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1. Introduction

The Dirac equation in its most usual form can be derived by the minimum
action principle from the Lagrangian density

(1) lOc) = 4U+(*)T* 2 ykdMx) - ( Z 3^+(x)(

where yk (fe =1,2,3,4) are the Dirac 4 x 4 matrices satisfying relations;

/ / + ?<y = 2gikl,

(2) gik = 0 if k # i, </44 = - <7U = - g22 = - g33 = 1,

y 4 + = 7 4 , / + = - / ( f c = 1,2,3).

i^(x) is a column matrix with 4 complex elements being functions of xl,x2,
x3, x4, coordinates of the pseudo-Euclidean space with metric g'k.

There are 16 independent matrices that can be written as products of the
Dirac matrices. These matrices form a representation of the Lie algebra of [7(2,2)
group; i.e., the group of linear transformations of a four-dimensional complex
vector space which leaves quadratic form i/'!*^ + ^i*4>2 ~ l/'3*'/'3 — •K*1/^
invariant. This fact is a rather unexplored aspect of the Dirac theory. A new
approach to the theory can be formulated when [7(2,2) Lie algebra is taken as a
starting point. Some interesting features of such an approach were already
described in ref. [1]. The present paper puts the ideas on a firmer mathematical
basis, and derives some consequences of the theory.

2. Gauge transformation

Let us consider a four-dimensional complex representation of [7(2,2) and a
linear automorphism of the representation space defined simply by the action of
[7(2,2) on V:

(3) xg: V-+ V, xjW) = gil/, ij/eV, ge [7(2,2).
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Further define an automorphism of set D = {y1,y2,y3,y4'} of the Dirac
matrices by

(4) <rg:D^D, ag{T) = gTg~\T£D,ge [7(2,2).

If g is a fixed element of [7(2,2) and both %g and ag are performed simul-
taneously, we shall call such a map a local gauge transformation under (7(2,2).
As a map rg: F-> F i t belongs to [7(2,2),and as a map a9: D->D it generates a
Lie algebra automorphism of all, the set of generators of L7(2,2). It also contains
the usual quantum mechanical gauge transformation \jj -> e"*\j/, <rfl(r) = T, as g is
just e"/ in this case.

The local gauge transformation under [7(2,2) has one more pleasant property
that will be described now. To be more specific, we choose a particular representa-
tion of the 16 elements of °ll:

(5) Skl = i ( 7 V + y'yk), p k = ~ y \ qk = \yky5,

A = -y 5 , plus the matrix il, where / is the identity.

Matrix y5 is defined as

y5 =

Commutation relations are then

[Sfcf»S'mnj = gimSkn +gknSlm —gkmSln — glnSkn

[Skl>Pm] = dlmPk-gkmVl

(6) [/>*,<?,] 1 =

lA,qk] = pk

[A.St,] = 0

Here gk, — gkI (k, I = 1, 2, 3, 4) is the metric tensor denned in (2).
Matrices Skl generate the six-dimensional group of homogeneous Lorentz

transformation L <= [7(2,2), while p t and qk span subspaces P and g respectively,
with invariance properties with respect to the gauge transformation

(7) ah(P) = P, ah(Q) = Q, heL.

This means that if we have a four-dimensional vector space T with a basis
{Xl,X2,X3,X4] we can define the action of L on T by considering a map
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T

(8) E <jh(Pk)xk= E Pkh(Xk).
k = l fc = l

Such an action defines a Minkowski metric (—,—,—,+) in T, as a sym-
metric bilinear form with this metric will be invariant with respect to the action
of L on T defined by Eq. (8).

If we have a four-dimensional completely parallelisable manifold M, we can
use (8) to define the action of L on the tangent vector space Mp at any point
peM. In a coordinate system (u1,!/2, u3,u4) of M, basis vectors Kk(u) at any
point can be written as

(9) Xk(u)= 2 Kiu)~.

Any set of continuous functions hk(u) satisfying Det (/i£(")) # 0 will then
make M the Riemann space of the general relativity with metric

(10) g"\u)= E K(u)h](u)gkl.
k,l

When the Dirac Lagrangian density (1) is rewritten using the notation
introduced above as well as using coordinates u" (n = 1,2, 3,4) of M instead of
coordinates xk, it looks like

L(u) = ij/+(u)f E
(11) * =

+ E (X
k=l

where

-.f i_, ).^
in the representation we are using. L(u) is invariant with respect to the local gauge
transformations as defined above. Moreover, it is seen from Eq. (8) that the local
gauge transformations with respect to L c U(2,2) is equivalent to the usual
"Lorentz transformations of the Dirac equation" as it is treated in physics
literature, where the Dirac matrices do not change, and \j/ -> h\\i, Xk -> h(Xk), heL.

