O

〈p+ q∗ − 1〉w+ + 〈p∗ + q− 1〉w−
2

ϕ(v)g(v, w−, w+, t) dv dw− dw+ (5.3)

for all linear observables ϕ. This allows us to recover, in particular, the time trend of the mean
opinion

〈v〉 (t) :=
∫
O

vF(v, t) dv=
∫ 1

0

∫ 1

0

∫
O

vg(v, w−, w+, t) dv dw− dw+

by letting ϕ(v)= v:

d

dt
〈v〉 =

∫ 1

0

∫ 1

0

∫
O

〈p+ q∗ − 1〉w+ + 〈p∗ + q− 1〉w−
2

vg(v, w−, w+, t) dv dw− dw+. (5.4)

It can be checked that (5.3), (5.4) are the very same equations resulting from the Boltzmann-type
equation (4.1) in which one uses the collision kernel (4.2) (with μ= 1/m) and confines ϕ to linear
observables.

Therefore, for linear interaction rules we conclude that:

(i) the collective dynamics resulting from a Boltzmann-type approximation of the graph by means
of the degree distribution of the agents differ, in general, from those emerging from real graph-
mediated interactions, because the latter require the detailed knowledge of the graph connections
(cf. the term II in (5.2));

(ii) nevertheless, the expectation of the opinion on the whole graph is correctly reproduced also by a
Boltzmann-type approximation, i.e. without the detailed knowledge of the graph connections.

Although weaker than that obtained in Section 4, this result still helps to corroborate the validity of
the approaches which approximate the graph structure with the statistical distribution of the degree of
the vertices, at least as far as the investigation of certain statistical properties of the system is concerned.

By similar arguments, it is not difficult to see that this equivalence remains valid also for the following
generalisation of the interaction rules (5.1):

v′ = p(v)+ q(v∗), v′∗ = p∗(v∗)+ q∗(v), (5.5)

where p, q, p∗, q∗ are now either deterministic or random functions defined on O and such that v′, v′∗ ∈
O for all v, v∗ ∈O. Specifically, from (5.2) we deduce that for a linear ϕ it results

II N→∞−−−−→
∫ 1

0

∫ 1

0

∫
O

w+ 〈ϕ(p(v)) + ϕ(q∗(v))〉 + w− 〈ϕ(p∗(v)) + ϕ(q(v))〉
2

g(v, w−, w+, t) dv dw− dw+,

whence, passing to the limit N→∞ in the whole equation,

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+

= 1

2

∫ 1

0

∫ 1

0

∫
O

w+ 〈ϕ(p(v))+ ϕ(q∗(v))− ϕ(v)〉 g(v, w−, w+, t) dv dw− dw+

+ 1

2

∫ 1

0

∫ 1

0

∫
O

w− 〈ϕ(p∗(v))+ ϕ(q(v))− ϕ(v)〉 g(v, w−, w+, t) dv dw− dw+,

which holds for all linear observables ϕ. The same is obtained from the Boltzmann-type equation (4.1)
with collision kernel (4.2) and μ= 1/m. In particular, also in this case the evolution of the mean opinion
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can be recovered simply from the knowledge of the statistical distribution of the degrees of the vertices
of the graph, the detailed structure of graph connections being unnecessary:

d

dt
〈v〉 = 1

2

∫ 1

0

∫ 1

0

∫
O

w+ 〈p(v)+ q∗(v)− v〉 g(v, w−, w+, t) dv dw− dw+

+ 1

2

∫ 1

0

∫ 1

0

∫
O

w− 〈p∗(v)+ q(v)− v〉 g(v, w−, w+, t) dv dw− dw+.

Summarising, we have proved the following:

Theorem 5.1. Let the interaction rules be of the form (5.5). Then, the evolution of linear observables
ϕ provided by the graph-mediated kinetic equation (3.1) with whatever adjacency matrix M is formally
equivalent, in the limit N→∞, to that provided by the Boltzmann-type equation (4.1) with μ= 1/m in
(4.2).

