
Can. J. Math., Vol. XXIV, No. 6, 1972, pp. 1114-1121 

SOME PROPERTIES OF ANOSOV FLOWS 

W. BYERS 

I n t r o d u c t i o n . Anosov flows are a generalization of geodesic flows on the 
unit tangent bundles of compact manifolds of negative sectional curva ture . 
They were introduced and are deal t with a t length by Anosov in [2]. Moreover 
they form an impor tan t class of examples of flows satisfying Smale 's axioms 
A and B (see [15]). In t h a t paper Smale poses the problem of determining 
which manifolds admi t Anosov flows. In this paper we obtain information 
about the fundamental groups of such manifolds. These generalize results 
which have been obtained for the fundamental groups of manifolds of negative 
curva ture (see Preissmann [13], Byers [6]). In Theorem 9 we show tha t if the 
flow is semi-splitting (i.e. stable and unstable manifolds in the universal cover 
intersect in a t most one orbit) then in(M) cannot be abelian. If the flow 
satisfies the more restrictive Condit ion A (which is satisfied by most known 
examples of Anosov flows) then ir\{M) cannot even have a centre. Finally 
under this same condition Theorem 12 shows t h a t for certain subgroups of 
TTI(M) solvability implies t h a t they are infinite cyclic. 

I t is interesting to cont ras t the s i tuat ion for Anoso\^ flows with the one for 
Anosov diffeomorphisms. T h e work of Avez [4], F ranks [8], and Newhouse [11] 
shows t ha t all codimension one Anosov diffeomorphisms exist on the /z-torus 
for some n (although this is not t rue in general as shown by Smale 's nontoral 
example [15]). In comparison, even in dimension three Anosov flows exist on 
infinitely many different manifolds. Theorem 9 indicates t h a t Anosov flows 
are unlikely to exist on the w-torus and in fact there are no known examples 
of compact manifolds which admi t both an Anosov difreomorphism and an 
Anosov flow. 

Le t M be a complete Riemannian manifold and <j>t : M —» M a flow on M 
generated by the non-singular vector field X. T h e flow is said to be an Anosov 
flow if there is a (continuous) spli t t ing of the tangent bundle 

TM = Es + Eu + X, 

where X is the one-dimensional dis tr ibut ion generated by the flow, satisfying: 
(i) the spli t t ing is preserved by the induced flow on the t angen t bundle 

D<t>t : TM->TM; 
(ii) there exists constants a, X > 0 such t h a t for all t > 0, 

\\D<l>t(y)\\ ^ ae-xt\\v\\ for v £ Es 
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and 
\\D(j)t(v)\\ ^ ae^WvW for v G Eu. 

If M is compact then condition (ii) is satisfied for one metric if and only if it 
is satisfied for all metrices. We shall always take the manifold denoted by M 
to be compact . 

T h e most impor tan t tool for working with Anosov flows is the Stable 
Manifold Theorem. Proofs can be found in Anosov [2], Arnold and Avez [3] 
and in Hirsch, Pugh, and Shub [8]. 

T H E O R E M 1. Let 4>t: M —* M be an Anosov flow. Es and Eu, the stable and 
unstable distributions, are integrable. 

Denote the leaf of the stable foliation which passes through the point 
x G M by s(x) and the unstable leaf through x by u{x). Each of these leaves 
is diffeomorphic to the Euclidean space of the appropriate dimension. More
over the foliations are invar iant under the flow, i.e., 

<t>t(s(x)) = s(<j)t(x)) and cj>t(u(x)) = u(<t>t(x)) for x G M. 

For every x G M we define the stable manifold through x, W8(x), to be the 
union over all t G R of the stable leaves s(</>t(x)). Similarly the unstable 
manifold through x, Wu(x) = U{<t>t(s(x)) : t G R } . In this way we obtain 
two new foliations tangent to the distributions Es + X and Eu + X respec
tively. 

Now let 7T : M —» M be a universal cover for M where M is endowed with 
the Riemannian metric induced from M. We shall always identify the funda
mental group 7Ti (M) with the group of covering transformations of this cover. 