In this sense we can state that the invariance with respect to the local gauge
transformations is more fundamental than the Lorentz invariance, as it can change
a four-dimensional manifold into the physical space-time (defining a metric),
while being made equivalent to the physical Lorentz transformations of the
Dirac equation.
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3. Global gauge invariance

We shall now see how the Lagrangian (11) must be changed in order to make
it invariant with respect to a global gauge transformation, defined in the same
way as the local one, except that the group element g is taken to be a differentiable
function g{u) on manifold M. A general prescription for such a procedure can be
found in ref. [2] or [3]. g(u) is expressed in terms of canonical coordinates of
the group as

(12) g(u) -

where a"(/u)where a (u) are differentiable functions of coordinates u**, and Ta are
the matrices forming a basis of the Lie algebra of (7(2,2), as listed above (see (5)).
Sixteen new vector valued functions B"Ju) are introduced with a prescribed
transformation properties with respect to the global transformation (up to the
first order in a's):

y c a t 8x(u)

where f"b are the structure coefficients of the Lie algebra of (7(2,2) when matrices
Ta are used as a basis. The derivative d\p jdu^h replaced by a''covariant'' derivative

- ^ _ y a

which transforms like

(15) I/^M) -* 9(u)$u(u).

The action of the global gauge transformations is then the same as that of
the local ones, and the invariance of the Lagrangian is preserved. In this way
terms containing the new fields B°(u) appear in the original Lagrangian, interpreted
as the interaction terms, when a physical significance is given to them. The field
corresponding to the matrix il in the algebra is, for example, interpreted as the
electromagnetic field (compare eg. [4]). There will be further a group of six fields
corresponding to Skl (k, 1 = 1,2,3,4) (denoted by B*; = - B " ) , a group of four
fields corresponding to pk(B

kJ-p)), four fields corresponding to ^(B*( 9 ) ,and
finally one field corresponding to A (B*A)). If the invariance of the Lagrangian is
to be preserved even in case the gauge transformations induced by Skl are in-
terpreted as local Lorentz rotations according to relation (8), then B*1 must
transform as local tensors, while jB^(p)and B*(9)will transform as local vectors.

There is also a general form of a Lagrangian formed from the new fields, if
the invariance with respect to transformation (13) is required. The lowest order
invariant has a form [2]
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(12) LB(u) = I Z F;vF
u
a\

a = 1 fi>v

where

"v Su" duv
 bc

 bc " v " '

Index a = 1, •• •, 16 is lowered by using the Lie algebra metric gab — ^cdfadflc
and indices n, v = 1, • •-,A are raised by using the Riemann metric g"v(u).

4. A particular solution

It was found that a solution satisfying the minimum action principle with
the Lagrangian (12) of the new fields exists and can have a physical interpretation
under some simplifying conditions.

Firstly, as we interpret that part of the gauge transformations which is
induced by Skl in the same way as in ref. [2] (i.e., as local Lorentz rotations) we
use the relation

(13) B* — lu h -K~J — 2- hph TJ,V

derived in ref. [2].

Further we put the electromagnetic field as well as field B^A) identically equal

to zero. Finally we observe that the interaction term corresponding to the fields

B*(p) and B*(?) in the Dirac Lagrangian has the form

which is a scalar function with respect to both the local Lorentz rotations and a
general change of coordinates u". This suggests a possible origin of the mass term
m4i+f\j/ as such an interaction term where <j>(u) happens to be constant. Therefore,
we attempt to find a solution with <j>{u) = m.

If we look only for a spherically symmetric static solution some further
unknown functions are eliminated, and a system of two differential equations
for two unknown functions

1

and

/(r) = Z *?«>•.
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is obtained. The simplification of the original system of Euler equations is
straightforward but tedious, and we present only the final system:

r2f" + Arf>_ 2y» _ 4 (i _ y) + 4r2[(/')2 +//"] = 0
(15)

[y~ - 2~ - \f + 6(/2 - m

Even this simplified system is mathematically rather complicated, and a
general discussion of possible solutions is difficult. Nevertheless, a specific solution
is of an interest.

If f(r) = a (constant) for all values of r, the equations are satisfied by

(16) y ( r ) = l _ 2^L_ ( m 2_ a 2 ) r 2_

This is the spherically symmetric solution of the Einstein equations with
a "cosmological" term corresponding to the "radius of the universe" equal to
1 / x/m2 — a2 (see [5]). When a = m we obtain the Schwarzchild solution of the
Einstein equations (k is then the Newton's gravitational constant). For a -> 0 the
radius becomes \\m which is usually considered as a reasonable estimate of the
radius of an elementary particle with mass m.
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