
TPLP: Page 1–20. c© The Author(s), 2025. Published by Cambridge University Press. This is an

Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100094

1

ASP Chef Grows Mustache to Look Better

MARIO ALVIANO and LUIS ANGEL RODRIGUEZ REINERS
University of Calabria, Rende, Italy

(e-mails: mario.alviano@unical.it, luis.reiners@unical.it)

WOLFGANG FABER
University of Klagenfurt, Klagenfurt, Austria

(e-mail: wolfgang.faber@aau.at)

submitted 11 July 2025; revised 11 July 2025; accepted 27 July 2025

Abstract

We present ASP Chef Mustache, an extension of ASP Chef that enhances template-based render-
ing of answer set programming (ASP) solutions using a logic-less templating system inspired by
Mustache. Our approach integrates data visualization frameworks such as Tabulator, Chart.js,
and vis.js, enabling interactive representations of ASP interpretations as tables, charts, and
graphs. Mustache queries in templates support advanced constructs for formatting, sorting, and
multi-stage expansion, facilitating the generation of rich, structured outputs. We demonstrate
the power of this framework through a series of use cases, including data analysis for the Italian
VQR, visualization of blocking sets in graphs, and scheduling problems. The result is a versatile
tool for bridging declarative problem solving and modern web-based visual analytics.

KEYWORDS: answer set programming, ASP chef, visualization, systems integration

1. Introduction

Answer Set Programming (ASP) is a well-established declarative paradigm for solving

complex combinatorial problems, offering a clean separation between problem modeling

and computation (Brewka et al . 2011; Erdem et al. 2016; Lifschitz 2019; Kaminski

et al. 2023; Alviano et al. 2023). While modern ASP solvers can efficiently compute

answer sets, interpreting and presenting these solutions in practical applications often

requires substantial custom post-processing that motivated the development of several

tools for answer set visualization (Cliffe et al. 2008; Kloimüllner et al . 2011; Lapauw

et al. 2015; Bourneuf 2018; Hahn et al. 2024; Bertagnon and Gavanelli 2024). In the same

spirit, ASP Chef (Alviano et al. 2023) was introduced to streamline the construction

of pipelines that combine ASP-based search and optimization tasks with other tools for

filtering, aggregation, and visualization (Alviano and Rodriguez Reiners 2024).

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094
https://orcid.org/0000-0002-2052-2063
mailto:mario.alviano@unical.it
mailto:luis.reiners@unical.it
mailto:wolfgang.faber@aau.at
https://doi.org/10.1017/S1471068425100094

M. Alviano et al.2

In previous developments, ASP Chef has demonstrated its flexibility in composing

pipelines involving combinatorial search and optimization by integrating external tools

through mappings , that is, sets of procedures that convert ASP facts into representations

suitable for systems implemented in other languages. This methodology enabled mean-

ingful collaborations with tools such as MiniZinc (Nethercote et al. 2007), for constraint

modeling and solving, and Structured Declarative Language (SDL) (Alviano et al. 2024),

for structured problem descriptions. These integrations (Alviano et al. 2024) relied on

defining specific interpretations of ASP facts to match the syntax and semantics required

by each target system. However, as the expressiveness and complexity of the external

language increased, so did the difficulty and cost of building and maintaining the corre-

sponding mappings. Consequently, such efforts often focused on a limited subset of the

features available in the target language, hindering full exploitation of the capabilities of

the integrated tool.

In this work, we introduce a different and more scalable approach to tool integration,

grounded in the use of Mustache templates (a popular web templating system; Mittapalli

and Arthur 2021). Rather than building logic-based rules to obtain ASP facts that are

later interpreted to interact with third-party tools, users can now define output templates

using the native format of the target tool, embedding variable placeholders that are filled

directly using the answer sets. This shift in paradigm allows ASP developers to write plain

templates in the language of the external tool, with minimal effort and no need for cus-

tom interpreters or adapters. As a result, the richness of the target system no longer

translates into integration complexity. Instead, users are empowered to access the full

feature set of the external tool by simply referring to its original documentation and writ-

ing the appropriate Mustache template. This template-based mechanism preserves the

declarative spirit of ASP while promoting openness, modularity, and extensibility in the

design of logic-based pipelines. Thanks to Mustache, we extend ASP Chef to support the

embedding of interactive views using popular JavaScript libraries such as Tabulator (for

dynamic tables), Chart.js (for customizable charts), and vis.js (for networks, timelines,

and 3D visualizations). This enhancement empowers ASP developers to generate human-

readable reports, dashboards, and exploratory interfaces with minimal additional effort,

all within a declarative framework. The newly integrated libraries find application in

several common and new use cases of ASP, including scheduling and data analysis.

2. Background

2.1 Mustache templating system

Mustache is a logic-less templating system designed for generating HTML, configuration

files, and other structured documents. Its simplicity and flexibility make it a popular

choice for developers who need to separate data from presentation while avoiding complex

scripting within templates. At its core, Mustache templates use placeholders enclosed in

{{ ... }}

to insert dynamic content. In this work, we restrict placeholders to be variables that get

assigned values during template rendering, or sections of the form

{{#variable}} ... {{/variable}}

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 3

that enable loops and conditionals. Data are taken from a YAML or JSON file during

template rendering.

Example 1.

Let us consider the following Mustache template:

The OS is {{ operating system }}. The list of users is the following:

{{#users}}

- {{ username }} (id {{ userid }})

{{/users}}

Applying the above template to the JSON object

{ "operating system": "Linux",

"users": [{ "userid": 1000, "username": "alice" },

{ "userid": 1001, "username": "bob" }] }

renders the following text (which can be part of a Markdown document):

The OS is Linux. The list of users is the following:

- alice (id 1000)

- bob (id 1001)

2.2 Answer set programming

A program is a set of rules defining conditions (conjunctive bodies) under which atoms

must be derived (atomic heads) or guessed (choices). Programs are associated with zero

or more answer sets, that is, interpretations satisfying all rules and a stability condition

(Gelfond and Lifschitz 1990). Programs are extended with #show directives of the form

#show p(t) : conjunctive query.

where p is an optional predicate, t is a possibly empty sequence of terms, and

conjunctive query is a conjunction. Answer sets of the program are projected accord-

ing to the #show directives. We refer the ASP-Core-2 format for details (Calimeri et al.

