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Abstract. The main purpose of this work is to introduce noncommutative relative schemes and
establish some of basic properties of schemes and scheme morphisms. In particular, we prove an
analogue of the canonical bijection: Hgfmmezr ((X, O), Spe¢A)) ~ Homy_q1,(A,T(X, 0)).

We define a noncommutative version of tBech cohomology of an affine cover and show that the
Cech cohomology can be used to compute higher direct images. This fact is applied here to compute
cohomology of invertible sheaves on skew projective spaces and in [LR3] to Suaypdules on
quantum flag varieties.
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Introduction

The following fact might be regarded as the point of departure for this work:

THEOREM. Any scheme can be reconstructed uniquely up to isomorphism from
the category of quasi-coherent sheaves on this scheme.

This theorem was proved for noetherian schemes by P. Gabriel in the early sixties
(cf. [Gab], Ch.VI) and in the full generality only recently [R2] (for the reader’s
convenience, we sketch the reconstruction procedure of [R2] in the Appendix to
this paper). The possibility to replace schemes by categories of quasi-coherent
sheaves on them is an important fact of commutative algebraic geometry. But
for noncommutative algebraic geometry it is a source of existence. Apparently,
Yu. I. Manin was the first one who proposed to use the identifying spaces with
categories of structure sheaves on them as a ‘right’ way to introduce objects of
noncommutative algebraic geometry — ‘noncommutative spaces’ (cf. [M1, p. 83)).
In particular, the projective spectrum of a noncommutafivegraded ring can
be defined by imitating the Serre’s description of the category of quasi-coherent
sheaves on projective schemes ([A], [AZ], [M1], [V1], [R], [LR2]). But, in spite
of the growing interest in noncommutative algebraic geometry, an adequate analog
of the most important notion of commutative algebraic geometry — the notion of a
scheme- had not been found (see [M2], p. 7).
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One of the purposes of this work is to show that there is, in a sense, only
one notion of a noncommutative scheme. Most of the constructions, assertions
and examples of Sections 1-5, and Section C4 are essential to see this fact. A
key tool here is the Barr—-Beck theorem (cf. [ML], Ch. VI, 7). Recall that the
‘descent’-type theorems in algebraic geometry are its simple consequences (cf.
[DI], pp. 132-134). The Barr—Beck’s theorem garanties that the ‘space’ for which
the covers and standard complexes make sense is, locally, modules over a monad.
And then different exactness properties of this monad (right exact, having a right
adjoint) distinguish respectively quasi-schemes (= the widest class of ‘spaces’ for
which Cech complex computes derived functors) and schemes = the largest class of
‘spaces’ for which (locally) bimodules make sense (this last point should become
clear in the process of reading Section C4).

The paper is organized as follows.

In Section 1 we introduce a ‘geometrical’ language: continuous morphisms,
flat, coflat, and Zariski covers and associated cosimplicial complexes, the standard
complex of a functor depending on a cover. We show that the standard complex of
an exact functor is exact.

In the second section we prove that, for any coflat finite cover of an abelian cat-
egory and for any adapted to this cover (‘locally exact’) functor, the corresponding
standard complex is a resolution of the functor.

In Section 3 we consider Zariski covers and show that if the cover is ‘semisep-
arated’ (semiseparated affine covers are available on semiseparated schemes), the
standard complex is homotopically equivalent to @ech complex of the cover.

In Section 4 we define the categorymqfasi-schemesndschemesver a given
category. Relative quasi-schemes are locally cohomologically trivial morphisms.
More explicitly, quasi-schemes are defined as morphisms with locally exact direct
image. They are the most natural class of ‘spaces’ to introduce after learning first
properties of the standard complex of a co&hemeare defined as morphisms
direct image of which have locally a right adjoint. Surprisingly, this general non-
sense definition gives what one would like to expect of schemes. For instance,
schemes over a commutative rikg(i.e. the base category is the categorykef
modules) are locally categories of modules dw@lgebras. The category of affine
k-schemes is equivalent to the category dual to the categatyatjebras. And
morphisms from an arbitra+scheme to an affine-scheme are in bijective corre-
spondence with morphisms kfalgebras of their global sections. Note by passing
that Drinfeld’s ‘quantum spaces’ over a commutative inidr] are nothing else
but affine schemes ovér

In Section 5 we introduce noncommutative projective spectra and their cones
and consider two important examples: skew projective spaces and quantized flag
varieties.

In the second part of the paper, Complementary Facts and Examples, we study
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— Connections between some properties of flat covers and those of associated
Zariski covers. Compatibility of standard complexes with certain localizations.
Resolutions related to infinite covers.

— Standard resolutions of functors and, more specifically, resolutions of ‘invert-
ible sheaves’. As an example, we compute cohomology of invertible sheaves on a
skew projective space getting direct analogs of the classical results [S] and their
consequences including the Serre duality. In [LR3], the standard complex is used
for studying cohomologies of invertible sheaves on quantized flag varieties.

Inthe appendix we recall what is the spectrum of an abelian category (introduced
in [R1]) and explain how to reconstruct an arbitrary scheme from the category of
guasi-coherent sheaves on the scheme.

1. Covers and associated standard complexes

Categories here are thought as categories of quasi-coherent sheaves on ‘spaces
and are identified with the ‘spaces’. Accordingly some of the functors could be
upgraded to morphisms.

MORPHISMS 1.0. We defina morphismf from a category4 to a categorys
as an isomorphness class of right exact functors foim.A. Any functorB — A
from f will be calledan inverse image functor gf. And once we made a choice of
an inverse image functor, we shall denote ifftiyThe composition of morphisms is
natural:f o g = [¢* o f*]. Here[u] means ‘all functors isomorphic 3. Allowing
only categories which are equivalent to ‘small categories’ with respect to some
universum, we define this way a category which shall be denot&®y:.

A morphismf is continuousf its inverse image functof* has a right adjoint
called adirect image functor of and denoted usually bg.. We call a morphism
f flatif it is continuous and its inverse image functor is exact. We call a continuous
morphismf coflatif its direct image functor is exact. Finally, we cdllbiflat if it
is flat and coflat.

A morphismf: B — A such thatf* is a localization (i.e. a universal functor
making invertible all arrows of  := {s € Hom| f*(s) is invertible}) will be called
by abuse of language a localization. We call a localizafianflat localizationif
f is a flat morphism. This means thais a flat morphism having a fully faithful
direct image functor (cf. [GZ], Proposition 1.1.3).

COVERS 1.1. We call a set of flat morphisis: B; — A | i € J} aflat cover of
A if any morphisms of A such thatf;*(s) is invertible for alli € .J is invertible.

We call a flat cover f;: B; =+ A | i € J} aZariski coverif each of f; is a
localization.

EXAMPLE 1.1.1. LetA be an abelian category. And I&8;/: € J} be a family
of localizing subcategories of. Recall that a subcategagyis calledlocalizingif
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it is thick and the localizatio’d — A/S atS has a right adjoint. Being an exact
functor, a localization a$; might be regarded as inverse image functor of a flat
morphismf;: A/S; — A. The family { f;|s € J} is a cover iff;c ;S; = 0. And
any Zariski cover of4 is of this form. "

1.2. The standard cosimplicial resolution of a continuous morphisfix. a con-
tinuous morphisny: B — A with the inverse image functgi* and a direct image
functor f,. Letn: Id4 — f.f* ande: f*f. — ldg be adjunction arrows. Set
& = foffandp = fief* : Gsfc — &;. The standard cosimplicial resolution
eR(f) of the morphismy is the standard cosimplicial resolution of the pair of
adjoint functorg f*, f.); i.e.¢R(f) is the augmented cosimplicial object in EAd
defined by

dj, = &ne 8 — &t s = ehuet i et — 6
with the augmentation morphism: Id 4 — &.

1.3.The standard cosimplicial resolution of a family of continuous morphiBixrs.
afamilyf = {f;:B;, - A | i € J} of continuous morphisms. For eatke J,

denote bys; the compositionf;, o f;* and by respn; ande; adjunction arrows
ld4 — &; and f f;. — Idg. For any positive integet, let J™ denote the direct
product ofn. copies ofJ. To this data, there corresponds a cosimplicial object

() mi®i, —
@) =lda—J[ei ——= [[ei— [l @i |, (1)
i€ &;n; ieJ? 7 ieJ3
where, for anyi = (i1,...,i,) € J", &} (= &;, o... 0, . We assume that all

products in the diagram (1) exist.
Let now F' be a functor fromA4 to an additive categor. And let

Fy.
®(S,F):(Fﬂ)HFoﬁiHHFoﬁi—)HFoﬁi...) )
icJ icJ? i3

be a cochain complex associated to the imBAge¢ () of the cosimplicial object
(1). We calle(g, F') the augmented standard complex of the funét@ssociated
to the covey = {f; : B, — A | i € J}. Thestandard complex of with respect
to g is the chain complex

¢+(3,F):(HFon’5i—> HFo(’ﬁi—>HFo(’5i...> ©)

icJ icJ? icJs3

PROPOSITION 1.4.Lety = {fi:B; — A | i € J} be a finite flat cover of an
abelian categoryd. Then, for any exact additive functér. A — B, the standard
complexz(g, F') is exact.
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Proof. Since¢(3, F') = F o ¢(g,1d4), it suffices to prove the assertion in the
caseF = Id 4.