I t is easy to see t h a t an Anosov flow (j>t : M —» M lifts to an Anosov flow 
on the universal cover, <f>t : M —> M. In fact the inequalities mentioned in the 
définition are given by the same constants as those for <j)t. All four foliations 
{u(x)}, {s(x)}f {Wu(x)}, {Ws(x)\ on M lift to the corresponding foliations 
for 4>t on it? and we denote these by {û(x)}, {s(x)}, {Wu(x)}y {Ws(x)} respec
tively. I t is then straightforward to verify tha t : 

L E M M A 2. If a G m (M) then a permutes the leaves of each lifted foliation and 
a o $ t = ft o a for t G R. 

Now we can define a complete metric on each stable leaf s(x) by set t ing 
d(s(x);y, z) equal to the infimum of the lengths of all piecewise smooth 
curves in s(x) which join y to z. Similarly we define the metric d(il(x); • , •). 

L E M M A 3. If s(x) = s(y) then 

(i) d(s(ax);ax, ay) = d(s(x); x, y) for a G m (M). 
(ii) d(s($t(x))\$t(x),$t(y)) ^ ae~xtd(s(x); x, y) for t > 0. 

(iii) d(û(<l>t(x)); <!>t(x), $t(y)) ^ aéKtd{û(x)\ x, y) for t > 0. 

Proof, (i) follows from Lemma 2 and the fact t ha t a G 7ri(ikT) is an isometry. 
T h e proofs of (i) and (ii) are similar to the proofs of the analogous facts for 
Anosov diffeomorphisms which can be found in [8]. 
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Definition. An Anosov flow is semi-splitting if for every pair of points 
x, y Ç M, Wu(x) intersects Ws(y) in at most one orbit of the flow $t : M —> M. 
(It is easy to verify that this condition is equivalent to requiring that Wu(x) 
intersects s(y) in at most one point or that Ws(x) intersects û(y) in at most 
one point for all x, y G M.) 

To the best of my knowledge there are no known examples of Anosov flows 
which are not semi-splitting. Suspensions of known examples of Anosov 
diffeomorphisms are even splitting, i.e., Wu(x) intersects W8(y) in exactly 
one orbit for all xy y € M. (cf. Franks [7, p. 81]). For a different class of 
examples we have: 

PROPOSITION 4. The geodesic flow on the unit tangent bundle of a manifold 
of negative curvature is semisplitting. 

Proof. Let N be a compact manifold of negative sectional curvature and 
7T : N -> N its universal cover. If dim N > 2 then DTT : 1\N —» TiN is a 
universal cover of the unit tangent bundle TiN. Even if dim N = 2 this map 
is still a covering and so it suffices to show that stable and unstable manifolds 
in TiN intersect in at most one orbit. 

If we identify orbits of the geodesic flow on TiN with oriented geodesies 
on N then it is well-known (see Arnold-Avez [3]) that the stable (unstable) 
manifolds are unions of geodesies which are positively (negatively) asymp
totic to one another. Now if a, r are two oriented geodesies in N they are 
positively (negatively) asymptotic if and only if the convex function 
t\-*d(<T,r(t)) is bounded as t —> +oo (/—> — oo), where d(- , •) is the Rie-
mannian distance on N (Busemann [5]). If a and r happen to be in the same 
stable and unstable manifold, the above convex function is bounded as 
t —> dzoo and thus reduces to a constant. This is impossible since curvature 
of N is bounded from above by a constant less than zero [4, Lemma 10.7]. 

We also have semi-splitting in the following situation: 

PROPOSITION 5. Let <j)t : M —> M be an Anosov flow whose unstable manifolds 
{or stable manifolds), \Wu(x) : x Ç M), form a C2 foliation of the codimension 
one, i.e. the dimension of Wu(x) is (n — 1). Then the flow is semi-splitting. 

Proof. Assume that there exist points x, y G M such that Wu(x) = Wu(y) 
and s(x) = s(y), and that s(x) is one dimensional. Let h : [0, 2] —» s(x) be a 
map such that h\[0, 1] is a diffeomorphism onto the arc in s(y) joining x and 
y with h(0) = x and h (I) = y and h\[l, 2] is a diffeomorphism onto an arc in 
Wu(x) joining y to x. By constructing a finite number of (overlapping) 
coordinate neighbourhoods for the unstable foliation along the arc h([l, 2]) it 
is easy to see that the closed loop h can be approximated arbitrarily closely by 
a closed loop which is transverse to the unstable foliation and passes through 
Wu{x) (see Novikov [10, pp. 269-271]). 
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Now M is simply connected, so the transverse loop is homotopic to a con
stant map. The following result of Haefliger is now relevant [9, p. 390]: 

PROPOSITION. Let^~ be a C2 doliation of codimension one on a manifold V. 
Suppose that there exists a transversal to ^ which is closed and homotopic to a 
constant. Then there exists a loop L on a leaf F such that the germ of the homeo-
morphism of R at 0 which corresponds to L in the holonomy group of F is not 
that of the identity but is the germ of a homeomorphism which is the identity on 
( - o o , 0 ] or [0, oo). 