2020).

Example 2.

The following program solves the K-Clique problem in ASP:

r1 : edge(X,Y) :- edge(Y,X).

r2 : {in(N) : node(N)} = K :- size(K).

r3 : :- in(X), in(Y), X < Y, not edge(X,Y).

r4 : #show (Index+1, N) : in(N), size(K), Index = #count{N': in(N'), N > N'}.

Rule r1 defines edge as a symmetrically closed relation (as the graph is undirected). The

choice rule r2 guesses K nodes (a K-clique candidate). The constraint r3 checks that

all selected nodes are linked (a valid clique). Finally, the #show directive r4 projects

the answer sets over the selected nodes, indexing them according to their natural order-

ing. Given size(3), and the graph node(a), node(b), node(c), node(d), edge(a,b),

edge(a,c), edge(b,c), edge(c,d), the program has one (projected) answer set, namely

(1, a), (2, b), (3, c).

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.4

2.3 ASP chef

An operation O is a function receiving in input a sequence of interpretations and produc-

ing in output a sequence of interpretations. Operations may produce side outputs (e.g.,

a graph visualization) and accept parameters to influence their behavior. An ingredient

is an instantiation of a parameterized operation with side output. A recipe is a tuple

of the form(encode, Ingredients , decode), where Ingredients is a (finite) sequence O1〈P1〉,
. . . , On〈Pn〉 of ingredients, and encode and decode are Boolean values. If encode is true,

the input of the recipe is mapped to [[__base64__("s")]], where s=Base64 (sin) (i.e.,

the Base64–encoding of the input string sin). After that, the ingredients are applied one

after another. Finally, if decode is true, every occurrence of __base64__(s) is replaced

with (the ASCII string associated with) Base64−1(s). Among the operations supported

by ASP Chef there are Encode〈p, s〉 to extend every interpretation in input with the

atom p("t"), where t=Base64 (s); Search Models〈Π, n〉 to replace every interpretation

I in input with up to n answer sets of Π∪ {p(t). | p(t)∈ I}; Optimize〈Π, n〉 to replace

every interpretation I in input with up to n optimal answer sets of Π∪ {p(t). | p(t)∈ I}.
Example 3 (Continuing Example 2).

The recipe (F, [Search Models〈{r1, . . . , r4}, 1〉],F) addresses the K-Clique problem in a

single step. With (F, [Search Models〈{r1}, 1〉, Search Models〈{r2, r3}, 1〉, Search Models

〈{r4}, 1〉],F), instead, the problem is addressed in three steps: (i) symmetric closure of

edge/2; (ii) clique search; (iii) solution projection.

3. ASP chef mustache

We introduce the main linguistic constructs of our Mustache template system. While the

original system mainly deals with variables and sections to enable loops and conditionals,

our system relies on ASP terms and queries. At the core of our system there is the

expansion of Mustache queries, whose results can be sorted, formatted and projected to

handle duplicates (Section 3.1). More advanced constructs enable string manipulation

and interpolation, the sharing of common elements among several Mustache queries, and

nesting of loops and conditionals (Section 3.2).

3.1 Core functionalities

3.1.1 Mustache queries and expansion

A Mustache query has the form {{ Π}}, where Π is an ASP program with #show direc-

tives. Applying a Mustache query to an interpretation I renders one projected answer set

of Π∪ {p(t). | p(t)∈ I} if any, and otherwise raises an error. Specifically, tuples of terms

in the projected answer set are rendered, one per line and separating terms with “, ”

(comma followed by a blank space). A template is a text with Mustache queries.

Example 4.

Let Π be the program and I be the facts from Example 2. Applying the template

Here is a {{ #show (K,) : size(K). }}-clique of the given graph:

{{ Π }}

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 5

to I renders

Here is a 3-clique of the given graph:

1, a

2, b

3, c

Note that the rendered text depends on the order in which tuples of terms are processed.

3.1.2 Shortcut form, sorting and basic formatting

Mustache queries are often one-liner, as

{{ #show (K,) : size(K). }}

in Example 4. Therefore, we introduce the shortcut form

{{= p(t) : conjunctive query }}

equivalent to

{{ #show p(t) : conjunctive query. }}.

Another shortcut is given for tuples of the form (t,) with t being a number or double-

quoted string, which can be equivalently written as t. The processing order of tuples of

terms can be specified by creating an instance of sort/1, where the argument represents

the index of the term used for sorting. A positive index indicates ascending order, while

a negative index specifies descending order, using the absolute value of the index. Ties

are broken by subsequent instances of sort/1 (if available). The rendering of tuples of

terms can be controlled with instances of separator/1 to specify a different separator

for tuples; term_separator/1 to specify a different separator for terms; prefix/1 and

suffix/1 to wrap output with specified text. As a side note, we discourage the use of

guessing components (as choice rules) in Mustache queries, as they are better handled

by other ASP Chef operations (e.g., Search Models and Optimize).

Example 5 (Revising Example 4).

Let I be the facts from Example 2 extended with in(a), in(b), in(c) (i.e., the answer

set of the program from Example 2 before projection). Applying the template

Here is a {{= K : size(K) }}-clique of the given graph: {{

#show (Index + 1, N) : in(N), Index = #count{N' : in(N'), N > N'}.
#show sort(1).

#show separator("; ").

#show term_separator(") ").

#show prefix("(").

}}.

to I renders

Here is a 3-clique of the given graph: (1) a; (2) b; (3) c.

