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ON PROJECTIVE Z-FRAMES

ZHAO DONGSHENG

ABSTRACT. This paper deals with the projective objects in the category of all Z-
frames, where the latter is a common generalization of different types of frames. The
main result obtained here is that a Z-frame is E-projective if and only if it is stably
Z-continuous, for anaturally arising collection E of morphisms.

In mathematics, characterizing the injective objects and their duals, the projective
objects, in certain categorieshasquitealong history. Theinitial work occurredin algebra,
concerning the characterization of projective modules. Later, people also investigated
injective and projective objects in the category of distributive lattices, the category of
sup compl ete lattices, and many other categories. A recent important result on injective
topological spaceswas obtained by Scott [13]. He discovered that the injective To-spaces
are exactly the continuous lattices with their so-called Scott topology. Subsequently,
Banaschewski generalized Scott’s result to the category of all frames ([5], seeaso [3]).

The category ZFrm of al Z-frames is a generalization of the categories of various
different types of frames, such as the category Frm of al frames [10], the category
oFrm of all o-frames[2], the category Dlat of all distributive lattices, the category Slat
of all meet-semilattices and the category PreFrm of al preframes [4] [11]. The basic
properties of Z-frameshavebeen discussedin [16]. In[15] wealso investigated nuclei on
Z-frames. The chief aim of this paper isto deal with some aspectsof projective Z-frames.
The main result obtained here isthat a Z-frame is E-projective if and only if it is stably
Z-continuous, where E is the collection of all Z-frame homomorphisms which have
aright inverse as meet semilattice homomorphism. This establishes a natural relation
between projectivity and continuity of Z-frames. For a recent discussion of projective
frames, see[12].

1. Z-frames. A set system on the category Post of all posets and order-preserving
mappings was introduced by Bandelt and Erné in defining Z-continuous posets [6].
Actually, as mentioned in [6], the notion of subset systemswas originally introduced by
Wright, Wagner, and Thatcher in [14]. In order to define Z-frames we define set systems
on the category Slat of all meet semilattices.

In the following, by a semilattice we shall mean a finite-meet semilattice. Thus in
particular, each semilattice has atop element. A semilattice homomorphismf:S— T is
amapping from a semilattice Sto the semilattice T which preserves finite meets (hence
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it must preserve the top element). Let Slat denote the category of all semilattices and
semilattice homomorphisms.

A subset D of aposet Piscalled adown-set, if D= |[D={xe€ P|3d € D,x < d}.
Denote by D (S) the set of all down-setsof S. For any semilattice S, D(S) isa semilattice
(actually a complete lattice) with respect to the inclusion of sets.

DEFINITION 1.1. A set system Z on Slat isafunctionwhich assignsto each semilattice
Sacaollection Z(S) of subsets of S, such that the following conditions are satisfied:
(Z1) z(9 isasubsemilattice of D(S) containing all | xforx € S
(Z2) Forany A € Z(2(9),UA € Z(S).
(Z3) For any semilattice homomorphismf:S— T and any D € Z(S), |f(D) € Z(T).

REMARKS 1.2. (1) Elementsof Z(S) will becalled Z-ideals. A subset A of Siscalled
aZ-setif |[Ae Z(S).

(2) For each semilattice homomorphismf: S— T, theinduced mapping Z(f): Z(S) —
Z(T) is asemilattice homomorphism, where Z(f)(D) = |f(D) for each D € Z(S).

(3) Forany a € SandD € Z(S), we have

H{aAnx|xeD}=(anND e Z(9.

(4) For each semilattice S, the functions D(S) and P (S) = {|x | x € S} define the
largest and the smallest set systems, respectively.

It is also noticed that for any family {Z, | « € 1} of set systems, the function Z
defined by Z(S) =N, Z«(S isaset system.

A semilattice Sis caled Z-complete if VD = supD exists for each D € Z(S), and
hence also for each Z-set D of S

Given two Z-complete semilattices Sand T, a Z-complete homomorphismf:S— T
is asemilattice homomorphism such that f (VD) = Vf (D) for al Z-setsD. Let ZComSlat
denote the category of all Z-complete semilattices and Z-complete homomorphisms.

DEFINITION 1.3. A Z-complete semilattice A is called a Z-frame if the following
equation holdsfor anya € Aand D € Z(A):

anVD=V{aAx|xe&D}.

Notice that by Remark 1.2(3) theset {a A x | x € D} isaZ-set of A, sotheright side
of the above equation does exist.