Note. Definitions and basic ideals about foliations may be found in [9]. 

For the unstable foliation associated with an Anosov flow the unstable 
manifolds must either be simply connected or else have fundamental group 
isomorphic to the integers and exactly one closed orbit (see Abraham and 
Robbin [1, pp. 93-94]). In the former case the holonomy group is trivial. In 
the latter all loops are homotopic to powers of the closed orbit. In this case 
let t0 be a point on the closed orbit which we assume to have period t0. Now 
s(p) is transverse to the unstable foliation and by Lemma 3 ft0\s(p) is a con
traction. Thus either case contradicts Haefliger's proposition and this estab
lishes the result. 

The following are simple geometrical consequences of the semi-splitting 
condition: 

PROPOSITION 6. / / </>* : M —> M is semi-splitting then 
(1) Wu(x) and Ws{x) are closed for all x £ M. 
(2) Wu(x) and Ws(x) are simply connected for all x 6 M. 

Proof. If Wu(x) is not closed it must accumulate on some unstable manifold 
Wu (Reeb [12]). Let y £ Wu. Since s(y) is transverse to the unstable foliation 
it must intersect Wu(x) infinitely often, contradicting the semi-splitting 
assumption. 

To prove (2) suppose Wu(x) contains a closed orbit 0 of period t0. Let 
p G 0 and x £ s(p), x 9e p. Then $to(x) £ s(P) ^ Wu(x), where $t0(pc) ^ x 
by Lemma 3. Again this contradicts the semi-splitting of $t. 

LEMMA 7. Let <j>t\ M —> M be a semi-splitting Anosov flow and a Ç iri(M) a 
covering transformation which preserves the orbit of 4>t '- M —» M through the 
point xo. If A = U {Wu(x) : x <G s(x0)} and B = U {Ws(x) : x G û(x0)} 
then a preserves exactly one orbit of 4>tin A \J B. 

Proof. We prove the statement for A, the proof for B being similar. A is the 
union of a set of unstable manifolds. We define a metric on Au, the set of 
unstable manifolds in A, by setting 

d(Wiu, W2
U) = d(s(pco); mu n s(xu), W2

U H s(xu)). 

This makes Au into a metric space isometric to s(x0) and hence complete. Now 
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suppose a(xo) = <?«0(
xo) where t0 < 0. T h e n a(f>-tQ(s(xo)) = s(x0) and 

aWu C\ S(XQ) = a(t>-tQ(Wu H S(XQ)). T h u s a induces a m a p from Au into itself. 
Fur thermore , using L e m m a 3 

d(anWiu, anW2
u) = d(s(x0)',o?Wiu H s(x 0) , anffiV H s(x0)) 

= d (5(x0) ; a > _ „ , 0 (Wiuns (x0)) , ^</>_n l0 ( tfV H S (xo) ) 

= d(s(^-nxo);^nto(W1
u H $(*<>)), 0 - , , o (^2 w H s(x0)) 

^ ae-Xn 'od(5(xo); WY H s(x 0 ) , W2
U C\ s(x0)) 

= ae~^nt"d(W1
u, W2

U) 

for any points Wiu, W2
U in Au. T h u s a is a contract ion of Au. By the contrac

tion mapping theorem for complete metric spaces a has exactly one fixed 
point, i.e. it preserves exactly one unstable manifold, WU(XQ), in A. 

Since WU(XQ) is simply connected it is not difficult to see t h a t for 
x, y G WU(XQ), the orbit through x intersects U(y) in exactly one point . W e 
can now consider the space of orbits of 4>t restricted to the unstable manifold 
Wu(xo). a induces a m a p on this space and if we define a metric on the space 
by sett ing 

d(6i, 02) = d(û(xo); 0i r\ w(x0), 62 P\ û(xQ)) 

we can show as above t h a t a"1 is a contract ion and so it preserves exactly 
one orbit in l/P^Xo) and thus one orbi t in A, namely, the orbi t through x0. 