Note that the order of tuples is specified in the Mustache query, and therefore the ren-

dered text does not depend on the order in which tuples are produced by the underlying

ASP solver.

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.6

3.1.3 Handling duplicates

ASP follows set-semantics, meaning duplicate results do not appear naturally. On the

other hand, ASP can deal with duplicate addends in sums and weak constraints thanks

to an extended syntax including distinguishing terms (i.e., terms that are used to differ-

entiate between equal addends). The same technique can be adopted for tuples of terms

in Mustache queries: the varadic predicate show/∗ renders the first of its arguments (a

tuple of terms), discarding all other arguments. All of its arguments are subject to the

sorting criteria specified in the Mustache query (if any), hence enabling the possibility

to sort elements based on properties that are not rendered.

Example 6.

Suppose a cost is associated with each node in Example 2: cost(a,1), cost(b,2),

cost(c,1), cost(d,1). The following weak constraint minimizes the sum of costs in

the computed clique:

:∼ cost(Node,Cost), in(Node). [Cost@1, Node]

Note that variable Node is a distinguishing term, thanks to which the cost 1 associated

with nodes a and c can be correctly counted twice in the computed solution. Applying

the template

The cost is {{= S : S = #sum{Cost, Node : in(Node), cost(Node,Cost)} }} = {{

#show show(Cost, Node) : in(Node), cost(Node,Cost).

#show sort(2).

#show separator(" + ").

}}.

to the clique comprising nodes a, b and c renders

The cost is 4 = 1 + 2 + 1.

Note that variable Node is a distinguish term also in the #sum aggregate and in the

second Mustache query. Also note that costs are sorted by node.

3.2 Advanced functionalities

3.2.1 Lua string @-terms

Mustache queries have access to some interpreted functions that ease string manipulation.

Among them, @string_join(sep, . . .) to concatenate two or more strings using the

provided separator, @string_concat(. . .) as a shortcut for @string_join("", . . .),

and @string_format(format, . . .) to format a string using the given format string and

arguments. Floating-point numbers are represented in the format real("NUMBER").

Example 7 (Revising Example 5).

The output shown in Example 5 can also be obtained by the following template:

Here is a {{= K : size(K) }}-clique of the given graph: {{

#show show(shown term, Index) : in(N), Index = #count{N' : in(N'), N > N'}.
#show sort(2).

#show separator("; ").

}}.

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 7

where shown term is either @string_concat("(", Index + 1, ")", N)

or@string_format("(%d) %s", Index + 1, N).

3.2.2 Multiline strings and F-strings

Mustache queries enrich the syntax of ASP with multiline strings of the form {{". . ."}}
and f-strings of the form {{f". . ."}}. A multiline string is mapped to a double-quoted

string, representing new lines and double-quotes with the escape sequences \n and \",
respectively. F-strings additionally introduce interpolation: data are interpolated in f-

strings using the syntax ${ expression:format }, where :format is optional (default :%s for

string). A f-string {{f"str"}} is mapped to the term @string_format(fmt, e1, . . . , en),

where fmt is the double-quoted string obtained by escaping str and replacing interpola-

tions with the associated formats, and e1, . . . , en are the n≥ 0 expressions interpolated

in str .

Example 8.

Suppose we would like to render

nodes: [{ id: "a", label: "a (1)", group: "in" },

{ id: "b", label: "b (2)", group: "in" },

{ id: "c", label: "c (1)", group: "in" },

{ id: "d", label: "d (1)", group: "out" }],

as part of a JSON object representing the graph and the computed clique. We could rely

on

nodes: [{{

#show show(@string_format("{id:\"%s\", label:\"%s (%d)\", group:\"out\"}",

X, X, C), X) : cost(X,C), not in(X).

#show show(@string_format("{id:\"%s\", label:\"%s (%d)\", group:\"in\"}",

X, X, C), X) : cost(X,C), in(X).

#show sort(2).

#show separator(",\n").

}}],

We observe that double-quoted strings of ASP require escaping of frequent characters

in JSON (the double quote char in particular). Even worse, handling a large JSON

object formatted as a single line is highly inconvenient. Below are more convenient

representations:

nodes: [{{ #show show(@string_format({{"{

id: "%s", label: "%s (%d)", group: "out"

}"}}, X, X, C), X) : cost(X,C), not in(X).

#show show({{f"{

id: "${X}", label: "${X} (${C:%d})", group: "in"

}"}}, X) : cost(X,C), in(X).

#show sort(2).

#show separator(",\n").

}}],

In the template above, the f-string in the second #show directive essentially maps to

the @string_format term in the first #show directive (modulo the value of group).

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.8

3.2.3 Persistent queries

Common elements of different Mustache queries in a template can be stored in a persistent

array , initially empty, by using the expression

{{* Π }}

where Π is an ASP program with #show directives; or using the shortcut form

{{+ p(t) : conjunctive query }}

equivalent to

{{* #show p(t) : conjunctive query. }}.

The content of the persistent array is prepended to the tuples of terms and atoms

obtained by evaluating subsequent Mustache queries in the template. The persistent

array can be reset using the Mustache expression {{-}}.
Example 9 (Continuing Example 8).

Targeting the rendering of JSON objects, the separator is likely always ", \n". Instead
of including the associated #show directive in all Mustache queries, a template could

start with the Mustache expression {{+ separator(", \n")}}.

3.2.4 Multi-stage expansion

Mustache queries enable loops and conditionals. In some cases, nesting of Mustache

queries is convenient for evaluating conditionals within loop elements or for executing

inner loops. A multi-stage template expansion repeatedly processes Mustache queries

until no further expansions remain.

Example 10 (Continuing Examples 8–9).