It can be proved that aZ-complete semilattice AisaZ-frameiff themapping V: Z(A) —
Ais a Z-complete homomorphism.

A Z-complete homomorphism between two Z-frames is also called a Z-frame homo-
morphism. We use ZFr m to denote the category of all Z-frames and Z-frame homomor-
phisms. ZFrm isafull subcategory of ZComSlat.

LEMMA 1.4. For any semilattice S, Z(S) is a Z-frame, and the correspondence S —
Z(S) defines a functor Z: Slat — ZFrm, left adjoint to the inclusion functor ZFrm —
Slat, with adjuncion maps ns: S— Z(S) taking x € Sto |x € Z(S).
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PROCOF. The proof of that Z(S) is a Z-frame is straightforward. For any semilattice
homomorphism f: S — T, the semilattice homomorphism Z(f): Z(S) — Z(T) given in
Remark 1.2 preserves all joins of Z-sets since these are actually unions. Further, for
any semilattice homomorphism f: S— A, where A is a Z-frame, f: Z(S) — A such that
f_(D) = Vf(D) is easily seen to be a Z-frame homomorphism for which fo ns="f.

2. Z-continuity. Parallel to the notion of Z-frame is the concept of Z-continuous
semilattice. A semilattice A is said to be Z-continuous if it is Z-complete and satisfies
the condition:

(ZC) Foreachae A {xcA|x<za} € Z(A)anda=V{xe A| x <z a},
where the binary relation <z is defined by x <z aiff for each Z-set D, VD > aimplies
the existence of ad € D suchthat x < d.

REMARKS 2.1. (1) A more general structure, namely Z-continuous posets, has been
studied in [6] by Bandelt and Erng, using set systems on Pos. Although we are using
set systems on Slat to define Z-continuous semilattices, many results on Z-continuous
posets apply to Z-continuous semilattices.

(2) Forany xandany ain S x <z aiff a < VD impliesx € D, for each D € Z(9).

(3) Similarly asfor continuous posets, it can be proved that a Z-complete semilattice
Ais Z-continuous iff the map

ViZ(A) — A, D— VD

has aleft adjoint.

(4) Therelation <z in aZ-continuous semilattice Sisinterpolating, that isif x <z y
thenthereisaz € Swithx <z z<z y.

An element a of A is call Z-compact if a <z a. A Z-algebraic semilattice A is a
Z-complete semilattice such that for eacha € A,

| {x e A| xisZ-compactand x < a} € Z(A)

and
a=V{xe A|xisZ-compact and x < a}.

Obviously every Z-algebraic semilattice is Z-continuous.

A Z-continuous semilattice A is said to be stableif (i) x <z aand x <z b imply
X <z aAb,and (i) 1a < 1, Wherelaisthetop element of A. A stableand Z-continuous
semilattice is briefly called a stably Z-continuous semilattice.

A Z-frame is said to be coherent if it is Z-algebraic and is stable as Z-continuous
semilattice. It can be proved that a coherent Z-frame is exactly a Z-algebraic semilattice
suchthat it is stable as Z-continuous semilattice, or equivalently, the Z-compact elements
form a subsemilattice.

LEMMA 2.2. For each semilattice S, Z(S) is a coherent Z-frame.
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PrOOF. Foreachx € S |[x € Z(9 and |[x <z [X, i.e. [X is Z-compact. Given any
D € Z(9,D = U{|x | x € D}. Observethat {|x | x € D} isthe image of the Z-set D
under the semilattice homomorphism

ns=1:S—Z(9),
and by (Z2) it follows that {|x | x € D} isaZ-set of Z(S). From this it is then easily
seen that the set
{B€Z(9|B<zB,B<D}
isaZ-set and

D=V{BeZ(9|B<zB.B<D}.

Hence Z(9) is Z-algebraic. We now provethat Z(S) is stable. Supposethat E <z D and
E <z F hold in Z(S). By the above discussion, there exist x € D with E C |x and
y € FwithE C |y. HenceE C [xN ]y = [(XAY),andsincex Ay € D A F, we have
E <z D AF. Further S= | 1g, where 1gisthe top element of S, is obviously Z-compact.
Hence Z(9) is a coherent Z-frame.

In acategory C, an object Aiscalled aretract of the object B if there are morphisms
f:A—Bandr:B— AinC suchthatr o f = ida.