L E M M A 8 (Local Produc t S t ruc tu re ) . Let 4>t • M —» M be an Anosov flow. 
For every x0 G M there exists a neighbourhood U of x0 such that for all x, y G U 
the connected components of U C\ s(x) and U C\ Wu(y) which contain x and y 
respectively intersect in exactly one point. 

Proof. T h e proof follows from the t ransversal i ty of the foliations and the 
fact t h a t the leaves of the foliations va ry continuously (cf. F ranks [7]). 

T H E O R E M 9. A compact manifold with abelian fundamental group does not 
admit any semi-splitting Anosov flows. 

Proof. Anosov [2, Theorem 9] proves t h a t there exists a finite number of 
closed orbits of the flow, 71, . . . , yni the union of whose unstable manifolds 
is dense in M. W e claim t h a t one of these unstable manifolds mus t accumulate 
on itself. Assume t h a t this does no t happen and set i\ = 1. Since U"=i Wu(jj) 
is dense there exists i2 =é l such t h a t Wu(yi2) accumulates on Wu(yi). If 
Wu(yi) in tu rn accumulates on Wu(yi2) i t m u s t accumulate on itself. T h u s 
there exists i% 7^ 1, i2 such t h a t Wu(yiz) accumulates on Wu(yi2). Cont inuing 
in this way we arrange the integers less than or equal to n in a sequence 
{ijc}nk=i' Consider Wu(yin). If it does not accumulate on itself there exists 
m < n such t h a t Wu(yim) accumulates on Wu(yin) which in t u rn accumulates 
on Wu(yim) by construction. T h u s Wu(yim) accumulates on itself. 

Now suppose y is the closed orbit such t h a t Wu(y) accumulates on itself 
and let x0 G y. T h e n if 7r(x0) = x0 there exists a G TI(M), a 9^ ident i ty , such 
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t ha t a(Wu(x0)) = Wu(x0). Let U be a product neighbourhood of x0 which is 
evenly covered by the projection ir and lift U homemorphically to a product 
neighbourhood Û of x0. Since Wu(xQ) accumulates on itself there exists a 
connected component F of U C\ Wu(x0) such t h a t x 0 ? V. Let V = (TT| Û)~l{V) 
and let T^w be the unstable manifold which contains V. Since TT(WU) = 
ir(Wu(xo)) = ^ ( x o ) there exists 0 G in (M) such t ha t /3( t^( jc 0)) = ITM. If 
]3 = an then T^(x 0 ) = Wu. However since 0 is a product neighbourhood 
s(xo) then intersects Wu(x0) a t some point of V as well as a t x0, contradict ing 
the semi-splitting of the flow. T h u s Wu ^ Wu(x0). Since wi(M) is abelian we 
have 

a(W
u) = aP(Wu(x0)) = t3a(Wu(xo)) = $(Wu(x,)) = Wu. 

T h u s a preserves two distinct unstable manifolds which both intersect S(XQ). 
This is impossible by Lemma 7 which proves the theorem. 

If the Anosov flow under consideration is semi-splitting let 

U(x0) = U{Wu{x) : x e s(x0)}, for xQ G M. 

Then the flow is splitt ing if U(x) = M for all x G M. Since the negative 
curvature examples are not splitt ing we consider the following more general 
s i tuat ion: 

Condition A. Le t <j> t : M —» M be a semi-splitting Anosov flow. Then for 
x G ilî, if? — £/(x) consists of a t most one unstable manifold. 

PROPOSITION 10. Let N be a compact manifold of negative sectional curvature 
and dimension greater than two. Then the geodesic flow on T\N satisfies Condition 
A. 

Proof. We make the same identifications as in Proposition 4 and consider 
the geodesic flow in TiN. Notice t ha t in general 

U(x0) = U{Wu(x) : x G Ws(x0)}. 