(a) Suppose that card(J) = 1; i.e. the coyeonsists of one morphisgh The
complexf* o ¢(f, Id4) is homotopically trivial, hence it is exact. This fact is in
[Go], Appendix, Section 5. Singg= {f} is a flat cover, the inverse image functor
f* is faithfully flat. Therefore the exactnessfifo ¢(f, Id4) implies the exactness
of ¢(f, 1dy).

(b) Fix a familyg = {f; : B — A | i € J} of continuous morphisms. The
family § can be encoded in one morphigm [],.; B; — A having the inverse
image functor

A —[[B, X—][fX). (1)
icJ icJ

The morphisnf has a direct image functof; ([T, ; Xi) = [1;c; fi«(Xi). The
adjunction arrow

n=rm-. IdAHf*of*:Hfi*ofi*
icJ
is determined by the adjunction arrows: Id4 — &; = fi. o f*, i €J. The
adjunction arrow

e=¢:f o f, — Idg,,

where By = [[;c; B, assigns to anyX;) € ObB; the composition of the
projection

f*o f*(XZ) — (fz* o fz*(XZ))

and the producte; : f; o fix(X;) — X;) of adjunction morphisms;. Note that

— The complex (3, 1d_4) of the family F coincides withg(f, 1d 4).
— The family § is a flat cover iff{f} is a flat cover, i.ef* is a faithfully flat
functor.

Thus the assertion in the general case follows from (a). O

2. The standard complex of a cover and a resolution of locally exact functors

2.1. Locally exact functors.Fix a category4 and a flat coveg = {f; : B; —

A | i € J}. For any functorF: A — B, whereB is an additive category with
products ofcard(.J) objects we have the chain complegs, ). Therefore we
have cohomology of' associated to the cov@tr Suppose on the other hand that

A is an abelian category with enough injectives. So that one can talk about derived
functorsk* F' of the functorF'. We are going to produce natural conditions on the
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coverg and the functo” which garantee the isomorphism®f F' and theCech
cohomologiesH*¢(g, F'), of the functorF’ corresponding to the covgr

Callacovedf; : B; — A| i € J} biflatif the morphismsf;, ¢ € J, arebiflat,
i.e. the directimage functor, are also exact for all € J. The property which we
are going to use is that, for amy .J, the compositiory;. o f;* is an exact functor.

Lety = {f; : B = A | i € J} be aflat cover. We say that a funcir. A — C
is adapted tahe coverg if, for anyi € .J, the compositiorF o f;, is exact.

We call a functorF’ : A — C locally exactif there exists a finite flat cover
§={fi:B;i— A|ie€ J}suchthatF is adapted tg.

THEOREM 2.2. Let.A be an abelian category. And Igt= {f;: B; = A |i € J}
be a finite biflat cover afA. Suppose each categaBy has enough injectives. And
let a functorF: A — C be adapted t&. Then the standard complexg, F') of the
functor F' with respect to the covey is a resolution of the functofF'.

Proof. Let f* denote the inverse image funct®te; f; : A — ®icsB; = By
associated with the covgr And letf, denote a right adjoint t6* (cf. the part (b)
of the Proof of Proposition 1.4). Since the coges biflat, the functoG ;= f, of*
is exact. This implies that the standard compt¢g, Id 4) of the covers provides
a resolution

ldy —¢(F) =G —G2— ... —G" —...)

of the identical functor. To show that the standard comglgx F') = F o &(3)
is a resolution of the functoF’, it suffices to check that, for an¥ € ObA, the
objectG"™(X) is F-acyclic (i.e.RPF(G™(X)) = 0if p > 0) for all n > 1. (cf.
[Gr] Proposition 2.5.1 in and the following example).

Note that, since the functdr* is exact, the functof, sends injectives into
injectives. And since each categdy has enough injectives, the product of the
categories3; has enough injectives too. Le{X) be an injective resolution of
f* o G"(X), n > 0. Then, since the functdr, is exact and sends injectives into
injectives,f,(3(X)) is an injective resolution of, o f* o G*(X) = G"T}(X).
Since the functof o f, is exact, the cohomology of the compléXf. (3(X)) are
zero in degrees: 1. This proves that the objec@"(X) are F-acyclic for any
X e ObAandalln > 1. ]

3. Zariski covers

3.1. First cancellationsLety = {f; : B = A | i € J} be a Zariski cover; i.e.
all inverse image functorg’ are flat localizations. This implies that the functors
®; = fi.f; areidempotent. More explicitly, the morphis#g); andr;®; coincide
and are isomorphisms for all € J. The latter allows to replace the standard
cosimplicial complex:(F) of the covery by a more economic expression. Namely
denote by.J,, the subset of all elements,,...,1,) of J*" (= the product ofn
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copies ofJ) such thatiy # i1 foralll < k < n — 1. The complex¢(g) is
homotopically equivalent to the complex

( 7726] _
() = (1ds 2 ITe: _>—> [[ei— ]|, (1)
ieJ m] icJ, E— ieJs

where, for each = (i1,...,i,) € Jp, 8 (=8, 0---0 &, .
In fact, the canonical projection(g) — ¢'(g) is invertible in the homotopical
category.

3.2.Semiseparated Zariski covef3all a Zariski cove = {f;: B; = A|i € J}
semiseparated &; o 8; ~ &; o ®; for all 4,5 € J. Fix an order inJ. Thene(J)
is homotopically equivalent to the complex

) 772
ce(s):(ldAﬂﬂe H@.—> II @i ) (1)

ieJ G;n; ie< rieds<

whereJ,« := {(i1,...,in) € J*"|i1 < iz < --- < in}. The equivalence is given
by the projectiore(&) — C8(F).

Moreover, if f is a localization at the class of arroWs i € J, then, for any
i = (i1,...,1n) € J*™, & = fi.f{, wheref* is a localization at (the saturation
of) Uckn Siy-

3.3. Example: the standard complex of a cover of a schdreeX = (X, O) be an
arbitrary quasi-compact scheme. For any affine caverX, we have endofunctors
{6y = fu.fi;|U € u} of the category)cohy of quasi-coherent sheaves &n
Note thatsy & ~ &y &y implies that® &y is isomorphic tas . Thus we
have the following assertion:

PROPOSITION 3.3.1Lety be any affine open semiseparated cover of a scheme
X;i.e. &y o &y ~ &y o &y forall U, U’ € 4. Then the standard cosimplicial
complexz(41) of the covelt is equivalent to the complex

771
(m)
ce(s):(ldA—>Hes Hes.—> II @i ) 1)
ieJ &;n; €< — 7 ieds<
where, for anyi = (i1, ...,in), &i = &y andU; = Ni¢k¢p Uiy - In particular,

for any additive functo” : Qcohx — C, the standard chain complexyl, F') is
homotopically equivalent to théech complex (4, F).
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Remark3.3.2. Letf : X — Sbhe a scheme morphism having a direct image
functor f, (for instancef, is the global section functor). Sinegis quasi-compact,
there exists a finite affine coverof X such thatf | is an affine morphism for
anyU € 4. Then the standard complextt, f.) corresponding to the coveris a
resolution of the functof,. Therefore it can be used for computing higher direct
images (= derived functors) gf.

If the localizations at different open sets of the cayeommute (i.eBy &y ~
&y&y forall U, U’ € u), the complext(4, f.) is homotopically equivalent to the
Cech complex (4, f.) of the covett. One can show that the following conditions
are equivalent:

(a) For any affine covet of a schemeX, & &y ~ &y &y forall U, U’ € 4.
(b) The schem is separated.

In other words, th€ech complex is equivalent to the standard complex for any
affine cover only if the scheme is separated. If the sch¥nenot separated, the
higher cohomology of th€ech complex’ (4, f.) are notisomorphic, for a general
affine covel, to the corresponding derived functorsfof O

4. Quasi-schemes and schemes

4.1. Relative quasi-schemedVe call a continuous morphistf: A — C almost
affineif f, is an exact and faithful functor. A flat covgr= {f;:B; — A | i € J}
is calledalmost affingf each morphisny; is almost affine.

We call a continuous morphisift A — C aquasi-scheme ovérif there exists
an almost affine Zariski cov@r= {u;: B; — A | i € J} such that the directimage
[« o ug Of f ou; is exact and faithful (i.ef o u; is almost affine) for alf € J.

With any continuous morphisifi: A — C, we associateamon@g = (&, i)
and a canonical functgg : A — G;—mod such thay, is the composition of.
and the forgetful functoG; — mod — C. Here®, ;= f. o f* andu = f.ef*; €
is an adjunction morphismi* o f, — Id 4. The canonical functgt, assigns to any
objectM of A theGy-module(f.(M), f.e€).

If f: A — Cisanalmost affine quasi-scheme, it follows from the the Barr—Beck
theorem (cf. [ML]) thatj, : A — Gy —mod is an equivalence of categories.

Note that, sincef, exact, the functo® is right exact. Therefore, i€ is an
abelian category, the catego; —mod of G;-modules is abelian too. Thus if
f A — Cis almost affine and is an abelian category, thehis abelian.

It follows that an arbitrary quasi-schemdagally a category of modules over
a right exact monad. This also implies thafif A — C is a quasi-scheme and the
categonyC is abelian, thed is abelian.

We call a continuous morphistfi: A — C arelative semiseparated quasi-
scheméf there exists a semiseparated biflat Zariski cayer {u; : B; —» A |i €
J} adapted tof and such thaf, o u;, is faithful for all i € .J.
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Any almost affine morphisnf is a relative semiseparated quasi-scheme, since
f is adapted to the trivial coveitd 4}.

