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A CLASS OF FACTORABLE TOPOLOGICAL ALGEBRAS

by E. ANSARI-PIRI

(Received 29th February 1988, revised 18th July 1988)

The famous Cohen factorization theorem, which says that every Banach algebra with bounded approximate
identity factors, has already been generalized to locally convex algebras with what may be termed "uniformly
bounded approximate identities". Here we introduce a new notion, that of fundamentality generalizing both
local boundedness and local convexity, and we show that a fundamental Frechet algebra with uniformly
bounded approximate identity factors. Fundamentality is a topological vector space property rather than an
algebra property. We exhibit some non-fundamental topological vector space and give a necessary condition
for Orlicz space to be fundamental.
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1. Introduction

It has been remarked by 2elazko [9] that the famous Cohen factorization theorem
extends in a straightforward way to locally bounded algebras with bounded approxi-
mate identities. Furthermore, in [3], it has also been generalized to locally convex,
complete metrizable topological algebras (locally convex F-algebras) with uniformly
bounded approximate identities. In [3] it is asked whether it is possible to prove the
factorization theorem in the absence of local convexity. In this note we give an
affirmative answer to this question. We introduce a new notion, that of "fundamentality"
generalizing both local boundedness and local convexity, and we will show that a
fundamental F-algebra with uniformly bounded approximate identity can be factorized;
therefore this notion unifies the earlier results.

In fact, fundamentality is a topological vector space property rather than an algebra
property. In Section 2, we give some definitions and some related results. In Section 3,
we exhibit some non-fundamental topological vector spaces and give a necessary
condition for a certain class of spaces, namely, Orlicz spaces, to be fundamental, and
finally in Section 4 we prove that an F-algebra with uniformly bounded approximate
identity which is fundamental can be factorized. For background information on
approximate identities and factorization we refer the reader to [4]. Earlier work on
these ideas in LMC algebras may be found in [2] and [8].

I should like to thank my supervisor, Dr P. G. Dixon, for his advice and
encouragement during the preparation of this paper. My thanks are also due to the
Ministry of Culture and Higher Education of the Islamic Republic of Iran and Guilan
University for financial support.
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2. Definitions and related results

Throughout the paper we write F for the scalar field, which may be either the real or
the complex numbers, and in this section A will denote a topological vector space over
F.

2.1. A is said to be a fundamental topological vector space if there exists b>\ such
that for every sequence (an) of A the convergence of b"(an+1—an) to zero in A implies
that (an) is a Cauchy sequence.

2.2. Let E be any set. A is said to be uniformly fundamental on E if there exists b > 1
such that for every sequence (/„) of functions from E into A, b"{fn + l(t)—fn{t))-*O
uniformly on E implies that (/„) is uniformly Cauchy on E. A is said to be a uniformly
fundamental topological vector space if it is uniformly fundamental on every set E.

2.3. A topological algebra A, whose underlying topological vector space is funda-
mental (uniformly fundamental), is called & fundamental {uniformly fundamental) topologi-
cal algebra.

It is easy to check that every locally convex and every locally bounded space is a
uniformly fundamental topological vector space (for a locally bounded space, it suffices
to see that its topology can be defined by an a-norm [6, p. 40]). On the other hand, if B
is a locally convex but not locally bounded space, and C is a locally bounded but not
locally convex space, then B@C is a uniformly fundamental topological vector space
which is not locally convex and not locally bounded.

Proposition 2.4. Let A be a fundamental topological vector space, then for every c> 1
and every sequence (an) of A, the convergence ofc"(an+l — an) to zero in A implies that (an)
is a Cauchy sequence. For the uniformly fundamental case the corresponding result holds.

Proof. Let Definition 2.1 be satisfied with the constant b>\, and for some keZ+,
c2">b. Then obviously Definition 2.1 is satisfied with c2\ Suppose (an) is any
sequence of A with (c2k"')ri(an+1— an)-*0, then (c2*~')2B(a2n+i —fl2»)-»0 a°d
(c2*")2"+1(a2ll + 2 -a 2 l l + 1)-»0 which implies that (c2k)n(a2n+2-a2n)^0 and so (a2n) is
Cauchy. Since also an+1 — an-*0, we get that (an) is Cauchy. Therefore, the fact that
Definition 2.1 is satisfied with c2" implies that it is also satisfied with c2"*'. Now by
repeating, if necessary, the assertion is proved.