6. On the closure of (5.2) in the limit N → ∞
As already stated, for non-polarised memory interactions it is hard to identify, in general, the limit of
the term II in (5.2). The reason is that if the post-interaction opinions v′, v′∗ are not polarised, i.e. they
depend on both pre-interaction opinions v, v∗, then the lumped information brought by the distribution of
the incoming and outgoing degrees of the vertices, cf. (3.2), may be insufficient to compute II . However,
one may expect that (5.2) turns into a closed equation for every observable ϕ at least for particular classes
of adjacency matrices M.

6.1. Complete graphs

Consider the adjacency matrix

M= 11T =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ , (6.1)

which describes a complete graph, i.e. one in which every pair of vertices is connected by a unique edge
(self-loops are included) so that agents experience all-to-all interactions. In this case, since w− =w+ =N
for every vertex, (3.4) takes the form

gN(v, w−, w+, t)= F(v, t)δw− ,Nδw+ ,N ,

where δ·,· denotes the Kronecker delta. Consequently, g̃(v, w̃−, w̃+, t)=N2F(v, t)δw̃− ,1δw̃+ ,1 and

I = III = IV =
∫
O

ϕ(v)F (v, t) dv.

On the other hand,

II =
1
2

∫
O

∫
O
〈ϕ(v′) + ϕ(v′∗)〉

1
N

1T f(v, t)
)T 1

N
1T f(v∗, t)

)
dv dv∗

=
1
2

∫
O

∫
O
〈ϕ(v′) + ϕ(v′∗)〉F (v, t)F (v∗, t) dv dv∗,
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so that finally (5.2) reduces to
d

dt

∫
O

ϕ(v)F(v, t) dv= 1

2

∫
O

∫
O
〈ϕ(v′)+ ϕ(v′∗)− ϕ(v)− ϕ(v∗)〉 F(v, t)F(v∗, t) dv dv∗

for every N ∈N (in particular, not only in the limit N→∞), every observable ϕ and every definition
of the interaction rules yielding the post-interaction opinions v′, v′∗. This is the weak form of a clas-
sical Boltzmann-type equation with a single microscopic state v, which can be equivalently obtained
from (4.1) with V =O, v= v and b(v, v∗)≡ 1. In particular, a constant unitary collision kernel is the
counterpart in (4.1) of all-to-all interactions expressed by the adjacency matrix (6.1).

6.2. Rank-one approximation of M

Let now

M≈ w+(w−)T

MN

, (6.2)

where MN := ∑
i∈I indeg(i)=∑i∈I outdeg(i), which provides a natural rank-one approximation of any

adjacency matrix with given incoming and outgoing vertex degrees, cf. (3.2). In this case,

II =
1

2MNN2

∫
O

∫
O
〈ϕ(v′) + ϕ(v′∗)〉 (w+)T f(v, t)

)T
(w−)T f(v∗, t) dv dv∗

=
1

2MN

N∑
w+

∗ =0

N∑
w−

∗ =0

N∑
w+=0

N∑
w−=0

∫
O

∫
O

w+w−
∗ 〈ϕ(v′) + ϕ(v′∗)〉 gN (v, w−, w+, t)

× gN (v∗, w−
∗ , w+

∗ , t) dv dv∗

=
N2

2MN

∑
w̃+

∗ ∈W

∑
w̃−

∗ ∈W

∑
w̃+∈W

∑
w̃−∈W

∫
O

∫
O

w̃+w̃−
∗ 〈ϕ(v′) + ϕ(v′∗)〉 g̃(v, w̃−, w̃+, t)

× g̃(v∗, w̃−
∗ , w̃+

∗ , t) dv dv∗ Δw̃− Δw̃+ Δw̃−
∗ Δw̃+

∗ .