We shall denote b¢’at. /C the full subcategory oRCat/C objects of which
are continuous morphismé — C. We denote byQSch/C the category of quasi-
schemes ovet which is the full subcategory @fat./C formed by quasi-schemes
over C. We single out the full subcategol@Sch./C of quasi-compacuasi-
schemesQuasi-compacmeans that an almost affine cover in the definition of a
guasi-scheme can be chosen finite. By ‘technical reasons’ (to avoid overloading
with technicalities) and also because the known interesting examples of quasi-
schemes are quasi-compact, we shall discuss mostly the cat@§oty/C.

4.2. Morphisms of quasi-scheme$he main theorem about scheme morphisms
says that, iX = (X,Ox) is an arbitrary scheme and = (Y, Oy ) is an affine
scheme, then there is a natural isomorphism

SchemegX,Y) — Rings(I'(Y, Oy),T(X, Ox)). (1)

The goal of this section is to establish an analog of this fact (actually a gener-
alization) for quasi-schemes. To see better the nature of things, we begin with the
categoryCat, /C of continuous morphisms ©, where the desired fact is valid in
a most naive form.

Denote bymtonC the category of monads if. Let £ denote the functor from
(9monC)° to the category’at./C of continuous morphisms © which assigns to
any monad the canonical continuous morphigm- mod — C.

PROPOSITION 4.2.1The functorg : (9onC)® — Cat,/C is fully faithful and
has a left adjoint.

Proof. (a) We begin with the construction of a left adjoint functordo

Let » be a morphism frony: A — Ctog : B — C. After chosingg* andh*,
we can takef* = h* o ¢* as an inverse image morphism of f. This way we have
the equalityf, o h* o g* = f. o f* which together with the composition

g« — feoffog.=fioh®og og. — fioh"

provides a morphism. o g* — f. o f*. We leave to a reader to check that this is
a monad morphism and that we have defined the required functor. Moreover, there
is a natural commutative diagram

A N B
&) 1% (1)
“e(h)
Gy —mod — G, —mod

Here the vertical arrows are canonical morphisms with direct image functors
Cre - X — (fu(X), fre(X)), wheree is an adjunction arrowf* f. — Id 4, and

https://doi.org/10.1023/A:1000479824211 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000479824211

102 ALEXANDER L. ROSENBERG

similarly (4.; "£(h) is the pull-back morphism determined by the monad morphism
defined above. Note that (1) is a diagram of morphisms 6v@iearly (¢;) is an
adjunction morphism lg,;, ,c — £ o "£. The second adjunction morphism is
identical. The latter fact implies that the functoris fully faithful. O

Let MoneC be the full subcategory of the categanyonC generated by right
exact monads, i.e. monagg, ;1) such that?’ is a right exact functor.

LEMMA 4.2.2. Amonadr = (F, ) belongs tamontC if and only if the canonical
morphismf : F — mod — C is almost affine. In particula} induces a functoi,
from the category?tontC)° to the categorfQdSch/C of quasi-schemes ovér
Proof.If f is almost affine (i.ef, is exact), then, clearh’ = f, o f* is right
exact. Conversely, suppose tHatfs right exact. Letg,h : (M,m) — (M',m/)
be arbitraryF-module morphisms; and letM’ — N be a coequalizer of the pair
f«(g), f«(h) : M — M'. Sincee o m’ o Fg = ¢ o m’ o Fh and, becausé&’ is
right exact,F'e is a coequalizer of the pafi#'g, Fh), there exists a unique arrow
v: F(N) — N suchthat o m’ = v o Fe. One can check thato Fv = v oy and
vo Fn(N) = Idy,i.e.(N,v) is anF-module. The equalityo m’ = v o Fe means
thate is anF-module morphisniM’,m’) — (N, v). Clearly the moduléN, v) is
an equalizer of the paily, h). This shows that the direct image funcifyris right
exact. Therefore it is exact. |

PROPOSITION 4.2.3The functorl : (9ontC)° — QSch./C is fully faithful and
has a left adjoint.

Proof.Let f : A — C be a quasi-scheme; and let= {u; : 4; — Ali € J}
be a coflat Zariski cover such that, for ahy¥ J, f. o u;, is exact and faithful
(i.e. fou; : 44y — C is almost affine). Let denote the morphisfi;.; &; — A
corresponding to the covér. Note thatf, o €(i) o f* is a complex in the category
Endr(C) of right exact functor€ — C. It follows from Proposition C4.3 that the
functor

8 i= H(f, o €(U) o f*) :=Ker(f, o (&4 = &F) o f*) 1 C = C, (1)

where the kernel is taken in the categd#ydrC, does not depend on the choice
of the coveul. And 05} has a uniquely defined monad structufeThe morphism

f A — C decomposes uniquely into a continuous morph]#mA — G}—mod
andGy — mod— C. HereG) := (&', u'). The map assigning to any quasi-scheme
[+ A — C theright exact monad; extends naturally to a functor which is a left
adjoint to the functorZ. And ¢’ = (C}) is the adjunction arrow from lgkcrc to

Lo "L. The other adjunction arrow is identical. O

PROPOSITION 4.2.4.The functorl : (9MontC)® — QSch/C establishes an
equivalence between the categdmtontC)° dual to the category of right exact
monads and the catego@Aff /C of almost affine quasi-schemes oder
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Proof. The assertion follows from Proposition 4.2.3 and the fact that any almost
affine quasi-schemg: A — C satisfies the conditions of the Barr—Beck theorem;
hence the canonical morphist— G;— mod is an equivalence (cf. the discussion
in Section 4.1). |

4.3.Relative scheme$le call a continuous morphisiin A — C affineif its direct
image functorf, is faithful and has a right adjoint. Usually, we shall denote the
right adjoint tof, by f;.

A family of morphisms (in particular a coveg)= {u; : B; = A | i € J} will
be calledaffineif eachu; is affine.

A continuous morphisnf : A — C shall be callech scheme ovef if there
exists araffineZariski covet = {u;: B; — A | i € J} such thatf o u;, is an affine
morphism for alk € .J.

Clearly any scheme oveéris a quasi-scheme ovér

Any scheme morphisiX — Y having a direct image functor defines a relative
scheme&)cohy — @Qcohy in the sense of the definition above.

Denote bySch/C the full subcategory of'at../C objects of which are schemes
overC. We single out the full subcatego8ch./C of quasi-compacschemes, i.e.
schemes: A — C which have a finite Zariski covet = {u;B8;, — A | i € J}
such thatf o u; is an affine morphism for all€ .J.

Finally, we denote byAff /C the full subcategory oBch/C objects of which are
affine schemes ovet.

4.4. The main theorem on scheme morphisbenote byoncC the full subcate-
gory of MenC objects of which areontinuous monads @ i.e. monad§ = (F, )
such that the functaF’ has a right adjoint. Clearly every continuous monad is right
exact:MoncC C MoneC.

LEMMA 4.4.1. AmonadF = (F, 1) in C is continuous if and only if the canonical
morphismf:F — mod — C is affine.

Proof. (a) One direction is trivial: for any affine morphisgrthe functorg, o g*
has a right adjoint by definition; and for the canonical morphigri— mod
—=C,frof*=F

(b) Suppose that = (F, 1) is continuous. Le#" be a right adjoint ta?’; and
lete' : FoF~ —Ide, n':1de — F~ o F be adjunction arrows. Then

vi=F(ouF)onFoF :FoF — F" 1)
is an action off’ on F~ which satisfies the properties:

vonF  =Idp- and vouF =wvoFu. 2
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Heren : Ide — F'is the identity of the mona®. In fact,
vonF" == F(ouF)on'FoF onF =F¢o(FpuonFon)F"
= Féo(FpuoF Fnon)F  =F¢€onF =idp.

We leave the checking the associativity of the action to the reader.

The relations (2) imply thatF"™ (M), v(M)) is anF-module for anyM € ObC.
Clearly the mapf; assigning to any// € ObC the module(F~(M),v(M)) and
to any arrowf of C the morphism#” f of the corresponding modules is a functor.
The compositions of the forgetful functgy and f; are:

feo [y =F", frofe: (M,m)— (F'(M),v(M)).
There are canonical morphisms

' =€onF": fiofi =F —Idc (3)
andn” : ldg_mod — f o f. defined by

n"(M,m) := F'm o/ (M) : (M,m) —> (F"(M),v(M)). @)

We leave it to the reader to check that (4) is reallyfamodule morphism and the
functor morphisms” andr” are adjunction arrows fof, and f;.

COROLLARY 4.4.2. A morphismf : A — C is affine if and only ifG; =
(f« o f*, 1) is @ continuous monad.

Proof.Only if is trivial.

If: In fact, if f is almost affine f, is (cf. Proposition 4.2.4) equivalent to the
forgetful functorj : Gy— mod = C, Gy = (f« o f*,u). By Lemma 4.4.1, the
existence of a right adjoint ti is equivalent to the existence of a right adjoint to

feo f7. O

Thus the functorg : (MonC)° — Cat,/C which assigns to any mondd the
canonical morphisfi— mod— C induces a functo® from (toncC)® to Sch./C.

PROPOSITION 4.4.3The functorS : (9oncC)? — Sch./C is fully faithful and
has a left adjoint.