As already observed, the multiline string and the f-string in Example 8 only differ in the

value of group. Nesting a conditional within a single loop over nodes seems natural in

this case. Assuming sort(2) and separator(", \n") are in the persistent array, we can

use

nodes: [{{= show({{f"

{

id: "${X}",
label: "${X} (${C:%d})",
group: {{= "out" : not in(${X}) }}{{= "in" : in(${X}) }}

}

"}}, X) : cost(X,C)

}}],

Note that the first expansion renders (four inner objects like) the following:

nodes: [{ id: "a", label: "a (1)",

group: {{= "out" : not in(a) }}{{= "in" : in(a) }} }, · · ·],

Conditionals within each object are evaluated in the second stage to obtain the group

values.

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 9

Fig. 1. Side outputs associated with data from Example 6: graph with highlighted clique
obtained with the @vis.js/Network operation; table showing node costs and computed clique
obtained with the tabulator operation; chart reporting statistics obtained with the Chart.js

operation. A recipe showcasing these examples is available at
https://asp-chef.alviano.net/s/ICLP2025/running-example.

4. JSON-based frameworks integration

Several frameworks can be configured using JSON objects. To further ease their inte-

gration in ASP Chef, we rely on Relaxed JSON (https://www.relaxedjson.org/), hence

accepting a more permissive syntax. The new operations presented in this section have

parameters 〈p, m〉, where p is a predicate and m is a Boolean. Each atom p(s) in each

input interpretation I produces a side output according to the JSON object rendered by

applying the template Base64−1(s) to I, using multi-stage expansion if m is T.

4.1 @vis.js/network

The Network module in vis.js (https://visjs.org/) is a powerful JavaScript library for visu-

alizing dynamic and interactive networks (graphs). Users can customize colors, shapes,

labels, and border styles of nodes and edges. The module includes a physics-based layout

engine, and supports real-time interactivity. Additionally, grouping and clustering allow

for efficient visualization of large datasets by aggregating related nodes. The library also

supports hierarchical layouts and directional edges with arrows. We extended ASP Chef

with the @vis.js/Network operation.

Example 11 (Display data from Example 6 as a graph).

The following template renders the graph shown in Figure 1:

{ data: {

nodes: [{{= show({{f"

{

id: "${X}",
label: "${X} (${C:%d})",
group: {{= "out" : not in(${X}) }}{{= "in" : in(${X}) }}

}

"}}, X) : cost(X,C)

}}],

edges: [

{{= {{f"{ from: "${X}", to: "${Y}" }"}} : edge(X,Y), X<Y, in(Y) }}

{{= {{f"{ from: "${Y}", to: "${X}" }"}} : edge(X,Y), X<Y, not in(Y) }}

]

},

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.10

options: {

nodes: { shape: "circle", borderWidth: 2, shadow: true },

edges: { width: 2, shadow: true },

groups: {

"in": { color: { background: "yellow", border: "orange"} } }

}

}

Note that nodes in the "in" group (and edges within the clique) are highlighted in

yellow.

4.2 Tabulator

Tabulator (https://tabulator.info/) is a powerful JavaScript library that provides a wide

range of customization options to create interactive tables from various sources, including

JSON. In the context of ASP Chef, Tabulator can be used to render tables from input

models, taking advantage of Mustache queries to configure the table and bind data from

ASP facts as needed. Specifically, we extended ASP Chef with the Tabulator operation,

and enriched the JSON configuration to accept the download property, allowing users to

add buttons for exporting the data in various formats such as CSV, JSON, or Excel.

Example 12 (Display data from Example 6 as a table).

The following template renders the table shown in Figure 1:

{ data: [{{= {{f"

{

node: "${Node}",
cost: ${Cost * 100 / Max},

in: {{= "true": in(${Node}) }}{{= "false": not in(${Node}) }},

},

"}} : cost(Node, Cost), Max = #max{Cost' : cost(_, Cost')}
}}],

columns: [{ title: "Node", field: "node" },

{ title: "Cost", field: "cost", formatter: "progress" },

{ title: "In {{= K : size(K) }}-clique", field: "in",

hozAlign: "center", formatter: "tickCross" }],

initialSort: [{ column: "node", dir: "asc" }, { column: "in", dir: "desc" }],

download: [{ color: "success", format: "csv", options: { delimiter: "\t" } }]

}

Note that data is a list of objects whose properties are obtained interpolating ASP

terms. Costs are shown as a (progress) bar, and membership in the computed clique

using ticks. Rows are sorted by membership in the clique (descending), and node name

(ascending). Finally, the user can export data as comma-separated values (CSV) by

clicking a button.

4.3 Chart.js

Chart.js (https://www.chartjs.org/) is a lightweight yet powerful JavaScript library for

creating interactive and customizable charts. It supports multiple chart types, including

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 11

line, bar, pie, radar, and scatter plots, making it versatile for various data visualization

needs. Its JSON configuration can easily customize styles, adjusting colors, fonts, and

tooltips. We extended ASP Chef with the Chart.js operation.

Example 13 (Display statistics about Example 6).

The following template renders the mixed chart (bar plots and line) shown in Figure 1:

{{+ sort(2) }}

{ type: "bar",

data: {

labels: [{{= {{f"${Node}"}} : node(Node) }}],

datasets: [{

label: "Total Edges", borderWidth: 2,

data: [{{= show(V,N) : node(N), V = #count{N' : edge(N,N')} }}],

}, {

label: "Clique Edges", borderWidth: 2,

data: [{{= show(V,N) : node(N), V = #count{N' : edge(N,N'), in(N')} }}],

}, {

type: "line", label: "Cost",

data: [{{= show(Value, Node) : cost(Node, Value) }}],

}] },

options: {

scales: {

y: { beginAtZero: true, title: { display: true, text: "Number" } } }

}

}

The template defines three datasets, two bars and one line, using the show/∗ predicate

to handle duplicate values. Also note that values are sorted by node (the second argument

in show/∗).
Other frameworks We extended ASP Chef with other frameworks, providing alter-

natives to build charts and images. The @vis.js/Timeline operation is specialized for

temporal data. The library supports custom styling and grouping of events, making it

ideal for project management, historical data visualization, and scheduling applications.