Lemma 2.5. If A is uniformly fundamental on Z+, then A is uniformly fundamental on
every set E.

Proof. If (/„) is uniformly Cauchy on countable subsets of E, then (/„) is uniformly
Cauchy on E.
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Proposition 2.6. / / A is complete, metrizable, and fundamental, then it is uniformly
fundamental on every set E.

Proof. Let Definition 2.1 be satisfied with a constant b>\. Let Xj (respectively X2)
be the space of all sequences (respectively, bounded double sequences) of A converging
to zero in A with a topology defined by {Un}™=l (respectively {0n}™=l) as a neighbour-
hood base at zero where @ = {Un}™=l is a neighbourhood base at zero in A and for
each n e Z + , Un and 0n are defined by

For each sequence (xJeXu put fn=Yj=\b~jXy The fundamentality of A implies that
the double sequence ( / „ - / , ) £ , = i e * 2 , Define T:X^X2 by T((xn))=(/p-/,)»,= t . By
the closed graph theorem, T is continuous.

Let (/„) be a sequence of functions from Z+ into A such that b"(fn+1(k)—/n(/c))-»-0
uniformly on Z + and let Wef . Take K e ^ with T(V)^W. There exists NoeZ +

such that n>yvo implies that for each keZ+, b"(fn+l(k)-fn(k))eV. Put
xk

n = bN°+n(fNo+n+l(k)-fNo+n(k)) then for each fceZ+, (xkX=1e K and therefore for each
keZ+, T((xk

n)™=1)eW. Therefore the sequence (/„) is uniformly Cauchy on Z + . Now
by Lemma 2.5 the proposition is proved.

Proposition 2.7. / / A is a directed set and (Ax)XeA is a projective family of uniformly
fundamental topological algebras, then so is lim Ax.

The proof is straightforward.

Proposition 2.8. Let A be a metrizable uniformly fundamental topological vector space
and M^A a closed vector subspace then the quotient space A/M is uniformly fundamental.

The proof is easy and omitted.

3. Non-fundamental topological vector spaces

There are many topological vector spaces which are not fundamental. For example,
the space ^ ( [ 0 , oo)) of all measurable functions on [0, oo), with the convergence in
measure topology is not fundamental.

Let g:[0, oo)-»(R be an Orlicz function [5, p. 29); we define the Orlicz space

, oo)): J g{\f(t)\)dt<oo\
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with topology given by the neighborhood base {Un}?=1 where

" - { •
Then we have:

Proposition 3.1. A necessary condition for the Orlicz space Z?([0, oo)) to be fundamen-
tal is that for each b>\ and each 0^<x<l,the sequence (g(b2")/rixg(bn))™= t be unbounded.

Proof. Suppose that for some Oga<l and some b>l, (g(b2n)/ri'g(b''))™= t is a
bounded sequence. Take )>e(a, 1) and define fio=0, and nn=l/nyg(b"~1) for n ^ l . Now,
if we define /„:[(), oo)-*[0, oo) by

. 0 otherwise

then

]g(\bn(fn+1(t)-Mt))\)dt=g(b2n)/(n
o

but

0 k = n

Example 3.2. Let g(t) = \ogfi{l +1) for te[0, oo) and /?>0. Then, obviously for each
b>l, {g(b2n)/g(bn))^=! is a bounded sequence and therefore Z?([0, oo)) is not
fundamental.

4. < Factorization in fundamental F-algebras

In this section, we prove that if an F-algebra has a uniformly bounded approximate
identity, even in the absence of local convexity and local boundedness it may factorize.