By inspecting the proof of Lemma 4.1 we notice that

m̃±N := MN

N2
=
∑

w̃+∈W

∑
w̃−∈W

∫
O

w̃±g̃(v, w̃−, w̃+, t) dv �w̃− �w̃+

is the mean normalised incoming/outgoing degree of the vertices of the graph, which converges to

m=m± =
∫ 1

0

∫ 1

0

∫
O

w±g(v, w−, w+, t) dv dw− dw+

as N→∞. Hence formally,

II N→∞−−−−→ 1
2m

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫
O

∫
O

w+w−
∗ 〈ϕ(v′) + ϕ(v′∗)〉 g(v, w−, w+, t)

× g(v∗, w−
∗ , w+

∗ ) dv dv∗ dw− dw+ dw−
∗ dw+

∗ ,

so that, passing to the limit N→∞ in (5.2) with M approximated by (6.2), we obtain

d

dt

∫ 1

0

∫ 1

0

∫
O

ϕ(v)g(v, w−, w+, t) dv dw− dw+

= 1

2

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫
O

∫
O

w+w−∗
m
〈ϕ(v′)+ ϕ(v′∗)− ϕ(v)− ϕ(v∗)〉g(v, w−, w+, t)

× g(v∗, w−∗ , w+∗ , t) dv dv∗ dw− dw+ dw−∗ dw+∗ . (6.3)
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Algorithm 1 Monte Carlo algorithm for ‘action-reaction’ Boltzmann-type equations on a graph
Require: adjacency matrix M; initial state V0 ∈ON ; time step �t > 0; final time T > 0

Ṽ← V0

t← 1
for t < T do
〈ϕ〉 (t)← 1

N

∑N
i=1 ϕ(Ṽ(i))

V← Ṽ
P← random permutation of {1, . . . , N}
p1← (P(1), . . . , P(N/2))
p2← (P(N/2+ 1), . . . , P(N))
i← 1
for i < N/2 do

�∼Bernoulli(B(p1(i), p2(i))�t)
Ṽ(p1(i))← V(p1(i))(1−�)+�(V(p1(i)), V(p2(i)))�
Ṽ(p2(i))← V(p2(i))(1−�)+�∗(V(p2(i)), V(p1(i)))�
i← i+ 1

end for
t← t+�t

end for

This corresponds to the general form of the Boltzmann-type equation (4.1) with V =O× [0, 1]×
[0, 1], v= (v, w−, w+) and the collision kernel b given by (4.2) with μ= 1/m, for every observable
ϕ and every interaction rule providing v′, v′∗ as post-interaction opinions.

Therefore, we have proved:

Theorem 6.1. For any type of interaction rule, the graph-mediated kinetic equation (3.1) with the adja-
cency matrix M approximated by the rank-one matrix (6.2) is formally equivalent, in the limit N→∞,
to the Boltzmann-type equation (4.1) with μ= 1/m in (4.2).

Remark 6.1. We recall that, in the graph-mediated kinetic equations (2.11) and then (3.1), the entries
of the adjacency matrix M provide the values of the interaction kernel B, cf. Section 2.3. Thus, they
represent the interaction rates of pairs of agents/vertices of the graph. The rank-one approximation (6.2)
of M corresponds to assuming that such rates are simply proportional to the gross incoming and outgoing
degrees of the agents/vertices regardless of the detailed graph topology, as if agents were substantially
‘independent’ from the point of view of the graph connections. Remarkably, this independence is the
key to the closure of (3.1) in the sense of a classical Boltzmann-type description.

7. Numerical experiments

In order to validate the results obtained in the previous sections, we perform a series of numerical exper-
iments choosing as the underlying graph a real social network built from the ‘Social circles: Twitter’
dataset [7, 8]. This dataset contains 81,306 vertices, viz. users, and 1,768,149 edges, viz. their social
connections.