Proof.Let f: A — C be a scheme; and lat= {u; : 8, — Ali € J} be a coflat
Zariski cover such that, for anye J, f.ou;, is faithful and has a right adjoint (i.e.
fou; : &; — Cis affine). Letu denote the morphisii;. ; 4; — A corresponding
to the covenl. Note thatf, o ¢(4) o f* is a complex in the categommo(C) of
continuous functor€ — C. It follows from Proposition C4.3 that, o €(4) o f* is
a resolution of the functor

6 == HO(f. o €(tt) o f*) == Ker(f, o (6, —> &2) o f*):C—C, (1)
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where the kernel is taken in the categemnp C. In particular,@ﬁ’; does not depend
on the choice ofthe cover. The functomj’; has a uniquely defined monad structure
u”. The morphismyf : A — C decomposes uniquely into a continuous morphism
(} : A — G}—mod andz; — mod— C. HereG} := (&%, u"). The map assigning
to any schemg : A — C the continuous monad; extends naturally to a ‘global
section’ functof” : Sch/C — (MoncC)® which is a left adjoint to the ‘localization’
functor&. And¢” = ((7) is the adjunction arrow from k¢ to & oI'. The other
adjunction arrow is identical. O

COROLLARY 4.4.3.1.The functors : (9MoncC)® — Sch/C establishes an equiv-
alence between the categdqpytoncC)? dual to the category of continuous monads
and the categonAff /C of affine schemes ovér

4.5. Schemes over a category of modul@snote byCat, the category objects of
which are pair§.A, O), whereA is a category (equivalent to a small category and
thought as the category of quasi-coherent sheaves on a schen@)sad object

of A (thought as the structure sheaf). Morphisms flof O) to (A, O') are pairs
(f,¢), wheref is a morphism fromA to A’ and¢ is an isomorphism fronf*(O’)

to O.

Let C be the category— mod of left modules over a ring, and letf: 4 —

C be a morphism. We can assign to the morphigrthe pair (A, f*(k)). This
correspondence provides a functor from the categry /C to the category'at,.

Suppose now that: A — C is a continuous morphism. Then it is defined
uniquely up to isomorphism by the obje@t= f*(k).

In fact, we have functorial isomorphisma f*(k), X) ~ C(k, f«(X)) =~ f«(X)
which shows that the direct image functfyrof f is naturally isomorphic to the
functorX — A(f*(k), X). Therefore the inverse image funciir (representing
f) is defined uniquely up to isomorphism (being a left adjoint to the funtoby
the objectf* (k). Note that since™* respects colimits, there exists a coproduct of
any set of copies a = f*(k).

Conversely, suppose thatl, O) is an object of the catego/at, such that
the categoryA is abelian and there exists a coproduct of any set of copies of
O. Then the functoX — A(O, X) from A to the category — mod, where
K = A(0,0)°, is a direct image of a continuous morphism frofrto K — mod
([BD], Proposition 6.6.23).

Now fix an additive categoryl and a continuous morphisgfft A — C = k
=mod. And selO = f*(k). The functorf, is faithful iff O is a generator of the
categoryA.

Sincef, ~ A(O,), the morphisny is coflat iff O is a projective object.

Thusf is almost affine iffO is a projective generator. Finally,is affine iff O
is a projective generator of finite type.
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PROPOSITION 4.5.1. (ehor any continuous morphisth: A — C = kK — mod,
there is a canonical functor morphism

P A0, 0)°@r — A(O, f—) (1)

such that) (V') is an isomorphism for any frédemoduleV of finite type.

(b) If f is almost affine, thett (V') is an isomorphism for any finitely presented
k-moduleV. In particular, if & is left noetherian, them; (V') is an isomorphism
for any finitely generated-moduleV.

(c) The morphismy is an isomorphism if and only ff is affine.

(d) The morphisny is affine if and only if the functor

AO,—): A — A(O,0)° — mod

is an equivalence of categories.
Proof. (a) For any additive functaF’ : k— mod— k& — mod, the moduld’ (k)
has a naturak-bimodule structure, and there is a canonical functor morphism
Yr : F(k)®r — F (see for instance, [Bass], Ch.l). Recall that, for &ayodule
V', the morphismpr (V') is the image of Ig with respect to the composition

Hom (V, V) — Homy (V, Hom (k, V')

Homy (F (k) ® V,F(V)) +—— Hom,(V,Hom(F(k),F(V)))

Sinceyr(k) is an isomorphism and the functét is additive,s)z (V') is an
isomorphism for any freé-moduleV of finite rank.

(b) If the functor F' is right exact, i.e. it preserves cokernelg; (V') is an
isomorphism for any finitely presented objdct since finitely presented objects
are exactly cokernels of morphisms between free objects of finite rank.

(c) The morphism)r is an isomorphism iff the functaF preserves arbitrary
colimits (or, equivalently, has a right adjoint).

The assertionga)-c) of the lemma are just specializations of these facts for
the functorf, o f* ~ A(O, f*—).

(d) By Proposition 4.2.4, iff : A — k — mod is almost affine, the canonical
functor A — Gy— mod is an equivalence of categories. The asse(tipimplies
that if (and only if) f is affine, the mona@; is naturally isomorphic to the monad
(A(O, 0)®, m), wherem is induced by the multiplication id(O, ©)°. The
category(A(O, @), m)— mod is isomorphic to the category of left modules over
A(O,0)°. O

Remarlkd.5.2. The analysis above shows that when the kilyjcommutative,
the category of affine schemes ovker= k& — mod is naturally equivalent to the
category of affine schemes in the sense of M. Artin and J. J. Zhang [AZ]. O

https://doi.org/10.1023/A:1000479824211 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000479824211

NONCOMMUTATIVE SCHEMES 107

4.5.3.General schemes ovér Let f: A — C be an arbitrary quasi-scheme over
C = k— mod; and lett = {u; : B - A | i € J} be a Zariski cover adapted
to f such thatf, o u;, is an exact, faithful functor for any € J. Or, in our new
languagef o u; is an almost affine quasi-scheme for anBy 4.1, this means
that the categorn; is naturally equivalent to the catego®y.,, — mod, where
Gyou; IS the monad in the categoky- mod (shortlyk-monad) associated with the
morphismf o u;. If f: A — Cis a scheme and is the corresponding affine cover,
thenB; is isomorphic to the category &;-modules, wher®; = B;(0;, O;)°, O;
is the ‘structure sheaf’ oB; : O; = u}(O).

Thus any scheme ovér— mod is locally the category of left modules over
k-rings. Recall that &-ring is an arbitrary ring morphisrh — A.

Any guasi-scheme ovdr— mod is locally the category of left modules over a
k-monad.

Examples of interest of relative schemes are noncommutative projective spaces
and quantized flag varieties of semisimple Lie algebras. We discuss them in Sec-
tion 5.

5. Noncommutative quasi-affine spaces and projective spectra

5.1. Projective spectrum and a quasi-affine space related to a graded algebra.
Let £ be a commutative ring’ a commutative directly ordered group. And let
R be an associativE-gradedk-algebra. For anyy € I, setR., = ®;>,R,.
For any R-module M and anyy € I', denote byM, the subset of all elements
of M annihilated byR-. . Denote byT_ the full subcategory of the categoR/-
mod generated by alR-modulesM such that)M = sup{M,|y € I'}. One can
see thafl, is a Serre subcategory of the categ&y mod. The quotient category
Coner(R) := R — mod/ T is calledthe quasi-affine spader affine congof R.

Let F be the natural functogrr R — mod — R — mod. And letT, denote
the preimage of/. in grp R — mod. Since the functorF is exact, . is a Serre
subcategory oftr R — mod. The quotient categoBrojr(R) = ger R — mod/% ;.
is calledthe projective spectrum &.

We have the following canonical continuous morphisms:

(a) The ‘embeddingt : Coner(R) — R — mod with a localization af. as an
inverse image functor.

(b) The morphisnr’ : Proj-(R) — grp R — mod with a localization at ;. as an
inverse image functor.
(c) The morphisnp : gep R — mod — Ro — mod, with the direct image functor
@y - gepR —mod— Ro—mod M = ®,cr M, — M. 1)

Here O denotes the identity element of the gréup
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Note by passing that the inverse image fungtorV — R ®g, V' is fully
faithful. This follows from the fact that the adjunction morphism

n. IdRofmod — Px O ‘10*7 77(V) V— (R ® R V)O = Ro @Ry 14

is an isomorphism.

(d) Setr := pon’ : Projp(R) — Rp — mod. IfT"' = Z and R is a commutative
Z,-graded algebra, the morphisndefines the structure of a scheme okgr
In the general case, when rdiij > 2, the direct image functer,. of = is not
locally faithful; hencer is not a structure of a scheme.

5.1.1.Changing the grading.et R be al'-gradedk-algebra; and let) : ' — T”

be a group epimorphism. The® becomes d"-graded algebra. So that we have
theI’-cone ofR, Coner~ (R), and thel”-projective spac®roj(R). The natural
functor F : gtrR — mod — g R — mod induces exact and faithful functors
Coner(R) — Cone~(R) andProj-(R) — Proj (R) such that the diagram

Coner(R) —— Coner(R)

| | W

Projr(R) —— Projp/(R)

commutes.

The standard exampl&: is a free abelian group of finite rank (greater than
one) with the lexicographic preorder corresponding to a choice of a free basis. The
homomorphism) : I' — Z assigns to any element the sum of its components. If the
algebraR is such thaf?, = Ofory <« 0, thenthe functoCone-(R) — Cone,(R)
in the diagram (1) is an equivalence of categories. This is not the case, however,
with the functorProj(R) — Proj,(R) = Proj(R).