The @vis.js/Graph3D operation can create interactive 3D visualizations of data, mak-

ing it ideal for representing mathematical functions, scientific data, and geographical

information. Data points are rendered on a 3D plane, either as surface plots or scat-

ter plots. The module provides intuitive controls for zooming, rotating, and panning,

allowing users to explore complex datasets from different angles. Customization options

include color gradients, axis scaling, and grid styling, enabling precise data representa-

tion. The ApexCharts (https://apexcharts.com/) operation integrates a modern, highly

customizable JavaScript charting library designed for creating interactive, responsive,

and performant visualizations. It supports a wide range of chart types, including line,

bar, area, pie, radar, heatmaps, and mixed charts, making it suitable for business intel-

ligence dashboards, financial data analysis, and real-time monitoring. Interactivity is a

key strength, with built-in support for tooltips, zooming and panning. The Fabric.js

(https://fabricjs.com/) operation integrates a powerful and flexible JavaScript library

for working with HTML5 canvas, enabling rich interactive graphics, image manipulation,

and object-based drawing. It simplifies complex vector graphics operations by providing

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.12

Fig. 2. VQR data analysis with Chart.js and ApexChart .

an intuitive API for creating and managing shapes, images, text, and paths. One of its

standout features is object-based manipulation, allowing users to move, scale, rotate, and

group elements directly on the canvas.

5 Use cases

5.1 Data analysis

Italian VQR (Valutazione della Qualità della Ricerca) is the national framework used

to assess the quality and impact of research outputs through bibliometric indicators

such as citation percentiles and journal impact factors. ASP finds a natural application

in this context to optimize the selection of articles avoiding conflicts (see https://asp-

chef.alviano.net/s/VQR2024/assegna-paper). The newly integrated libraries add several

useful capabilities to analyze input data and results. Figure 2 shows a scatter plot

obtained with Chart.js , where each point combines the percentiles on citations and

impact factor to provide an insightful overview of research performance, and a radar

chart from ApexChart to overview the number of articles per year included in the anal-

ysis. An interactive recipe starting from CSV and including a Tabulator representation

is available at https://asp-chef.alviano.net/s/ICLP2025/vqr.

5.2 Graph analysis

The concept of blocking sets is also known as vertex cuts or vertex separators in graph

theory: given a start and an end vertex, a blocking set is a set of vertices (without

the start and end vertices) such that the end vertex is not reachable from the start

vertex without passing a member of the blocking set. The identification of blocking

sets has numerous applications, for example in VLSI design and cybersecurity. Using

@vis.js/Network , ASP Chef can display blocking sets of a given directed graph, using

the same layout for all computed solution to ease their understanding. A recipe is avail-

able at https://asp-chef.alviano.net/s/ICLP2025/blocking-sets. For a larger example,

https://asp-chef.alviano.net/s/ICLP2025/vqr2 shows an authorship graph from which

different communities of authors are easily spotted and independently optimized to select

articles for the Italian VQR. Figure 3 reports networks obtained with @vis.js/Network

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 13

Fig. 3. Blocking sets and authorship graphs obtained with @vis.js/Network .

in these contextes. For blocking sets, the start and end vertices are green, vertices in the

blocking sets are red.

5.3 Planning and scheduling

Incremental Scheduling is a complex problem that involves allocating jobs to spe-

cific devices with replicas, while considering deadlines, dependencies, and importance

levels. The goal is to minimize the penalty for missing deadlines and the overall

completion time. To visualize this intricate process, we utilize @vis.js/Timeline to

create a dynamic and interactive schedule. The timeline ingredient showcases the

computed schedule, highlighting in red the penalties incurred for missing deadlines.

This visualization provides a clear and concise overview of the scheduling process,

allowing users to easily identify areas of improvement and optimize their schedul-

ing strategy. Additionally, a @vis.js/Network visualization is used to illustrate the

dependencies between jobs, providing a comprehensive understanding of the schedul-

ing problem. Figure 4 reports the two visualizations obtained with the recipe at

https://asp-chef.alviano.net/s/ICLP2025/incremental-scheduling.

5.4 2D and 3D solution visualization

In the Skyscrapers puzzle the goal is to determine the height of skyscrapers

in a grid, given clues on the number of visible skyscrapers in some directions

(https://www.puzzle-skyscrapers.com/). A recipe addressing the puzzle is available at

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.14

Fig. 4. Computed scheduling and job dependencies shown with @vis.js/Timeline and
@vis.js/Network .

Fig. 5. Skyscrapers solution shown using Fabric.js and @vis.js/Graph3d (from different angles).

https://asp-chef.alviano.net/s/ICLP2025/skyscrapers, and produces the visualizations

shown in Figure 5. The 3D visualization is particularly interesting here, as the user can

use the mouse to control the camera angle to obtain an immersive experience.

6. Extending ASP chef with new operations

A key strength of ASP Chef lies in its deliberately simple and modular architecture, which

enables users to extend the system by adding new operations with minimal effort. Rather

than modifying core infrastructure or registering components manually, operations are

implemented as self-contained (and self-registering) .svelte files that become instantly

usable within the system. This design encourages experimentation, facilitates integration

of third-party libraries, and lowers the barrier for community contributions. To implement

a new Mustache-based visualization operation (such as a charting or table compo-

nent) developers typically create two files within src/lib/operations: (i) a file named

<Operation>.svelte that defines UI controls for parameters of the operation (e.g.,

predicate and multi-stage), and (ii) a companion file named +<Operation>.svelte

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 15

that imports and renders the third-party library, feeding it the result of the Mustache

template as configuration.