Let A be a complete, metrizable topological algebra and {Un}™=1 be a countable
neighbourhood base at zero such that each Un is closed, balanced, Un+l^Un and
U2

+1^Un (neZ+). Let A be the unitization of A ([1, p. 15]). If we define 0n =
C/n + B[0, l/n], where B[0, l/n] = {aeF:|a|^l//t}, then {0n}?=l is a countable closed,
balanced neighbourhood base at zero for A such that A itself becomes a metrizable
complete topological algebra with identity. We have t/n + 1- Un+i £{/„+[/„ (neZ+). As
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in [3], by a uniformly bounded left approximate identity in A, we shall mean a net (ex)xe\
such that exa-*afor every aeA and there exists fc>0 such that {(k~1ex)":XeA, n eZ + }
is bounded in A; then we say k is a uniform bound for (cJieA. Also, by a Ze/f Frechet
A-module, we shall mean a left .4-module X which is a complete, metrizable topological
vector space, such that the multiplication map (a,x)-*ax:Ay.X-*X is continuous. We
shall say that X is essential if A has a uniformly bounded left approximate identity
(ex)xe\ such that exx-*x for all xsX. We shall let d denote a translation-invariant
metric defining the same topology on X, and we write |x| = d(x, 0) (xeX).

Theorem 4.1. Let A be fundamental and X be an essential left Frechet A-module. Then
for each xeX an each e>0, there exists aeA and yeX such that x = ay, ye Ax, and
d{x,y)<e.

Proof. Let (ex)XeA be the uniformly bounded left approximate identity in A with a
uniform bound k>l, and take 0 < p / l + p < l/2k, and 1 <£»< 1 +p. F o r / e Z + , let Mj>j
be such that for each neZ + and AeA, k~"exeMjUj. Then we have
(p(l + p)~1ex)

ne2~nMJUj and therefore (p(l +p)~1ex)"-*0 uniformly on A. Now, if we
put Sn(X) = Y?=l(p(l+p)~lex)\ since b< l + p<2, then, for sufficiently large n,

and so fr"(Sn+1(A)-Sn(A))-»O uniformly on A. By Proposition 2.6, it follows that the
sequence (Sn) in A is uniformly Cauchy on A, and then, the series £"=o(p(l +p)~iex)

n

converges uniformly on A. Therefore (1 +p — pex) is invertible in A and for each AeA we
have

n = 0

Now for j e Z + , take ;,(=ji(j)) such that 0h + lJJt^&j- Let fc;eZ+ be such that for
each AeA, X^°=*,+i(p(l+p)~1e/i)

ne#/1. Take j o e Z + (depending only on j) such
that Ujl 3 0jo + •• • + Ujo {(kj + 1) summands).

We have

and then Y^=o^P(\ + P)~le>f^MjoPr T n u s for each_/eZ+, there exists jo(j) such that

1M7.0C7J. (VAeA).

Now take eytA such that \px—pe{x\<tll. Suppose eue2,...,en have been chosen.
Define fB = ( l+p-pe , ) . . . ( l+p-pe n ) , hn = t~leA, an = t;1-(l+p)-neA and yn =
tnxeX. Now choose en+ieA such that

en+1an-aneb-"Un
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and

\ptnx-ptnen+1x\<e2-"-\

By definition we have

and so, for all jeZ+,

and then for sufficiently large n we have

and

which implies that (an) is a Cauchy sequence in A. Let a = limnane A Since by (*), (yn) is
also a Cauchy sequence and x = /!„>»„ we have clearly x=ay with y = \imnyneAx^X and

Corollary 4.2. Let /4 fee as in Theorem 4.1, then for every sequence (xn) of A
converging to zero, there exists an element aeA and a sequence (yn) of A converging to
zero such that xn = aynfor all neZ+.

Proof. Let Xx be as in Proposition 2.6 and the neighbourhood base {t/n}"=i of A be
chosen as above, then {OJ}jL1 is a neighbourhood base at zero in Xt making Xt a
Frechet left /4-module where Uj is defined by

Since Xx is also essential, the corollary follows by applying Theorem 4.1 with X = X1.

Corollary 4.3. Let A be as in Theorem 4.1 with a continuous involution *:A-*A, then,
every positive functional on A is continuous.

Proof. The proof is just as in Theorem 4.3 in [3].
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