5.2. Affine covers of projective spectriaet £ andT" be as in Section 5.1. Fix a
I'-graded associativie-algebraR.

LEMMA5.2.1. LetS = {S;|i € J} be a family of left homogeneous Ore subsets
of the algebraR. And let, for each € J, S; be the Serre subcategory Bf— mod
generated by all module®f such that any element éf is annihilated by some
element of5;. And letS; be the preimage &; in gep R — mod

The following conditions are equivalent:

(a) The Serre subcategori¢s;|: € J} provide a cover of the ‘quasi-affine space’
Coner(R);i.e.N;csSi= T+

(b) The Serre subcategori¢s;|i € J} provide a cover of the projective spectrum
Projp(R); i.e.Nics Si = T4

(c) The family of Ore set§ = {S;|i € J} has the properties:
(i) foranyy e T"'and anyi € J, S; N R~ # 0.
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(ii) if mis aleftideal inR such thatn N .S; # @ forall i € J, thenR-., Cm
for somey € T'.

Proof.(a) = (c). The condition (i) is equivalent to the inclusign C S; for all
¢ € J. The condition (i) says thaf . contains the intersectign,. ; S;. Therefore
T+ = Nics Si- The implications (b)= (c) are established the same way. O

Remark 5.2.1.1. In [VW], & ,-graded noetherian ring¢ such that there exists
a family of left and rightOre setsS = {S;|i € J} satisfying the equivalent
conditions of Lemma 5.2.1 is callethematicQuite a few algebras of interest are
schematic. We refer to [VW] for examples. O

PROPOSITION 5.2.2Any familyS = {S;|i € J} oflefthomogeneous Ore subsets
of R satisfying the condition@), (i) of Lemma 3.2.1 determines an affine cover
{S!]i € J} of Projp(R) adapted to the global section functef : Proj.(R) —
grr R —modand, therefore, to the functar, : Proj-(R) — Ro— mod (cf. (b) and
(d)in 5.1).

Proof.HereS; denote the image of the Serre categ8yyn Proj-(R).

The composition ofr, and the direct image of; : Proj-(R)/S; — Projp(R)
equals to the composition

7l 0 uj = (7' o)y 1 Projp(R)/S; — gtR — mod 1)

and the functorp, : gerR — mod — Ry — mod (cf. (1) in 5.1). Note that the
categonyProj-(R)/S; is naturally identified with the categogyr R — mod/S;; so
that the functor (1) becomes a right adjoint to the localization

Q; : gtr R — mod — grp R — mod/S;. (2)

Since (2) is a localization at a left Ore s&f, the quotient categorytr R —
mod/S; is equivalent to the categog,tS;lR — mod of gradedS‘;lR-moduIes.
Thus gep R — mod/S; can be replaced bﬁi‘lR — mod. And the localization
Q; can be identified with the tensoringflR@)R. Therefore a right adjoint to
Q; is an exact functor. Since the functer, : girR — mod — Ro — mod
is exact, we obtain the exactnessmfo u;,. Now the assertion follows from
Proposition 2.2. O

Remark5.3. Under the conditions of Proposition 5.2.2, the family of Ore sets
S = {S;|i € J} determines an affine cover Goner(R) := R — mod/7; which
is adapted to the direct image functer : Coner(R) — R — mod (cf. 5.1). The
covers ofProj-(R) andConer(R) defined by the familyS are compatible with
the natural (inverse image) funct®roj-(R) — Coner(R); i.e. the diagram

Proj.(R) —— Projp(R)/S!

3)
Coner(R) —— Coner(R)/S!
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is commutative for alli € J. HereS! is the image of the Serre categasy
in Coner(R). And Coner(R)/S!. can be identified withR — mod/s; = S;*
R — mod. |

5.4.Example: noncommutative skew projective spdoesA be an arbitrary asso-
ciative k-algebra. And let) denote a matri{g;;]; je.r With entrees ink such that
¢ijq;; = 1foralls,5 € J. In particular,g;; = 1 for all i € J. To this data there
corresponds a skew (gr)polynomial algebradq[x], wherex denotes the set of
indeterminategz;|i € J}. The defining relations are:

TiTj = QijTT; forall 4,5 € J, Q)
rr=rx; foral 1€J and reA. 2)

LetJ = {0,1,...,r}. Setl" := z"*% and lety;, i = 0,1,...,r, denote the
canonical generators of We providel” with the standard lexicographic preorder.
Assigning to each; the parityy;, we turn the skew polynomial algebRa:= Aq[X]
into al'-graded algebra witlig = A.

There is a natural choice of left (and right) homogeneous Ore subsets of the
rng R : S; := {z}|n > 1} forall i € J. The familyS = {S;|i € J} satisfies
the conditions (i), (ii) of Lemma 5.2.1. Therefofdetermines, by Proposition
5.2, affine covers of the spacPBsoj-(R) andConer(R). These covers have all
‘classical’ properties:

(a) One can see that the categ@yner(R)/S/, ~ Aq[x,z; ] — mod.
(b) LetI'; denote the quotient grodpy/Z-y; ~ Z". We have:

Proj(R)/S! = grp R — mod/S; ~ gep((z;) " R) — mod (3)

where(z;) "1 Ris the localization of the algebfaat the multiplicative sefz;) ~* :=
{(z;)"|n > 0}. The categoryrp (z;) "R —mod in (3) is naturally equivalent to the
categonygrr, Aq, [X/z;] — mod of leftT’;-graded modules over the skew polynomial
algebradq, [x/z;]. Herex/z; denotes{z;/x;|j € J,j # i}, andq, denotes the
MAtriX [qniGnm i lnmes iy (Cf. [R], Example 1.7.2.2.4).

Note thatdq, [x/x;] is thel';-component of the algebréy X, ;Y] of the "func-
tions onConer(R)/S!.

(c) One can see that the categ®mpj(R)/S; is naturally identified with the
categonyrer, Ag, [X/z;] — mod andConer (R) /S with grp, Ag[X, xi‘l] —mod. And
the canonical functdProj-(R)/S! — Coner(R) /S’ of Remark 5.3 is isomorphic
to the tensoring by the algebréqg[x, z; 1] over its I';-componentAq [x/z;] =
Ag[X, z; o.

(d) The composition of the Gabriel functo®; = Q;" o Q;, where(Q); is a
localization atS;, commute one with another. In other words, the canonical cover
of Proj(R) is semiseparated. This implies that, for any subisef .7, the compo-
sition of G;, 1 € J', is the Gabriel functor of the localization at the multiplicative
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set generated bfz;|i € J'}.

5.4.1.The ‘projective spaceP". Let againR = Aq[X|, X = (2o, z1,...,2,). But
takeT" = Z with the natural order; and set the parity of eaglequal to 1. One can
repeat withCone,(R) andP" := Proj,(R) the same pattern as witboner(R)
andPr. := Projp(R). Only this time the quotient groug§ will be trivial, and we
obtain a picture very similar to the classical oR&covered by + 1 affine spaces
Ag,[X/z;]—mod,i = 0,1,...,r. The details are left to the reader.

Note that the categorid¥” andPr. := Proj-(R) are not equivalent if > 1.

5.4.2.A useful generalizatiorSuppose we are givenkaalgebraA and a matrix
d = (gij)o<i,j<r (@s in 5.4), and a group homomorphism z"+1 — Aut,(A).
Define Aq[x, ¥] as thek-algebra generated by andx = (zo, z1, ..., z,) subject
to the relations:

TTj = ¢z, xib=9;(b)z; (1)

forall 0 < i,5 < r andb € A. Here 9; is the image with respect té of the
canonical generatoy; of I' = z"+1. The corresponding projective spaces shall be
denoted byPr. , and byPj,.

5.5.Flag varieties of quantized enveloping algebitastgbe areductive Lie algebra
overC andU (g) the enveloping algebra @f Letp denote the group of integral
weights ofg, and let3, be the semigroup of nonnegative integral weights. Let
R = @xeqp R, WhereR,, is the vector space of the (canonical) irreducible finite
dimensional representation with the highest weighithe moduleR is a3 -graded
algebra with the multiplication determined by the projecti@)s® R, — Ra1v,
forall \,v € .. Itis well known that the algebrR is isomorphic to the algebra
of regular functions on the base affine space.d®ecall that” = G /U, whereG

is a connected simply connected algebraic group with the Lie algglaradU is

its maximal unipotent subgroup.

The coneConeg(R) is equivalent to the category of quasi-coherent sheaves on
the base affine spadéof the Lie algebra. The categoryroj(R) = Proj,(R) is
equivalent to the category of quasi-coherent sheaves on the flag variety of

Let now g be a semisimple Lie algebra over a figldof zero characteristic
(say,k = Q(¢)) andU,(g) the quantized enveloping algebra gof Define the
PB-graded algebr&k = @)cyp, R the same way as above. This time, however,
the algebraR is not commutative. Following the classical example (and identify-
ing spaces with categories of quasi-coherent sheaves on them), we call the cone
Cong(R) = Cone,(R) the quantum base affine spaaedProj(R) = Proj,(R)
thequantum flag varietpf g.