For example, for the ApexCharts operation, the main ApexCharts.svelte file contains

<Operation {id} {operation} {options}>

<Input type="text" bind:value={options.predicate} on:input={edit} />

<Button outline="{!options.multistage}" on:click={() => {

options.multistage = !options.multistage; edit(); }}>Multi-Stage</Button>

{#each models.flatMap(model =>

model.filter(atom => atom.predicate === options.predicate)) as cfg}

<ApexCharts part={model} cfg_atom={cfg} multistage={options.multistage} />

{/each}

</Operation>

This snippet instantiates the operation with UI controls to select the ASP predicate

that encodes the chart configuration and to toggle options such as multi-stage. The #each

loop adds instances of +ApexCharts.svelte for each instance of the selected predicate.

The companion file +ApexCharts.svelte integrates the ApexCharts library and renders

the chart:

<script>

import ApexCharts from 'apexcharts'; import {Utils} from "$lib/utils";
import {Base64} from "js-base64"; import {onMount} from "svelte";

export let part, cfg_atom, multistage;

let chart;

onMount(async () => {

const content = Base64.decode(cfg_atom.terms[0].string);

const expanded_content = await Utils.expand_mustache_queries(

part, content, multistage);

const configuration = Utils.parse_relaxed_json(expanded_content);

await (new ApexCharts(chart, configuration)).render();

});

</script>

<div class="chart" bind:this={chart}></div>

This fragment decodes the Mustache template in the configuration atom, expands it

using the current interpretation (part) as context, parses it as JSON, and invokes the

rendering engine.

Despite their functionality, these files are concise: (i) ApexCharts.svelte is 73 lines;

(ii) +ApexCharts.svelte is 44 lines. Similar patterns are followed for other opera-

tions: Chart.js (73 + 47 lines) replicates the same logic with a different charting library;

Tabulator (74 + 70 lines) extends slightly to add features like export buttons.

7. Related work

Several tools and frameworks supporting the development of ASP have been introduced

in the literature, among them Integrated Development Environments (IDEs) such as

ASPIDE (Febbraro et al . 2011), SeaLion (Busoniu et al. 2013), and LoIDE (Calimeri

et al. 2018). Unlike these tools, ASP Chef is designed as a platform for experimenting

with ASP solutions and their integration with external tools. ASP Chef is powered

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.16

by clingo-wasm and enables the development of shareable examples and interactive

demos, a feature especially suited to scientific communication, as shown in Costantini

and Formisano (2024). Several research efforts have explored the modular use of

ASP through microservices or pipeline-based compositions (Calimeri and Ianni 2006;

Costantini and Gasperis 2018; Cabalar et al. 2020; Costantini et al. 2021; Cabalar et al.

2023). These works resonate with the guiding principles of ASP Chef, which promotes

the decomposition of ASP workflows into manageable and reusable components. Prior

versions of ASP Chef supported integration with external systems, such as MiniZinc and

Structured Declarative Language (SDL), by exchanging ASP facts. However, this fact-

based approach often incurred non-trivial implementation costs to interpret ASP data in

the target language, especially when the target system had a rich and complex syntax.

To address this limitation, the present work introduces a more direct and extensible

mechanism for integration, based on Mustache templates. Instead of interpreting facts,

the user defines templates that interpolate ASP data into the desired target format or

language, facilitating smoother and more expressive interactions with external libraries

and systems. This enables seamless integration of advanced visualization and reporting

tools, without needing dedicated wrappers or converters.

A first embryonic version of templated queries was introduced in our earlier work ASP

Chef Chats with Large Language Models (Alviano et al. 2025), where a restricted form

of Mustache query was proposed to synthesize structured Markdown snippets from ASP

results and feed them into LLM prompts. In that version, the output was a projection of

matching atoms, formatted via special atoms like ol/1, ul/1, th and tr. The goal was

to enable Markdown generation suitable for LLM consumption, with Base64-encoded

answers retrieved from predicates such as __base64__/1. In contrast, the current work

generalizes this idea into a full-featured templating system, decoupled from LLM usage

and capable of targeting arbitrary external libraries. By adopting standard Mustache

templates and extending them with ASP-aware data injection, we shift from producing

static Markdown to dynamically generating JSON configurations, HTML fragments, and

other consumable formats suitable for integration with a wide range of front-end and

visualization frameworks.

Visual representation of ASP results has been studied through tools such as ASPViz

(Cliffe et al. 2008), IDPD3 (Lapauw et al. 2015), and Kara (Kloimüllner et al. 2011),

all of which rely on ASP facts to describe the visual layout of answer sets. In the

same spirit, more recent approaches like clingraph (Hahn et al. 2022) and ASPECT

(Bertagnon et al. 2023) offer exportable, high-quality visualizations suited for publication

in LATEX. While these systems provide expressive rendering capabilities, they gener-

ally depend on external installations and do not focus on browser-native interaction.

Moreover, their development and maintenance must face the complexity of the under-

lying rendering engines. The visualization operations introduced in this work, based

on Tabulator, Chart.js, and vis.js, complement these efforts by enabling fully browser-

based, interactive visualizations such as scatter plots, timelines, and network diagrams.

Building on our experience with the previously developed Graph operation (Alviano and

Rodriguez Reiners 2024), we found that using Mustache templates to implement the

@vis.js/Network and Fabric.js operations not only significantly reduced development

time but also led to more powerful and expressive functionalities.

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 17

A particularly relevant application of ASP-based visualization in complex domains is

presented by Gebser et al. (2018), who propose an ASP-based framework for experiment-

ing with robotic intra-logistics domains. Their work highlights the value of integrating

high-level reasoning with sophisticated visualization and execution environments, and

shows how ASP can serve as a flexible backbone for modeling, simulation, and visual-

ization in complex logistical settings. ASP Chef shares this ambition but places stronger

emphasis on interactive, browser-native visualizations that support rapid prototyping

and deployment via web technologies. Finally, we mention clinguin (Beiser et al. 2025)

for developing graphical user interfaces directly in ASP. Future applications of Mustache

in ASP Chef may explore convergence points between these systems, particularly in the

direction of form-based input via frameworks like SurveyJS.