For the sake of completeness, we quickly recall how to solve approximately Boltzmann-type equa-
tions by a Monte Carlo numerical approach. Algorithm 1 consists in simulating literally the binary
interaction dynamics described by (2.2). At each time step, agents are randomly paired and, for each
pair, a Bernoulli random variable depending on the interaction kernel B is sampled to determine whether
an interaction occurs. If it does then the states are updated according to the corresponding interaction
functions. In the case of the graph-mediated kinetic equation (3.1), the interaction kernel B depends on
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(a) (b)

(e)(d)(c)

Figure 3. Numerical validation of the equivalence between the graph-mediated kinetic equations (2.11),
(2.13) and the equivalent Boltzmann-type equations (4.1), (4.5) using the ‘Social circles: Twitter’ net-
work dataset [7, 8] for different interaction rules. Panels a, b: ‘action-reaction’ and ‘action-action’
Ochrombel opinion formation model, cf. Example 3.3. The solid lines and filled regions represent respec-
tively mean values and 95% confidence intervals computed over 10 repetitions. Both dynamics share
the same initial condition. Panel c: separable interaction rule (7.1). Panels e: inelastic Kac-inspired
separable interaction rule (7.2).

the adjacency matrix M. Conversely, in the case of the Boltzmann-type equation (4.1) it depends only
on the incoming and outgoing degrees as specified in (4.2).

As a first experiment, we check the equivalence between graph-mediated and Boltzmann-type kinetic
descriptions discussed in Section 4, i.e. in the case of polarised memory interactions. For simplicity, we
choose as interaction rule the Ochrombel simplification of the Sznajd opinion formation model, cf.
Example 3.3. We simulate both the ‘action-reaction’ (Figure 3(a)) and the ‘action-action’ (Figure 3(b))
versions of the dynamics, first on the true network with the graph-mediated kinetic equations (2.11)
and (2.13), respectively, then with their equivalent Boltzmann-type equations (4.1), (4.5). We run the
simulations for 20, 000 time steps, averaging over 10 repetitions. In Figures 3(a) and (b), we plot the
time evolution of the mean opinion resulting from the graph-mediated kinetic equation (orange line)
and from the equivalent Boltzmann-type equation (blue line). We stress that the latter is not aware of the
graph structure but only of the distributions of the incoming and outgoing degrees. In the same panels,
we also plot the statistical distribution of the opinion at three different time instants. As predicted by
our theory, the Boltzmann-type equation reproduces faithfully the trends of the graph-mediated kinetic
equation. In particular, we notice that the trends of the mean opinion are opposite in the ‘action-reaction’
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and ‘action-action’ dynamics. This is in agreement with the respective equivalent Boltzmann-type
equations (4.1)–(4.2) and (4.2)–(4.5), whose right-hand sides turn out to differ only in the signs, which
are indeed opposite, when they are evaluated with the Ochrombel interaction rules of Example 3.3.
Empirically, this can be explained by observing that in the ‘action-reaction’ dynamics agents with a
higher incoming degree are more likely to change opinion. Conversely, in the ‘action-action’ dynamics
agents with a higher outgoing degree are more likely to change opinion. Therefore, given the same initial
joint opinion-degrees distribution, the trends of the mean opinion are expected to be opposite.

When the interactions have the more general separable form (5.5), Theorem 5.1 ensures that the equiv-
alence still holds for the mean opinion. We validate this result for the following separable interaction
rule (Figure 3(c))

p(v)= p∗(v)= sign(v) min

{
1

2
, v2

}
, q(v)= q∗(v)= sign(v) min

{
1

2
,
√|v|} (7.1)

and for the inelastic Kac-inspired interaction rule

p(v)= p∗(v)= cos(θ ) |cos(θ )|r v, q(v)=−q∗(v)=− sin(θ ) |sin(θ )|r v, (7.2)

cf. [15], where θ ∼ U ([0, 2π ]) is a uniformly distributed random parameter and the exponent r is chosen
to be either r= 0 (Figure 3(d)) or r= 3 (Figure 3(e)). In all cases, the trends of the mean opinion yielded
by the graph-mediated kinetic equation and by the Boltzmann-type equation can be seen to coincide as
predicted by the theory.