5.5.1.An affine cover of the flag varietiet W be the Weyl group of the Lie
algebrag. Fixaw € W. Forany\ € 3, choose a nonzero-extremal vectoe,,
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generating the one dimensional vector space formed by the vectors of the weight
wA. SetSy, == {k*e,a|A € PB4 }. It follows from the Weyl character formula that
ewrewp € k*ey(rqp)- HENCER,, is a multiplicative set. It was proved by Joseph [Jo]
thatS,, is a left and right Ore subsetR. The Ore set$S,,|w € W} determine a
locally affine cover of the quantum base affine sgacee(R) and the quantum flag
variety Proj (R) of g. This cover enjoys properties similar to the properties (a)—(c)
of the canonical cover of a ‘projective space’ and its cone (cf. 5.4). Namely, the
quotient categor€ongR) /S, is naturally equivalent to the categasy, “R —mod,
andProj(R)/S,, is naturally equivalent to the categai§,, 'R )o — mod. But the
analog of the property (d) in 5.4 does not hold: the multiplicative subset generated
by S, and S, for differentw andw'’ is not an Ore set in general. Which means
that the situation is not analogous to the classical one: the canonical cover is not
semiseparated. Still the standard complex allows to compute the cohomology of
line bundles on the quantized flag variety by comparing them with the cohomology
of the classical specialization. This is done in [LR3].

Complementary facts and examples
C1.Flat covers and Zariski covers

LEMMA C1.1. Let.A be a category with finite limits and colimits. Then any flat
(i.e. exact and having a right adjoint) functd@r. A — B is represented uniquely
up to isomorphism as the compositiého @), where( is a flat localization, and
H is a faithfully flat functor.

Proof. The functorT is represented as the compositibn= H o (), where@)
is the localization a5 = {s € HomA | T's is invertible}. SinceT = H o Q
has a right adjoint]™", the functorH is left adjoint to the compositio o T;
and the adjunction arrow: T o 7" — Id can be also regarded as an adjunction
morphismH o (Q o T") = H o H™ — Id. As for the second adjunction arrow,:

Id - H oH = (QoT") o H,itis uniquely defined by the equality@ = Qn (cf.
[GZ], Lemma I.1.3.1). Here is the adjunction morphism les 7" o T.

Let F' denote the compositiofi” o T'. Define the functoG : A — A as the
equalizer of the paif'n,nF : F — F o F. And letv denote the canonical arrow
G — F.

Note that ifs € HomS, thenGs is invertible. In fact,s € HomS if and only if
T's is invertible. But, this implies thak's andF o F'(s) are invertible. Hencé&'s is
invertible.

ThereforeG = Lo () for a uniquely defined functor L. We claim that the functor
L is right adjoint to Q. In fact, since the adjunction arrgwild — FF =T o T
equalizeg F'n,nF), we have a canonical morphisim Id — L o Q = G uniquely
defined by the equalityz o § = 7.
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On the other hand, applying the localizatiQrto the arrowd'n, nF', we obtain
a pair of morphisms from

QoF =QoT oT=(QoT )oHoQ=(H oH)oQ
to

QoFoF
=(QoT)o(HoQ)oF=(H oH)oQoF =(H oH)o(H oH)oQ.

Sincey@ = @n, we have:
QnF =yQF =yHQ, and QFn= H HQn=HyQ.

By Proposition 1.3.4 in [GZ], the functal is exact and faithful; therefore it is
faithfully flat. By Lemma 1.3.1, the adjunction arrow: Id — H is the equalizer
of the pairH-~, yH. In particular,

YQ=Qn:Q —HoQ=QoF

is the equalizer ofHQ = QnF andH~vQ = @QFn. Notice now that, by the
same Proposition 1.3.4 in [GZK admits left and right fractions. By Proposition
1.3.1in [GZ], the localizatiorQ: A — A[S~1] is an exact functor. In particular, it
preserves equalizers. Thus, we have obtained: both the algonsy) o G — QF
and@Qn:Q — QF, are equalizers of the paipnF, QFn. Since@Qn = Q(v o

J) = Qv o Q4, this means that the arroQo:QQ — QoG = Qo Lo Q is an
isomorphism. By the universal property of the localizati@nthere is a unique
functor isomorphisnz : Q o L — Id such thaQ = Q4~1. By the definition of
o, we haver( o Qd = idg.

Note that{Lo o dL)Q o d = LoQ o LQJ o6 = §. This implies, by the universal
property ofd, that(Lo o §L)@Q = idr.q. Therefore, by the universal property@f
we haveLo o §L = id,. The equalitiesQ o Qd = idg, Lo oL =id;, show that
the functorL is the right adjoint to the localizatiof, andd ando are adjunction
arrows. O

Lety = {fi: Bi — Ali € J} be a family of flat morphisms. By Lemma C1.1
eachy; is represented as a composition of a flat localizatipn A; — A and a
faithfully flat morphismh; : B; — A;. Clearlygis acoveriff{q; : A; — Ali € J}
is a cover.

Another application of Lemma C1.1 is the following proposition.

PROPOSITION Cl.2.Let§ = {f; : Bi — Ali € J} be a finite family of flat
morphisms to an additive categad. And letg* be a localization at; := {s €
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HomA|f;(s) is invertible for alli € J}. Then the standard complex

0— ¢ — ¢ (H@) —>q*(H eﬁ@-) — ..

1€J 1,5€J

—>q*(H Q5i>—>... (1)
icxn

is exact.

Proof.It suffices to prove the assertionin the casel(.JJ) = 1 (cf. the argument
of Proposition 1.4); i.e. wheg = {f} for a flat morphismf: B — A. By Lemma
C1.1,f = qoh,whereg : A" — Ais aflatlocalization (i.eq* is a flat localization)
andh : B — Aisafaithfully flat morphism. Sincg*oq, ~ Id 4/, we have canonical
isomorphisms®’; ~ ¢, o &} o ¢*. The complex (1) is isomorphic to

¢(h,1d)g* = (Idgy — &) — &2 — ... — & — ...)oq". 2)

Since the morphism is faithfully flat, the complex:(h, Id) is exact. Therefore
the complex (2) is exact. O

C2. Standard complex of a family of morphisms and localizatiblese we shall
discuss the compatibility of derived functors with certain localizations.

LEMMA C2.1. Let f: B — A be continuous morphism; and I&t: A — A’ be
flat localization such thaf* factors through@ : f* = f™* o Q.

(a) Thenf’* is an inverse image functor of continuous morphigmB — A'.
(b) If G := f. o f*is an exact functor, the@ s = f o f™ is exact.

In particular, if f is a biflat localization, therf’ is a biflat localization.

Proof.(a) The statement is a consequence of Lemma [.1.3.1 in [GZ].

(b) Sincef* = f" o @, f. ~ Q o fl. SothatG; ~ Q" o G o Q; hence
Q o Gy ~ Gy o Q. The latter isomorphism shows that the funafos G ; factors
through the localizatio)). Since the functorg) andG are exact) o G ; is exact
and, therefore(s ; is exact by Propositions 1.3.2 and 1.3.4 in [GZ]. O

LEMMA C2.2. Letg = {f; : B, — Ali € J} be aset of biflat morphisms; and let
Q : A — A’ be aflat localization such that evefyis compatible with). Then

(a) The induced localizations of’, 3’ = {f/ : B; — A'|i € J}, are biflat.
(b) If Q(s) is invertible for any arrows of A such thatf;*(s) is invertible for all
1 € J, theng induces a biflat coveg’, of A'.

Proof. The assertion follows from Lemma C2.1. O
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PROPOSITION C2.3.Let A be an abelian category with enough injectives. Let
Q : A— A’ beaflatlocalization; and le = {f; : B; — Ali € J} be afinite set
of biflat morphisms compatible with and such thakKer(Q) = ;s Ker(f;).

() Theng induces a biflat cover ofl’.

(i) Suppose thaid is an abelian category and each categdsy has enough
injectives. Let a functo# : A — C be adapted to the familg. Then the
standard complex (3, F) of the functorF with respect to the familg is a
resolution of the functoF o Q".

Proof. (i) Note that if the category is abelian, the condition of the assertion
(b) of Lemma C2.2 is equivalent to the inclusion: K@) C N;c; Ker(f;).

(i) Recall that F' is adapted t¢ ' means thatF' o f;, is an exact functor for
alli € J. Sincefi. = Q" o fI* (in the notations of Lemma C2.1J, is adapted to
§={fili € J}iff FoQ isadaptedtq’ := {f/|i € J}. The statement follows
now from Theorem 2.2. O

COROLLARY C2.4. Suppose that the conditions of Proposit®d.3 hold. If the
functor F o Q" is exact, therH*(¢(g, F')) = Oforall 7 > 1.

C3. A resolution related with an infinite covefix a familyg = {f; : B; — A |

i € J} of continuous morphisms. For eatle .J, denote by, the composition
fix o f; and by respy; ande; adjunction arrows Id — &; andf;" o f;, — ldg.
We can encode the famifyin one morphisni; : ®;c;58; — A having the inverse
image functor

54— I8, X— ][] fX). (1)

1eJ e

LEMMMA C3.1. Suppose that the categad/has.J-indexed products. Then the
morphisnt ; has a direct image functof;r, (®ic s X;) = @icsfix(X5).
Proof. Set for conveniencB; = ®;c s 5;. The adjunction arrow

i€

is determined by the adjunction arrows: € J. The adjunction arrow
e=¢:f5f, — ldg,

assigns to anyX;) € Ob ®;c; B; the composition of the natural projection
7 (Xe) — (fi fire(X3))

and the producte; : f; fi«(X;) — X;) of adjunction morphisms;. We leave the
checking that) ande are really adjunction arrows to a reader. O
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Note that if the familyg is biflat, i.e. the functorg;. f;* are exact for ali € J, then
the morphisnf; is biflat: the functoff ;.f% = ®;cs fi. f;* is exact.

Note that even in the case of abelian categories, it is not true in general that the
exactness of alf;. f;*, ¢ € J, implies the exactness 6jf.f%. Still we can use the
standard resolution related to a famgyfor a certain subcategory of which, in
the case wheg is a biflat cover could be thought as a full subcategory of sheaves
with a compact support.