LEMMA 2.3. InZComSlat, the following notions are stable under retraction:
(i) Being a Z-frame,
(il) Z-continuity, and
(iii) stable Z-continuity.
PrOOF. We only give the proof of the second and the third assertions. Suppose that
AisaZ-complete semilattice that isaretract of aZ-continuous semilattice L. Then there

are Z-complete homomorphismsr:L — Aandf: A— L suchthatr of =ida. Leta e A
be an arbitrary element of A. Since L is Z-continuous, so

f@=Vv{xelL|x<zf(@} ad {xel|x<zf@}e2Z(L).
Next r is aZ-complete homomorphism, so

a = r(f(a))
=r(V{xelL|x<zf(@)})
=V{r(x) | xe L x <z f(a)}.

Now {r(x) | x <z f(a)} is a Z-set the join of which is a. We now only need to verify
that for each x <z f(a),r(X) <z a. Let D bean arbitrary Z-set of Awith VD > a. Then
{f(y) | y e D} isaZ-setof L and V{f(y) | y € D} = f(vVD) > f(a). Sothereisd € D
with f(d) > x and henced = r(f(d)) > r(x). This showsthat r(x) <z a. It then follows
immediately thata=V{y e A|y <z a} and{y € A| y <z a} isaZ-set of A. Thus A
is Z-continuous.
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Suppose now that L is also stable; we show that Aisstableaswell. First, 1, <z 1, =
f(1.). By theabovediscussionthisimpliesthat 15 = r(1.) <z 1a,i.e. 1 isZ-compact. If
y.a,b € Asuchthaty <z a,y <z b, thenthereare elementsx; <z f(a) andx; <z f(b)
suchthaty < r(x1),y < r(x2). But Lisstable, sox; Ax, <z f(a) Af(b) =f(aAb). This
then indicatesthat r(xq A X2) <z aAb. Asy < r(xg) Ar(xz) = r(xs A X2), it follows that
y <z a/Ab. Hence Ais stable.

3. E-projective Z-frames. Let C beacategory and E be a collection of morphisms
inC. Anobject Aof C iscalled E-projectiveif for any morphismr: B — Cin E and any
f:A— CinC thereexistsamorphismf: A— Bsuchthatf =r of. If E isthe collection
of al epimorphisms then the E-projective objects are exactly the projective objects of
C.

It iswell known that retracts of E-projective objects are E-projective.

If G:C — D andF: D — C are functors such that F is left adjoint to G, with back
adjunction e:F o G — ldc, then it is natural to consider the E-projective objects of C
for the collection E of all f: A — B such that Gf has a section, that is, aright inverse.
The basic result concerning these is the following:

LEMMA 3.1. For any A € C, the following are equivalent:
(1) AisE-projective.
(2) ea:F o GA— Ahasarightinverse.
(3) Alisaretract of some FX.

PrOOF. (1) = (2) sinceea € E by the adjunction identities, (2) = (3) istrivial, and
(3) = (1) follows from the fact that FX is E-projective and an elementary calculation.

For the inclusion functor ZFrm — Slat and its left adjoint Z: Slat — ZFrm, E is
the collection of all Z-frame homomorphismswhich have a section in Slat, and the back
adjunctionis given by the maps V: Z(A) — A. For this, we now have the following main
result of this paper.

THEOREM 3.2. A Z-frame AisE-projectiveif and only if it is stably Z-continuous.

ProOOF. By Lemma3.1it isenoughto establishthat V: Z(A) — A hasaright inverse
in ZFrm iff Ais stably Z-continuous. Since (=) follows from Lemmas 2.2 and 2.3 it
remains to prove (<). We claim that

WwA—ZA), w@ ={xeA|x<kza}, acA

definesthedesiredrightinverse of V: Z(A) — A. Since AisZ-continuous, so w(a) € Z(A)
and Vw(a) = afor eacha € A. That w isameet-semilattice homomorphism follows from
the stability of A. Finally, for any D € Z(A) if x <z VD, thenx <z y <z VD for some
y by Remark 2.1(4), hence x € w(y) andy € D, and therefore x € Uw(D); it follows
that w(VD) C Uw(D) = Vw(D), the non-trivial part of the identity w(VD) = Vw(D). So
w preservesal joins of Z-sets. Hence w is a Z-complete homomorphism, and is an right
inverse of V.
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REMARKS 3.3. (1) Obviously each morphismf: A — Bin E isasurjective map, so
it isan epimorphism in ZFrm. Thus every projective Z-frame is E-projective.

(2) If wetakeE, to bethe collection of all those surjective Z-frame homomorphisms
f: A — B which have aright adjoint f,: B — A, then E; C E. And it is not difficult to
seethat A is E-projectiveif and only if Ais E;-projective.