8. Conclusion

We presented an extension of ASP Chef that uses Mustache templates and popular

JavaScript libraries to support the creation of interactive, data-driven views from ASP

results. By simplifying the integration of external visualization tools, our approach

enables developers to build rich, user-friendly interfaces while staying within the

declarative paradigm.

Beyond its functionality, a key strength of ASP Chef is its simple and modular design.

New Mustache-based operations can be added with minimal effort by creating a .svelte

file that defines UI parameters and links to a third-party library using the configura-

tion generated from the expanded template. These operations are immediately usable in

recipes, without the need for manual registration or system modification. This plugin-

like architecture lowers the barrier to contribution and invites experimentation. In future

iterations, we plan to provide formal guidelines to support community-driven extensions

and integrations.

Future work will explore the use of Mustache templates to integrate frameworks for

user interface definition, particularly form-based interactions. This would allow ASP

developers not only to present data, but also to collect and structure user input within a

seamless and declarative pipeline. In addition, we envision integrating Controlled Natural

Language (CNL) processing capabilities to allow domain experts to write specifications in

a restricted natural language that can be automatically translated into ASP code (Caruso

et al. 2024). The combination of Mustache templating, structured input collection, and

CNL2ASP translation would broaden the accessibility of ASP Chef, making it easier for

non-programmers to contribute to the knowledge engineering process.

Acknowledgments

This work was supported by the Italian Ministry of University and Research

(MUR) under PRIN project PRODE “Probabilistic declarative process mining”,

CUP H53D23003420006, under PNRR project FAIR “Future AI Research”, CUP

H23C22000860006, under PNRR project Tech4You “Technologies for climate change

adaptation and quality of life improvement”, CUP H23C22000370006, and under PNRR

project SERICS “SEcurity and RIghts in the CyberSpace”, CUP H73C22000880001;

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.18

by the Italian Ministry of Health (MSAL) under POS projectsCAL.HUB.RIA

(CUP H53C22000800006) and RADIOAMICA (CUP H53C22000650006); by the

Italian Ministry of Enterprises and Made in Italy under project STROKE 5.0

(CUPB29J23000430005); under PN RIC project ASVIN “Assistente Virtuale Intelligente

di Negozio” (CUP B29J24000200005); and by the LAIA lab (part of the SILA labs). This

research was also funded in part by the Austrian Science Fund (FWF) within projects

10.55776/COE12 and 10.55776/PIN8782623. Mario Alviano is member of Gruppo

Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM).

References

Alviano, M., Cirimele, D. and Rodriguez Reiners, L. A. 2023. Introducing ASP recipes
and ASP chef. In ICLP Workshops. CEUR Workshop Proceedings, Vol. 3437. https://ceur-
ws.org/Vol-3437/.

Alviano, M., Dodaro, C., Fiorentino, S., Previti, A. and Ricca, F. 2023. ASP and subset
minimality: Enumeration, cautious reasoning and muses. Artificial Intelligence 320, 103931.

Alviano, M., Dodaro, C. and Vasile, I. R. 2024. Structured declarative language. In
Proceedings of the 39th Italian Conference on Computational Logic, Rome, Italy, June 26–28,
2024 , E. D. Angelis and M. Proietti, Eds. CEUR Workshop Proceedings, CEUR-WS.org,
Rome, Italy, Vol. 3733. https://ceur-ws.org/Vol-3733/.

Alviano, M., Guarasci, P., Reiners, L. A. R. and Vasile, I. R. 2024. Integrating struc-
tured declarative language (SDL) into ASP chef. In Logic Programming and Nonmonotonic
Reasoning - 17th International Conference, LPNMR 2024, Dallas, TX, USA, October 11–14,
2024, Proceedings, C. Dodaro, G. Gupta and M. V. Martinez, Eds. Lecture Notes in Computer
Science, Springer, Dallas, TX, USA, Vol. 15245, 387–392.

Alviano, M., Macr̀ı, P. and Rodriguez Reiners, L. A. 2025. ASP chef chats with
large language models. In Proceedings of the Thirty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2025 , ijcai.org, Montreal, Canada. August 16–22, 2025.
https://www.ijcai.org/all_proceedings.

Alviano, M. and Rodriguez Reiners, L. A. 2024. ASP Chef: Draw and expand. In
Proceedings of the 21st International Conference on Principles of Knowledge Representation
and Reasoning, KR 2024 , P. Marquis, M. Ortiz and M. Pagnucco, Eds. Hanoi, Vietnam,
November 2-8, 2024, 720–730. https://proceedings.kr.org/2024/68/.

Beiser, A., Hahn, S. and Schaub, T. 2025. Asp-driven user-interaction with clin-
guin. In Proceedings 40th International Conference on Logic Programming, ICLP 2024,
University of Texas at Dallas, Dallas Texas, USA, October 14–17, 2024, P. Cabalar,
F. Fabiano, M. Gebser, G. Gupta, and T. Swift, Eds. EPTCS, Vol. 416, 215–228.
https://arxiv.org/abs/1511.00928.

Bertagnon, A. and Gavanelli, M. 2024. ASPECT: Answer set representation as vector
graphics in latex. Journal of Logic and Computation 34, 8, 1580–1607.

Bertagnon, A., Gavanelli, M. and Zanotti, F. 2023. ASPECT: answer set representation as
vector graphics in latex. In CILC . CEUR Workshop Proceedings, Vol. 3428. https://ceur-
ws.org/Vol-3428/.