Remark 7.1. The choice (7.2) corresponds precisely to the inelastic Kac model described in [15], where
however the variable v does not stand for the opinion of social network users but for the speed of gas
molecules. Indeed, the Kac model is supposed to represent a caricature of a one-dimensional gas, whose
molecules undergo a mixing of their speeds rather than proper physical collisions so as to give rise to
non-trivial one-dimensional dynamics. In our context, we may interpret a graph-based Kac model as a
one-dimensional caricature of a gas in which molecule ‘collisions’ are heterogeneously distributed. In
particular, molecules with a low (resp. high) outgoing degree ‘hit’ few (resp. many) other molecules
while molecules with a low (resp. high) incoming degree are ‘hit’ by few (resp. many) other molecules.

8. Conclusions

In this paper, we have considered the problem of modelling networked interacting multi-agent systems
by means of kinetic equations incorporating a statistical description of the graph of connections among
the agents. The main goal was to obtain evolution equations which, in the spirit of the kinetic theory,
did not require a detailed knowledge of the graph topology while still retaining fundamental features of
the possibly inhomogeneous distribution of the connections.

Starting from networked particle interaction models, first we have derived graph-mediated kinetic
equations. By this, we mean a system of Boltzmann-type equations which describe the evolution of
the state of each vertex, viz. agent, of the graph and are coupled according to the precise structure of
the graph connections encoded in the adjacency matrix of the graph. Next, we have shown that, for-
mally, in the limit of an infinite number of vertices of the graph such a system can be reduced to a single
Boltzmann-type equation defined on an augmented state space, namely one which includes also the (nor-
malised) incoming and outgoing degrees of the agents regarded as continuous variables in the interval
[0, 1]. In particular, the limit procedure has allowed us to identify a precise expression of the interaction
kernel of such a Boltzmann-type equation, which carries all the information about the aforesaid degrees
thereby constituting a statistical approximation of the adjacency matrix. Remarkably, such an expres-
sion, which is proportional to the product of the (normalised) incoming and outgoing degrees of the
interacting agents, matches consistently the one postulated heuristically in the literature via the concept
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of connectivity of the agents. In conclusion, we have proved that a networked interacting particle sys-
tem can be described statistically by a Boltzmann-type equation, whose interaction kernel replaces the
adjacency matrix of the graph and where the kinetic distribution function does not only account for the
distribution of the particle state involved in the binary interactions but also for the statistical distribution
of the degrees of the graph.

As a matter of fact, this result is exact only for a very special class of binary interactions, that we
have called polarised interactions. These are interactions in which the post-interaction states depend
only on one of the two pre-interaction states. For more general interactions, such as linear or separable
interactions, the limiting Boltzmann-type equation is not equivalent to the original system of graph-
mediated equations, meaning that the sole degree distribution is not sufficient to reproduce faithfully
the collective dynamics on the graph. Nevertheless, in this case we have proved that the limit equation
yields the correct time evolution of the mean state of the agents. In more generality, we have also proved
that the limit equation describes correctly the collective evolution of any networked interacting particle
system whose adjacency matrix is approximated a priori by a rank-one matrix obtained from the product
of the incoming and outgoing degree vectors of the graph. This provides a powerful strategy upon which
to rely in practical cases in which one is interested in the collective trend of processes taking place on
large, complex networks, for which the knowledge of the detailed structure may be challenging or even
impossible. Indeed, the degree distributions of a graph are often easier to obtain than the full adjacency
matrix.

Further research directions may consist of detailed analytical investigations of the limit Boltzmann-
type equations to ascertain the impact of different degree distributions on the marginal distribution of
the physical state variable of the particles as well as in the extension of the present study to the case of
ensembles of graphs.
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