Now let Ws be any unstable manifold made up of a family of positively 
asympotot ic (oriented) geodesies. Let WU(WS) be the stable manifold obtained 
by reversing the orientations of all the geodesies in Wu. I t is clear t ha t 

ws r\ wu(ws) = 0. 
Let Wu be any unstable manifold. If x G N there exist unique oriented 

geodesies y and ô which pass through x and are contained in Ws and Wu 

respectively. If y and ô are the same geodesic with opposite orientations then 
Wu = WU(WS) and Ws C\ Wu = 0. However if y = ô or y and Ô are distinct 
(except for the point x) then it follows from Lemma 9.10 in [5] t ha t there 
exists a geodesic a which is in both Wu and Ws. T h u s Ws intersects every 
stable manifold except WS(WU) in exactly one orbit of the geodesic flow. 

T H E O R E M 11. If the Anosov flow 4>t : M —* M satisfies Condition A then 
TI(M) has no center. 
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Proof. There exists a closed orbit of the flow whose unstable manifold, Wou, 
accumulates on itself as in Theorem 9. Let x0 be any point on this closed orbit 
and let W0

U be an unstable manifold of 4>t : M -> M such that T(W0
U) = W0

U. 
If Xo G Wou and 7r(x0) = x0 then M — U(xo) is either empty or a single 
unstable manifold, W\, because of Condition A. The same arguments as in 
Theorem 9 imply that there exist covering transformations a, fi G TTI(M) with 
$ ^ an for any n £ Z such that a(W0

u) = WQ
U and p(W0

u) is unequal to 
either Wou or Wiu. 

Notice that Condition A and Lemma 7 imply that any covering transforma
tion can preserve at most two unstable manifolds, in fact at most two orbits 
of 4>t- In particular a preserves no unstable manifolds besides WQU and Wiu. 
Now let 7 be in the centre of TTI(M). Then ay(WQ

u) = ya(Wou) = y(W0
u). 

By the previous remark y(Wou) is either W0
U or Wiu. In either case we must 

h a v e 7
2 ( W ) = W,u. 

Now let a be an orbiting element of T\(M). Then as above y2a(Wou) = 
a(W0

u). Thus a(WQ
u) must equal Wou or Wiu for all a G Tn(M). However the 

transformation (3 mentioned above does not satisfy this condition and this 
contradiction establishes the theorem. 

In the next result we consider covering transformations which preserve 
some orbit of the flow <f>t : M —> M, i.e. are generated by some closed orbit 
in M. We remark that for geodesic flows on the unit tangent bundle of a com
pact manifold (dimension greater than 2) of negative curvature, every cover
ing transformation has this property. 

THEOREM 12. Let <j)t\ M —> M be an Anosov flow satisfying Condition A. 
Suppose H is a solvable subgroup of TTI(M) each of whose elements preserves some 
orbit of the induced flow <f>t\ M —-> M. Then H is infinite cyclic. 

Proof. Let H = HQ ^ Hx D H2 D . . . D Hk^ D Hk = {1} be the derived 
series for H where Ht = [Hf-i, i^Vi]. Let a and ft be arbitrary elements of 
iJfc_i and 0o an orbit of <f>t preserved by a. Since Hk_i is abelian we have 
a/3 (do) = Pa (do) = j3(0o). Now a can preserve at most two orbits, do and 0i, 
say, by Condition A and Lemma 7. Thus (3 (0O) = 6U i = 0 or 1 ; and /32 (dt) = 6U 

i = 0 and 1. However since /3 itself preserves some orbit of <f>t and since @2 

preserves at most two orbits of 4>t it follows that 0(0*) = 6U i = 0 and 1. (Of 
course 0i may not exist, in which case the argument is simpler.) Let 7 be the 
covering transformation which preserves 0o and is generated by going around 
the closed orbit 7r(0o) exactly once. We have shown that Hk-i Ç {yn}n^z-

Now let 8 be in Hk_2> Then [8, a - 1] = ^ " ^ a " 1 is in Hk-\ and so 8~1a8oT1 = yn 

for some n. Thus 8^a8 (0O) = 5~1a5a-1(0o) = 7w(0o) = 0o and a5(0o) = 5(0O). 
Reasoning as above it follows that 5(0O) = 0o. Thus Gk-2 Q {yn}nzz- Proceeding 
in this way H C J7w}w€Z

 a n d thus H is infinite cyclic. 

Added in proof. J. F. Plante and W. P. Thurston have shown that Anosov 
flows of codimension one are only found on manifolds whose fundamental 
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groups have exponential growth (Anosov flows and the fundamental group, 
Topology 11 (1972), 147-150). 
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