Bourneuf, L. 2018. An answer set programming environment for high-level specification and
visualization of FCA. In FCA4AI 2018, Stockholm, Sweden, July 13, 2018, S. O. Kuznetsov,
A. Napoli and S. Rudolph, Eds. CEUR Workshop Proceedings, CEUR-WS.org, Stockholm,
Sweden, Vol. 2149, 9–20.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

ASP Chef Grows Mustache to Look Better 19

Busoniu, P., Oetsch, J., Pührer, J., Skocovsky, P. and Tompits, H. 2013. SeaLion: An
eclipse-based IDE for answer-set programming with advanced debugging support. Theory and
Practice of Logic Programming 13, 657–673.

Cabalar, P., Fandinno, J. and Lierler, Y. 2020. Modular answer set programming as a
formal specification language. Theory and Practice of Logic Programming 20, 5, 767–782.

Cabalar, P., Fandinno, J., Schaub, T. and Wanko, P. 2023. On the semantics of hybrid ASP
systems based on clingo. Algorithms 16, 4, 185.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N., Maratea, M., Ricca, F. and Schaub, T. 2020. ASP-Core-2 input language format.
Theory and Practice of Logic Programming 20, 2, 294–309.

Calimeri, F., Germano, S., Palermiti, E., Reale, K. and Ricca, F. 2018. Developing ASP
programs with ASPIDE and LoIDE. KI - Künstliche Intelligenz 32, 185–186.

Calimeri, F. and Ianni, G. 2006. Template programs for disjunctive logic programming: An
operational semantics. AI Communications 19, 3, 193–206.

Caruso, S., Dodaro, C., Maratea, M., Mochi, M. and Riccio, F. 2024. CNL2ASP:
Converting controlled natural language sentences into ASP. Theory and Practice of Logic
Programming 24, 2, 196–226.

Cliffe, O., Vos, M. D., Brain, M. and Padget, J. A. 2008. ASPVIZ: Declarative visualisation
and animation using answer set programming. In ICLP , Springer, Vol. 5366, 724–728

Costantini, S. and Formisano, A. 2024. Solver fast prototyping for reduct-based ELP seman-
tics. In Proceedings of the 39th Italian Conference on Computational Logic, Rome, Italy,
June 26–28, 2024 , E. D. Angelis and M. Proietti, Eds. CEUR Workshop Proceedings,
CEUR-WS.org, Rome, Italy, Vol. 3733. https://ceur-ws.org/Vol-3428/.

Costantini, S. and Gasperis, G. D. 2018. Dynamic goal decomposition and planning in MAS
for highly changing environments. In CILC. CEUR Workshop Proceedings, CEUR-WS.org,
Vol. 2214, 40–54. https://ceur-ws.org/Vol-2214/.

Costantini, S., Gasperis, G. D. and Lauretis, L. D. 2021. An application of declarative
languages in distributed architectures: ASP and DALI microservices. International Journal
of Interactive Multimedia and Artificial Intelligence 6, 5, 66–78.

Erdem, E., Gelfond, M. and Leone, N. 2016. Applications of answer set programming. AI
Magazine 37, 3, 53–68.

Febbraro, O., Reale, K. and Ricca, F. 2011. ASPIDE: Integrated development environment
for answer set programming. In LPNMR. Lecture Notes in Computer Science, Vol. 6645,
Springer, 317–330.

Gebser, M., Obermeier, P., Otto, T., Schaub, T., Sabuncu, O., Nguyen, V. and Son,
T. C. 2018. Experimenting with robotic intra-logistics domains. Theory and Practice of Logic
Programming 18, 502–519.

Gelfond, M. and Lifschitz, V. 1990. Logic Programming. In Proceedings of the Seventh
International Conference, Jerusalem, Israel, June 18-20, 1990. MIT Press 1990, ISBN
0-262-73090-1.

Hahn, S., Sabuncu, O., Schaub, T. and Stolzmann, T. 2022. Clingraph: ASP-based
visualization. In LPNMR. Lecture Notes in Computer Science, Springer, Vol. 13416, 401–414.

Hahn, S., Sabuncu, O., Schaub, T. and Stolzmann, T. 2024. Clingraph : A system for
ASP-based visualization. Theory and Practice of Logic Programming 24, 3, 533–559.

Kaminski, R.,Romero, J., Schaub, T. andWanko, P. 2023. How to build your own ASP-based
system?!. Theory and Practice of Logic Programming 23, 1, 299–361.

Kloimüllner, C., Oetsch, J., Pührer, J. and Tompits, H. 2011. Kara: A system for visual-
ising and visual editing of interpretations for answer-set programs. In INAP/WLP . Lecture
Notes in Computer Science, Vol. 7773, Springer, 325–344.

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

M. Alviano et al.20

Lapauw, R., Dasseville, I. and Denecker, M. 2015. Visualising interactive inferences with
IDPD3. CoRR abs/1511.00928.

Lifschitz, V. 2019. Answer Set Programming. Springer.

Mittapalli, J. S. and Arthur, M. P. 2021. Survey on template engines in java. In ITM Web
of Conferences, EDP Sciences, Vol. 37, 01007.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J. and Tack, G. 2007.
MiniZinc: Towards a standard CP modelling language. In CP 2007, Providence, RI, USA,
September 23-27, 2007, Proceedings, C. Bessiere, Ed. LNCS, Springer, Providence, RI, USA,
Vol. 4741, 529–543.

https://doi.org/10.1017/S1471068425100094 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100094

	Introduction
	Background
	Mustache templating system
	Answer set programming
	ASP chef

	ASP chef mustache
	Core functionalities
	Mustache queries and expansion
	Shortcut form, sorting and basic formatting
	Handling duplicates

	Advanced functionalities
	Lua string @-terms
	Multiline strings and F-strings
	Persistent queries
	Multi-stage expansion

	JSON-based frameworks integration
	@vis.js/network
	Tabulator
	Chart.js

	Use cases
	Data analysis
	Graph analysis
	Planning and scheduling
	2D and 3D solution visualization

	Extending ASP chef with new operations
	Related work
	Conclusion
	References