REMARK 3.4. Aspointed out in Remark 7 of [3], the usual stably continuous frames
can be characterized asthe projectivesrel ative to those surjective frame homomorphisms
whose right adjoint preserves finitary joins. In terms of this paper: for the category D
of bounded distributive lattices, the functor | : D — Frm assigning to each A € D its
ideal lattice | A is a lattice version of the set systems here considered for semilattices,
and all the arguments presented for the later have their exact counterpartsfor these more
specialized set systems. In particular, the | -frames are exactly the frames. Further | is
left adjoint to theinclusion functor Frm — D, and | -continuous just means continuous.
Hencethe stably continuous frames are exactly the frames projective with respect to the
homomorphismswhich have asectionin D. Notice that [3] says slightly different thing:
it refers to those homomorphismswhich are surjective and have their right adjointsin D.

We call a Z-frame homomorphism proper if it preserves <z. Let SZCFrm be the
category of al stably Z-continuous frames with proper homomorphisms. Then Z is a
functor from ZFrm to SZCFrm because Z(f): Z(A) — Z(B) is proper for any f: A — B
in ZFrm. Now following the samemethod asin[3], it can be proved that for any Z-frame
A, Z(A) isthe coreflection to SZCFrm, with coreflection mapping V: Z(A) — A.

4. Some applications. The above theorem applies easily to many special cases.

ExAMPLE 4.1. For each semilattice S, take Z(S) = D(9), the set of all down-sets of
S Then AisaZ-frameif and only if it isaframe, i.e. iff Aisacomplete lattice such that
for any a € A and any nonempty X C A, the following equation holds:

anVvX=Vv{aAx|xeX}.

By Raney’s characterization, for this Z, A is Z-continuous if and only if it is a com-
pletely distributive lattice. A frame homomorphism f: A — B is a semilattice homomor-
phism that preservesjoins of arbitrary sets. Hence every frame homomorphismf: A — B
has aright adjoint f,: B — A, and f, isasection of f iff f issurjective. By Remark 3.3,
E isthe collection of all surjective frame homomorphisms, which in turn are exactly the
regular epimorphismsin Frm. So E-projective frames are exactly the regular-projective
frames. Theorem 3.2 then says that the regular-projective frames are exactly the stably
completely distributive lattices. This is the main result obtained by Banaschewski and
Niefield in [3] where completely distributive lattices are called supercontinuouslattices.

ExAMPLE 4.2. For each semilattice Slet Z(S) = 1dI(S), the collection of al ideals of
S HereD < 1dI(9) iff it isadown-set and up-directed. Then Z isaset systemon Sat. In
this case, a Z-frame A is a semilattice in which every up-directed set has a join and the
equation
anVvD=Vv{aAx|xeD}
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holds for any a € A and D € IdI(A). Thus Z-frames are exactly the meet continuous
semilattices [8], or preframes that have been studied by Banaschewski [4], Johnstone
and Vickers[11]. Now a Z-continuous semilattice is exactly a continuous semilattice in
the sense of [8]. Hence Theorem 3.2 implies that a preframe is E-projective if and only
if it isastably continuous semilattice.

EXAMPLE 4.3. For each semilattice Slet Z(S) = {|E | E is afinite subset of S}. Z
defines a set system on Slat. A Z-complete semilattice is just a lattice. A Z-frame now
is exactly a distributive lattice. A Z-continuous semilattice A is a lattice satisfies the
property that for each element a € A, thereisafiniteset D = {d; | i =1,2....,n} with
VD =aandforeachd; if xVy>athenx > dj ory > d.

EXAMPLE 4.4. For each semilattice S defineZ(S) = {|E | E C Sisacountableset}.
Then aZ-frameisaso-called o-frame which has been studied by many authorsespecially
Banaschewski [2]. The Theorem 2.1 here characterizes the E-projective o-frames.

EXAMPLE 4.5. For the smallest set system Z(S) = P (S given in Remarks 1.2, Z-
frames are exactly the semilattices, and <z = <. So in this case every Z-frame is
E-projective.

REMARKS4.6. (1) In[5] it wasshownthat thereisonly oneprojective frame, namely
theframe 2, thetwo elementschain. In[1] it wasshownthat 2 isal so the uniqueprojective
distributive lattice. Thusit is natural to consider more general types of projective objects
such as the E-projective Z-frames.

(2) We still have not dealt with the determination of the injective Z-frames. In
some special cases one has perfect characterizations of these. For instance, the injective
semilattices arethe frames [ 7] [9], whereas, at the other extreme, there are no non-trivial
injective frames [4].
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