Denote byA; the full subcategory ofd generated by all object¥ for which
there exists a finite subsét = J'(X) of J with the following property:

(#) for any morphisms : M — L in A such thatf;(s) is invertible for all
i € J', the corresponding mag(s, X) : A(L, X) — A(M, X) is bijective.

LEMMA C3.2. Letg = {f; : B; = A | i € J} be a seof flat morphisms. Sup-
pose that the categorie4 and B; are abelian and the categorié$; have enough
injectives. Them; is an abelian category with enough injectives.

Sketch of proof-or any finite subset’ of .J, denote byA ;: the full subcategory
of A generated byX € ObA having the property (#). The categad is the
union of the directed (with respect t0) set of subcategoried ;.. Each of the
subcategoriesl ;s is equivalent to the quotient categady’s ;, wheres ;. is the
intersection of the kernels of functofg, i € J'. In particularA ;s is an abelian
category covered by subcategorsi € J'. Since eacl; has enough injectives,
A, has enough injectives, and these injectives are injectives of the catdgory
(hence ofA;) at the same time. O

Note that in general the categafy does not have infinite direct sums.

THEOREM C3.3. Let A be an abelian category. And 1gt= {f; : B; — A |

i € J} be an arbitrary set of biflat morphisms. Suppose each catefjptyas
enough injectives. And Iét : 4 — C be a functor adapted t§. Then the standard
complexe (g, F') of the functorF' with respect to the covey computes the values
of the derived functors of the restriction Bfto the subcategoryl;.

Sketch of proof-ix a finite subsef’ of J. The complex: (3, F') restricted to the
subcategoryd ;» for some finiteJ’ is (homotopically) equivalent to the complex
&(Zy, F), whereg :={f; : B = A | i€ J'}. Butg, induces a finite biflat
cover of the subcategotyt ;.. The assertion follows now from Theorem 2.2.0

C4.Resolutions of functorket f: A — C andg: B — C' be continuous morphisms.
Suppose that the categories of functors Fur3) and FuriC, C’) are well defined
(each of the categories in question is equivalent to a small category). The pair of
morphismsf, g determines a continuous morphisbn: Fun(A, B) —Fun(C,C’)

with an inverse and direct image functors red@j.: X — ¢g* o X o f, and
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d, .Y — g.0Y o f*. Moreover, if f andg are localizations (i.ef, andg.
are fully faithful), then® is a localization too. This follows from the fact that the
adjunction morphisn®* o ®,(Y) ;= g*og. oY o f*o f, — Y is anisomorphism
for anyY if the adjunction arrowg™ o f, — Idc andg* o g, — ldc/ are isomor-
phisms.

LEMMA C4.1. (a)Let®r = (ldg — Ro — R1 — ...) be a resolution of the
identical functor inB. Then® : Y — R o Y is a resolution ofdryn4,5)-

(b) If the resolutionr is adapted tgy; i.e. the functorgy, o RR; are exact for all
i > 0, then the resolutiorir is adapted teb : Fun(A, B) — Fun(C,C’).

Proof. (a) The defining properties of: the complex of endofunctors

0—ldg— Ry — R — ...

is exact and each of the functors is exact; > 0. Since the notions of a mono-
and epimorphism and exactness of sequences for functors are defined object-wise,
the functor %% has the same properties.

(b) By assumptiom,. o $R; is an exact functor for afl > 0. This implies that the
functor®, o %, : Fun(A4, B) — FunC,C’), Y — g, oR; o Y o f*, is exact for
all i > 0. In particular, the resolutiornr of the identical functor of Fuf, B) is
adapted to the morphis. |

C4.2.Note.Let f : A — C,g : B — C be continuous morphisms. And Btbe a
resolution of Igs such tpa@* o 9R; IS an exact functor for all > 0.
(a) The functor®, o R sends any right exact functor into a complex of right

exact functors. )
(b) If f isflat (i.e. f* is exact), therb, o SR sends any (left) exact functor into
a complex of (resp. left) exact functors. O

PROPOSITION C4.3Let f: A — C,g : B — C' be continuous morphisms; and
let 3 be a biflat cover adapted tp Let)r = &(3) be the corresponding resolution
of the identical functotds . Then the resolutiom? : Y — &(3) o Y is adapted
to the morphism

® : Fun(A,B) — FunC,C"),®, : Y = g, oY o f*.
Proof. The assertion follows from Theorem 2.2 and Lemma C4.1. O

It follows from Proposition C4.3 that the derived functors of the direct image
functor®, : Fun(A, B) — EndC are isomorphic to the corresponding cohnomology
of the complex

P, 0 B(F):Y — g, 06(F) oY o f*. (1)

C5. Cohomology of invertible sheaves on a skew projective spgeeirn now
to the setting of Section 3; i.e. fix B-gradedk-algebra R. For each € T, we

https://doi.org/10.1023/A:1000479824211 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000479824211

118 ALEXANDER L. ROSENBERG

have an auto-equivalendg of the categoryrr R — mod assigning to each graded
moduleM = &,crM, the graded modulé/ (v) defined by:M(y), := M,
for all v € T. Clearly the ‘torsion categoryt is invariant with respect t@,
for all v € T'. Therefored, induces an auto-equivalena@(v), of the category
Projp(R) := grp R — mod/T';.. We call the auto-equivalencéX+y) canonical line
bundleonProj-(R). One of the important problems is the computing cohomology
of O(y),y €T.
We make these computations below, using the standard complex, for the skew
projective spac®r. ;.. The latter is by definitiofProj.(R), wherel' = 7"+ and
R is the algebra of skew polynomials:nt 1 indeterminates (cf. Example 5.4).
Let R be thek-algebra of skew polynomials overkaalgebraA (cf. Example
5.4). We provideR with the canonical-grading,I' = Z"*1, assigning to any
element of the algebrd the parity O and to any generatey the parityy;, where
v; is theith canonical generator @1,

PROPOSITION C5.1. (aJhe natural mapR — @.crH%(O(y)) is an isomor-
phism of tha'-graded algebras.

(b) H"(O(y)) ~ Az" if all the components of are negative, andl” (O(~)) =
0 if some of the components-phre nonnegative.

(c) There is a natural magi®(O(y)) ® 4 H"(O(v) — H"(O(y + v)) for all
v, v € I which induces a perfect pairing

H°(O(7)) ®4 H'(O(W —7) = H'(O(w)) = Az",

wherew = (-1,-1,...,—1).

(b) H(O(y)) =0forally e Tif0<i <. 5

Proof. We shall use the standard (or ruth@éech) complex in an argument
analogous to the proof of the Serre’s theorem in [Ha] (Theorem 111.5.1).

By Proposition C4.3 the cohomology of any sh@afProj(R) — Projp(R)
can be computed as the cohomology of the standard complex

T (3)(G)) =T (§) oGomt. 1)

whereg is the canonical affine cover &froj-(R). Since the covef is semisepa-
rated, the standard complex (1) is homotopically equivalent t€tuh complex

T,.C8(5)(G) =m0 CE(§)oGor. ¥)
The right hand side of the complex (2) is

Hmo@uogow*ﬁ Hﬂ*ocﬁxiogof‘—%--
ieJ =
* ®
— Hmoc’ﬁxiogow — ...
iE]n<

https://doi.org/10.1023/A:1000479824211 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000479824211

NONCOMMUTATIVE SCHEMES 119

where, foreach= (i1,...,i,), i := =i, ... x;,; aNdG; ~ (zi)'R® R regarded
as an endofunctor &froj(R).

Since the functor* is the composition of the tensoridg® 4 and the localization
Q: grr R — mod — Proj(R), the functorr, is the composition of a right adjoint
()" to the localizatior@) and the functogrr R — mod — A — mod assigning to any
gradedR-module its zero component, the functor

o Bz 0Gor": A—mod— A—mod (4)

is isomorphic to the functdr;) ~1G(R(y)o® 4. In particular, ifg = O(y) for some
v € T, the functor (4) is isomorphic tor;) 1 R(v)o® 4. Takingg equal the direct
sum®,crO(y), we obtain thatr, o &,; o G o m* ~ (zj) 1R® ., where(zj) 1R
is provided with the naturdl-grading. Set for conveniende,; := (zi) 'R. And
let G denoted, crO(y). Then theCech complex (3) is isomorphic to

C(3,0)®4 = (H Ry, — [[ Rei —

ieJ i€Jac

e d H Rmi —>”'—>RI0...IT R4 - (5)
iEJn<

For any flat leftA-module L, the cohomology of the compleX (3, R) ® 4 L
are isomorphic td*(C" (3, R)) ®4 L.

(a) One can see that the canonical morphisre HO(C'(F, R)) is a monomor-
phism, sincg(z;} are not zero divisors (i.e. already — R, is a monomorphism
for anys). Note that, for any &< i < m < r, the sequence

O — R — sz @ Rxm — R:vi:vm
is exact. Therefore the sequence

i€J 0<i,m<r

is exact.
(b) H"(C" (3, R)) is the cokernel of

drfl . H Rmo...zk,lkarl...zT — Rzg...mr (6)

O<kgr

Note thatR,,.. .., is a free A-module with the b_asié, i € I'. The image of (6)
is the free submodule dt,,.. ., generated by alt', such that at least one of the
components of = (ip,...,,) IS nonnegative. ThereforH" (C" (3, R)) is a free
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A-module with the basis', wherei runs through the set of elementsloith all
components negative.

(c) By (), H%(C'(3,R)) = R = [lier., Ax', wherel'sq consists of all ele-
ments of”" with nonnegative components. And, by (BY,(C" (3, R)) = [Tier_, Ax',
wherel' . is the set of elements df with negative components. Therefore, we
have a natural action

H°(C'(3,R) @4 H'(C'(3,R)) — H'(C"(3, R)), (7)

determined byz' ® 2™ — x(m)z™, wherex(m) = 1if m € I' o and
x(m) =0if m ¢ I'.o. Letw denote the elemeiit-1, —1, ..., —1). Then the map
(7) determines a perfect pairing (Serre duality)

HY(O(7)) ®4 H'(O(W — ) — H'(O(w)) = Az". (8)

(d) H(C"(3, R)) = 0 for 0 < i <r. Localizing the complex (3, R) at (z,.),
we get the complex” (3(z,), R), whereg(z,) is the canonical cover of the open
subschem& (z,) := (z,)~*Proj(R) of Proj(R). Sincel/ (z,) ~ (R, )o— mod —

A — mod is affine,H*(C"(§(z,), R) = 0 fori > 1. Since the localization dtz,)
is an exact functor*(C" (3(z,), R)) ~ H*(C" (3, R))s, - the localization of
H*(C(3,R) at (z,)). Therefore the equalityl*(C"(3(x,), R)) = 0 means that
any element off*(C" (g, R)) is annihilated by some power af.. It remains to
show that, for any G< 7 < r, the multiplication byz, induces an injective map
from H'(C" (3, R)) to itself.

The exact sequence btgradedR-bimodules

0— R(—y,) = R — R/Rz, — 0 9)
and the corresponding cohomological long exact sequence:

e — HY(G(—) — H(G) — H(Gn) — HY(G(—,) —

o — H"(G) — 0 (10)

The quotient ringR/ Rz, is actually thel’-graded skew polynomial algebra,
I’ = 7", with theI"-grading induced by the projectidh= z"+! — T’ sendingy,
to 0. Therefore, by the induction hypothedit,(G3,) = 0 for 0 < i < r — 1 which
implies thatz, : H*(G(—v,)) — H'(G) is an isomorphism for &< i < r — 1.
Since the multiplication by, is locally nilpotent, this means th&f’(G) = 0 for
O<i<r—1.

Note thatH*(G(—~,)) ~ H*(G). Thus, fori = 0, we have an exact sequence

0 — H(G(—))
= R(—y,) — H°(G) = R — H°Gy) = R/Rx, — 0. (11)
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Sothatd(G)(—y,) = 0 = H*(G). Atthe other end of the long exact sequence(10)
we have the exact sequence

tial

0— H YGy) =5 H"(G(—v,)) = H"(G) — O. (12)

Indeed, H"~1(Gy) = Tlicrv Az'; H™(G(—)) = [lier, Az', wherel, is the
subset{i = (io,...,%r) € I'li, = —1}; H"(G) = [Ijer A2'. And the morphism
tial, is the dividing byz,.

ThereforeH™1(G) = 0. O

ForProj,(R), we have a direct analog of the classical result:

PROPOSITION C5.2. (ayhe natural mapR — @,c2H°(O(n)) is an isomor-
phism of thez-graded algebras.

(b) H"(O(—r — 1)) ~ Az7", wherew = (—-1,—-1,...,—1).

(c) The natural map

HO(O(n)) @4 H'(O(=1—1r —n) — H"(O(—r — 1)) = Az"

is a perfect pairing of freel-modules of finite rank for alb € 7.

(d) H(O(n)) = 0foralln € Zif 0 < i <r.

Proof. The assertions follow from the corresponding assertions of Proposition
C5.1. The details are left to the reader. O

C5.3.GeneralizationsPropositions C5.1 and C5.2 can be easily extended to the
cases of skew projective spaces re3p, andP; (cf. 5.4.2). We leave details to
the reader.

Appendix: reconstruction of schemes

A.O. Preliminaries on Sped=ix an abelian categor with the property.
(sup) For any ascending chdinof subobjects of an objed, the supremum
of Q exists; and for any subobjeEtof M it, the natural morphism

sup{X (L | X € Q} — (supQ) () L

is an isomorphism.
The categories with propertgyp are called otherwiste categories with exact
direct limits Recall three important examples of such categories:

(1) The categonR — mod of left modules over an associative ring R.
(2) The category of sheaves Bimodules on an arbitrary topological space.
(3) The category of quasi-coherent sheaves on a scheme.
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The first two are examples @rothendieck categorietn particular, they have
limits and colimits of small diagrams, a set of generators and enough injective
objects. The category of quasi-coherent sheaves on a scheme is also a Grothendieck
category, if the scheme in question is quasi-compact and quasi-separated. It is not
known, however, if the category of quasi-coherent sheaves on an arbitrary scheme
has enough injectives or even all limits ([TT], B.2). But, one can easily see that it
has the property (sup).

In fact, the inclusion of the category Qcodj)(on a schem& into the category
Ox-mod of Ox-modules is a fully faithful exact functor which reflects finite limits
and all colimits. This implies that the category Qcdhlas all colimits and inherits
the property (sup) fron®x-mod.

Recall that, for any two objecfs, Y of 4, we writeX > Y if Y is a subquotient
of a finite direct sum of copies of (cf. Note 2.5.1). For anX € ObA, denote by
(X) the full subcategory oft suchthaOb(X) = ObA—{Y € ObA | Y = X }. It
is easyto checkthat - Y iff (Y') C (X). This observation provides a convenient
realization of the quotient ofOb.A, ) with respect to the equivalence relation
induced by-: X ~ Y if X =Y = X. Namely,(ObA, ~)/ =~ is isomorphic to
({(X) | X € ObA}, D).

Set Spegl = {P € ObA | P # 0, and for any nonzero subobjedt of
P, X = P}.The spectrunSpecA, of the categoryd is the preordered set of equiv-
alence (with respect te) classes of objects of SpdcThe canonical realization of
(ObA, =)/ ~ induces a canonical realization 8pecA : (Specd = {(P) | P €
Specd}, D).

PROPOSITION A.0.1. For any P € Spec4, the subcategoryP) is a Serre
subcategory ofd. If A is a category with the property (sup), then the converse is
true: if X is an object of4 such that{X) is a Serre subcategory of, thenX is
equivalent (in the sense pf) toa P € SpecA; i.e. (X) = (P).

Proof. See Proposition 2.3.3 and 2.4.7 in [R]. O

A nonzero objeciX of a categoryA is calledquasifinalif, for any nonzero object
Y of A, Y = X. The categoryd having a quasifinal objects is calléztal.

One can check that all simple objects of a local category (if any) are isomorphic
to each other. In particular, the category of left modules over a commutative ring
R is local iff the ring R is local.

PROPOSITION A.0.2For any P € SpecA, the quotient categoryl/(P) is local.
Proof. See Proposition 3.3.1 and Corollary 3.3.2 in [R]. O

PROPOSITION A.0.3. (alfor any topologizing (i.e. full and closed with respect
to taking direct sums and subguotients) subcategooy .4, the inclusion functor
T — A induces an embeddirgped — SpecA.
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(b) For any exact localization) : A — A/S and for anyP € Sped,
either P € OIS, or Q(P) € Specd/s; hence@ induces an injective map from
Specd — Spec to Spec4/s.

A.0.4.The support of an objeckor anyM € ObA, the support of\f, Supp(M),
consists of all P) € Spec4 such thatM ¢ Ob(P).

A.0.5.Localizations at subsets of the spectriior any subsdl of SpecA4, denote
by ((U)) the intersectior pyc;(P). Being the intersection of a set of Serre
subcategories,(U)) is a Serre subcategor localization at the subséf is a
localization at the Serre subcategd(y/)).

A.0.6.The topology-. We denote this way the strongest topology compatible with
the preordeb (recall thatP O P’ means tha’ is a specialization d?). Its explicit
description: the closure of a sub$€t of SpecA consists of all specializations of
all points of W.

A.0.7. The Zariski topologyA subschem@ of an abelian category (cf. C6.0)
is Zariski closedor simply closedif it is a reflective subcategory ofl; i.e. the
inclusion functor has a left adjoint. One can show that the family of Sp&sT,
whereT runs through the class of closed subschemetadn be regarded as a base
of closed sets of a topology which is called #ariski topology(cf. [R], 111.6.3.1).

A.1l. A locally ringed space associated to a categdfix an abelian category.
Suppose we have fixed also a topoldgyon SpecA. Then we can associate to
the pair(.A, 7) a ringed spacéX, O), where the underlying topological spake

is (SpecA, T') and the ‘structure’ shed? is a sheaf associated to the presheaf
which assigns to every open détthe center of the quotient categady/ ((U)).
Recall that the center of a category is the ring of endomorphisms of its identical
functor.

We define astrongly closed subschemas a closed subscheriteof 4 com-
patible with localization at points ddpec4. The latter means that the canonical
functor T/T N (P) — A/(P) establishes an equivalence DfT N (P) and a
closed subscheme of/(P) for any (P) € SpecA. We define thestrong Zariski
topology 5, on SpecA as the weakest topology @pecA such that the subset
Sped is closed for any strongly closed subscheme. Denoté kythe structure
sheaf associated with the topologyOne can show th&? 4 is a sheaf of local rings.

THEOREM A.2.Suppose tha#l is the category of quasi-coherent sheaves on a
schemeX = (X, Ox). Then the locally ringed spad¢Spec4, T5), O 4) is iso-
morphic toX.

The assertion is proved in [R2].
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